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Abstract

A feature-based model explanation denotes how
much each input feature contributes to a model’s
output for a given data point. As the number
of proposed explanation functions grows, we lack
quantitative evaluation criteria to help practition-
ers know when to use which explanation function.
This paper proposes quantitative evaluation crite-
ria for feature-based explanations: low sensitiv-
ity, high faithfulness, and low complexity. We de-
vise a framework for aggregating explanation func-
tions. We develop a procedure for learning an ag-
gregate explanation function with lower complex-
ity and then derive a new aggregate Shapley value
explanation function that minimizes sensitivity.

1 Introduction

There has been great interest in understanding black-
box machine learning models via post-hoc explanations.
Much of this work has focused on feature-level impor-
tance scores for how much a given input feature con-
tributes to a model’s output. These techniques are popu-
lar amongst machine learning scientists who want to san-
ity check a model before deploying it in the real world
[Bhatt et al., 2020]. Many feature-based explanation func-
tions are gradient-based techniques that analyze the gra-
dient flow through a model to determine salient input
features [Shrikumar et al., 2017; Sundararajan et al., 2017].
Other explanation functions perturb input values to a refer-
ence output and measure the change in the model’s output
[Štrumbelj and Kononenko, 2014; Lundberg and Lee, 2017].

With many candidate explanation functions, machine
learning practitioners find it difficult to pick which explana-
tion function best captures how a model reaches a specific
output for a given input. Though there has been work in
qualitatively evaluating feature-based explanation functions
on human subjects [Lage et al., 2019], there has been little
exploration into formalizing quantitative techniques for eval-
uating model explanations. Recent work has created auxil-
iary tasks to test if attribution is assigned to relevant inputs
[Yang and Kim, 2019] and has developed tools to verify if the
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features important to an explanation function are relevant to
the model itself [Camburu et al., 2019].

Borrowing from the humanities, we motivate three cri-
teria for assessing a feature-based explanation: sensitivity,
faithfulness, and complexity. Philosophy of science research
has advocated for explanations that vary proportionally with
changes in the system being explained [Lipton, 2003]; as
such, explanation functions should be insensitive to perturba-
tions in the model inputs, especially if the model output does
not change. Capturing relevancy faithfully is helpful in an ex-
planation [Ruben, 2015]. Since humans cannot process a lot
of information at once, some have argued for minimal model
explanations that contain only relevant and representative fea-
tures [Batterman and Rice, 2014]; therefore, an explanations
should not be complex (i.e., use few features).

In this paper, we first define these three distinct criteria:
low sensitivity, high faithfulness, and low complexity. With
many explanation function choices, we then propose methods
for learning an aggregate explanation function that combines
explanation functions. If we want to find the simplest expla-
nation from a set of explanations, then we can aggregate ex-
planations to minimize the complexity of the resulting expla-
nation. If we want to learn a smoother explanation function
that varies slowly as inputs are perturbed, we can leverage
an aggregation scheme that learns a less sensitive explanation
function. To the best of our knowledge, we are the first to
rigorously explore aggregation of various explanations, while
placing explanation evaluation on an objective footing. To
that end, we highlight the contributions of this paper:

• We describe three desirable criteria for feature-based ex-
planation functions: low sensitivity, high faithfulness,
and low complexity.

• We develop an aggregation framework for combining
explanation functions.

• We create two techniques that reduce explanation com-
plexity by aggregating explanation functions.

• We derive an approximation for Shapley-value explana-
tions by aggregating explanations from a point’s near-
est neighbors, minimizing explanation sensitivity and re-
sembling how humans reason in medical settings.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3016



2 Preliminaries

Restricting to supervised classification settings, let f be a
black box predictor that maps an input x ∈ R

d to an output
f(x) ∈ Y . An explanation function g from a family of expla-
nation functions, G, takes in a predictor f and a point of inter-
est x and returns importance scores g(f ,x) = φx ∈ R

d for
all features, where g(f ,x)i = φx,i (simplified to φi in con-
text) is the importance of (or attribution for) feature xi of x.
By gj , we refer to a particular explanation function, usually

from a set of explanation functions Gm = {g1, g2, . . . , gm}.
We denote D : R

d × R
d 7→ R≥0 to be a distance met-

ric over explanations, while ρ : Rd × R
d 7→ R≥0 denotes

a distance metric over the inputs. An evaluation criterion µ
takes in a predictor f , explanation function g, and input x,
and outputs a scalar: µ(f , g;x). D = {(xi, yi)}ni=1 refers to
a dataset of input-output pairs, and Dx denotes all xi in D.

3 Evaluating Explanations

With the number of techniques to develop feature level ex-
planations growing in the explainability literature, picking
which explanation function g to use can be difficult. In order
to study the aggregation of explanation functions, we define
three desiderata of an explanation function g.

3.1 Desideratum: Low Sensitivity

We want to ensure that, if inputs are near each other and their
model outputs are similar, then their explanations should be
close to each other. Assuming f is differentiable, we desire
an explanation function g to have low sensitivity in the re-
gion around a point of interest x, implying local smoothness
of g. While [Melis and Jaakkola, 2018] codified the property,
[Ghorbani et al., 2019] empirically tested explanation func-
tion sensitivity. We follow the convention of the former and
define max sensitivity and average sensitivity in the neighbor-
hood of a point of interest x.

Let Nr = {z ∈ Dx | ρ(x, z) ≤ r,f(x) = f(z)} be a
neighborhood of datapoints within a radius r of x.

Definition 1 (Max Sensitivity). Given a predictor f , an ex-
planation function g, distance metrics D and ρ, a radius r,
and a point x, we define the max sensitivity of g at x as:

µM(f , g, r;x) = max
z∈Nr

D(g(f ,x), g(f , z))

Definition 2 (Average Sensitivity). Given a predictor f , an
explanation function g, distance metrics D and ρ, a radius r,
a distribution Px(·) over the inputs centered at point x, we
define the average sensitivity of g at x as:

µA(f , g, r;x) =

∫

z∈Nr

D(g(f ,x), g(f , z))Px(z)dz

3.2 Desideratum: High Faithfulness

Faithfulness has been defined in [Yeh et al., 2019]. The fea-
ture importance scores from g should correspond to the im-
portant features of x for f ; as such, when we set particular
features xs to a baseline value x̄s, the change in predictor’s
output should be proportional to the sum of attribution scores

of features in xs. We measure this as the correlation between
the sum of the attributions of xs and the difference in out-
put when setting those features to a reference baseline. For
a subset of indices S ⊆ {1, 2, . . . d}, xs = {xi, i ∈ S}
denotes a sub-vector of input features that partitions the in-
put, x = xs ∪ xc. x[xs=x̄s] denotes an input where xs

is set to a reference baseline while xc remains unchanged:
x[xs=x̄s] = x̄s ∪ xc. When |S| = d, x[xs=x̄s] = x̄.

Remark (Reference Baselines). Recent work has dis-
cussed how to pick a proper reference baseline x̄.
[Sundararajan et al., 2017] suggests using a baseline where
f(x̄) ≈ 0, while others have proposed taking the baseline to
be the mean of the training data. [Chang et al., 2019] notes
that the baseline can be learned using generative modeling.

Definition 3 (Faithfulness). Given a predictor f , an explana-
tion function g, a point x, and a subset size |S|, we define the
faithfulness of g to f at x as:

µF(f , g;x) = corr
S∈( [d]

|S|)

(

∑

i∈S

g(f ,x)i,f(x)− f
(

x[xs=x̄s]

)

)

For our experiments, we fix |S| then randomly sample sub-
sets xs of the fixed size from x to estimate correlation. Since

we do not see all
(

[d]
|S|

)

subsets in our calculation of faithful-

ness, we may not get an accurate estimate of the criterion.
Though hard to codify and even harder to aggregate, faithful-
ness is desirable, as it demonstrates that an explanation cap-
tures which features the predictor uses to generate an output
for a given input. Learning global feature importances that
highlight, in expectation, which features a predictor relies on
is a challenging problem left to future work.

3.3 Desideratum: Low Complexity

A complex explanation is one that uses all d features in its ex-
planation of which features of x are important to f . Though
this explanation may be faithful to the model (as defined
above), it may be too difficult for the user to understand (es-
pecially if d is large). We define a fractional contribution dis-
tribution, where | · | denotes absolute value:

Pg(i) =
|g(f ,x)i|
∑

j∈[d]

|g(f ,x)j |
; Pg = {Pg(1), . . . ,Pg(d)}

Note that Pg is a valid probability distribution. Let Pg(i)
denote the fractional contribution of feature xi to the total
magnitude of the attribution. If every feature had equal attri-
bution, the explanation would be complex (even if it is faith-
ful). The simplest explanation would be concentrated on one
feature. We define complexity as the entropy of Pg .

Definition 4 (Complexity). Given a predictor f , explanation
function g, and a point x, the complexity of g at x is:

µC(f , g;x) = Ei

[

− ln(Pg)
]

= −
d
∑

i=1

Pg(i) ln(Pg(i))

4 Aggregating Explanations

Given a trained predictor f , a set of explanation functions
Gm = {g1, . . . , gm}, a criterion to optimize µ, and a set of
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inputs Dx, we want to find an aggregate explanation function
gagg that satisfies µ at least as well as any gi ∈ Gm. Let

h(·) represent some function that combines m explanations
into a consensus gagg = h(Gm). We now explore different

candidates for h(·).

4.1 Convex Combination

Suppose we have two different explanation functions g1 and
g2 and have chosen a criterion µ to evaluate a g. Consider an
aggregate explanation, gagg = h(g1, g2). A potential h(·) is

a convex combination where gagg = h(g1, g2) = wg1+(1−
w)g2 = w⊺Gm.

Proposition 1. If D is the ℓ2 distance and µ = µA (average
sensitivity), the following holds:

µA(gagg) ≤ wµA(g1) + (1− w)µA(g2)

Proof. Assuming Px(z) is uniform, we can apply the triangle
inequality and the convexity of D to arrive at the above.

A convex combination of explanation functions thus yields
an aggregate explanation function that is at most as sensitive
as any of the explanation functions taken alone. In order to
learn w given g1 and g2, we set up an objective as follows.

w∗ = argmin
w

E
x∼Dx

[

µA(gagg(f ,x))
]

(1)

Assuming a uniform distribution around all x ∈ Dx, we can
rewrite this as:

w∗ = argmin
w

∫

x∼Dx

∫

z∈Nr

D(gagg(x), gagg(z))Px(z)dzdx

By Cauchy-Schwartz, we get the following:

w∗ ≤ argmin
w

∫

x∼Dx

∫

z∈Nr

D (a, b) dzdx

where a = wg1(f ,x) + (1 − w)g2(f ,x) and b =
wg1(f , z) + (1 − w)g2(f , z). This implies that w∗ will
be minimal when one element of w∗ is 0 and the other is
1. Therefore, a convex combination of two explanation func-
tions, found by solving Equation (1), will be at most as sen-
sitive as the least sensitive explanation function.

4.2 Centroid Aggregation

Another sensible candidate for h(·) to combine m explana-
tion functions is based on centroids with respect to some dis-
tance function D : G × G 7→ R, so that:

gagg ∈ argmin
g∈G

E
g
i
∈Gm

[

D(g, gi)
p
]

= argmin
g∈G

m
∑

i=1

D(g, gi)
p

where p is a positive constant. The simplest examples of dis-
tances are the ℓ2 and ℓ1 distances with real-valued attributions
where G ⊆ R

d.

Proposition 2. When D is the ℓ2 distance and p = 2, the
aggregate explanation is the feature-wise sample mean.

gagg(f ,x) = gavg(f ,x) =
1

m

m
∑

i=1

gi(f ,x) (2)

Proposition 3. When D is the ℓ1 distance and p = 1, the
aggregate explanation is the feature-wise sample median.

gagg(f ,x) = med{Gm}

Propositions 2 and 3 follow from standard results in statis-
tics that the mean minimizes the sum of squared differences
and the median minimizes the sum of absolute deviations
[Berger, 2013].

We could obtain rank-valued attributions by taking any
quantitative vector-valued attributions and ranking features
according to their values. If D is the Kendall-tau distance
with rank-valued attributions where G ⊆ Sd (the set of per-
mutations over d features), then the resulting aggregation
mechanism via computing the centroid is called the Kemeny-
Young rule. For rank-valued attributions, any aggregation
mechanism falls under the rank aggregation problem in so-
cial choice theory for which many practical “voting rules”
exist [Bhatt et al., 2019a].

We analyze the error of a candidate gagg. Suppose the

optimal explanation for x using f is g∗(f ,x) and suppose
gagg is the mean explanation for x in Equation (2). Let

ǫi,x = ||g∗(f ,x)− gi(f ,x)|| be the error between the opti-

mal explanation and the ith explanation function.

Proposition 4. The error between the aggregate explanation
gagg(f ,x) and the optimal explanation g*(f ,x) satisfies:

ǫagg ≤

∑n

i=1

∑m

j=1 ǫj,xi

mn

Proof. For a fixed x, we have:

ǫagg,x = ||g∗(f ,x)− gagg(f ,x)||

= ||
mg∗(f ,x)

m
−

1

m

m
∑

i=1

gi(f ,x)||

≤
1

m

m
∑

i=1

||g∗(f ,x)− gi(f ,x)|| =

∑m

i=1 ǫi,x

m

Averaging across Dx, we obtain the result.

Hence, by aggregating, we do better than when using one
explanation function alone. Many gradient-based explana-
tion functions fit to noise [Hooker et al., 2019]. One way to
reduce noise would be to aggregate by ensembling or averag-
ing. As proven in Proposition 4, the typical error of the ag-
gregate is less than the expected error of each function alone.

5 Lowering Complexity Via Aggregation

In this section, we describe iterative algorithms for aggre-
gating explanation functions to obtain gagg(f ,x) with lower
complexity whilst combining m candidate explanation func-
tions Gm = {g1, . . . , gm}. We desire a gagg(f ,x) that con-

tains information from all candidate explanations gi(f ,x)
yet has entropy less than or equal to that of each explana-
tion gi(f ,x). As discussed, a reasonable candidate for an
aggregate explanation function is the sample mean given by
Equation (2). We may want gagg(f ,x) to approach the sam-

ple mean, gavg(f ,x); however, the sample mean may have

greater complexity than that of each gi(f ,x).
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For example, let g1(f ,x) = [−1, 0]T and g2(f ,x) =
[0, 1]T . The sample mean is gavg(f ,x) = [−0.5, 0.5]T . Both
g1 and g2 have the minimum possible complexity of 0, while
gavg has the maximum possible complexity, log(2). Our ag-

gregation technique must ensure that gagg(f ,x) approaches

gavg(f ,x) while guaranteeing gagg(f ,x) has complexity less

than or equal to that of each gi(f ,x). We now present two
approaches for learning a lower complexity explanation, vi-
sually represented in Figure 1.

5.1 Gradient-Descent Style Method

Our first approach is similar to gradient descent. Starting
from each gi(f ,x), we iteratively move towards gavg(f ,x)
in each of the d directions (i.e., changing the kth feature
by a small amount) if the complexity decreases with that
move. We stop moving when the complexity no longer de-
creases or gavg(f ,x) is reached. Simultaneously, we start

from gavg(f ,x) and iteratively move towards each gi(f ,x)
in each of the d directions if the complexity decreases. We
stop moving when the complexity no longer decreases or any
of the gi(f ,x) are reached. The final gagg(f ,x) is the loca-
tion that has the smallest complexity from these 2d different
walks. Since we only move if the complexity decreases and
start from each gi(f ,x), the entropy of gagg(f ,x) is guaran-

teed to be less than or equal to the entropy of all gi(f ,x).

5.2 Region Shrinking Method

In our second approach, we consider the closed region, R,
which is the convex hull of all the explanation functions,
gi(f ,x). Notice region R initially contains gavg. We con-
sider an iterative approach to find the global minimum in the
region R. As before, we consider the convex combination
formed by two explanation functions, gi and gj . Using con-
vex optimization, we find the value on the line segment be-
tween gi and gj that has the minimum complexity; essen-
tially, we iteratively shrink the region. For the region shrink-
ing method, the convex combination formed by gi and gj is:

w(gi) + (1− w)(gj), w ∈ [0, 1]

For every pair of functions in Gm, we find the functions that
produces the minimum complexity in the convex combina-
tion of the functions, producing a new set of candidates G′

m.
gagg is the element in set G′

m with minimal complexity af-
ter K iterations. In each iteration, a function is chosen if it
has the minimum complexity of all the functions in a convex
combination. Thus, the minimum complexity of the set G′

m

decreases or remains constant with each iteration.

6 Lowering Sensitivity Via Aggregation

To construct an aggregate explanation function g that mini-
mizes sensitivity, we would need to ensure that a test point’s
explanation is a function of the explanations of its nearest
neighbors under ρ. This is a natural analog for how hu-
mans reason: we use past similar events (training data) and
facts about the present (individual features) to make decisions
[Bhatt et al., 2019b]. We now contribute a new explanation
function gAVA that combines the Shapley value explanations
of a test point’s nearest neighbors to explain the test point.

(a) (b)

Figure 1: Visual examples of the two complexity lowering aggrega-
tion algorithms: gradient-descent style (a) and region shrinking (b)
methods using explanation functions g

1
, g

2
, g

3

6.1 Shapley Value Review

Borrowing from game theory, Shapley values denote the
marginal contributions of a player to the payoff of a coali-
tional game. Let T be the number of players and let v :
2T → R be the characteristic function, where v(S) denotes
the worth (contribution) of the players in S ⊆ T . The Shapley
value of player i’s contribution (averaging player i’s marginal
contributions to all possible subsets S) is:

φi(v) =
1

|T |

∑

S⊆T\{i}

(

T − 1

S

)−1

(v(S ∪ {i})− v(S))

Let Φ ∈ R
T be a Shapley value contribution vector for all

players in the game, where φi(v) is the ith element of Φ.

6.2 Shapley Values as Explanations

In the feature importance literature, we formulate a similar
problem to where the game’s payoff is the predictor’s output
y = f(x), the players are the d features of x, and the φi

values represent the contribution of xi to the game f(x). Let
the characteristic function be the importance score of a subset
of features xs, where EY [·|x] is an expectation over Pf (·|x):

vx(S) = EY

[

− log
1

Pf (Y |xs)

∣

∣

∣

∣

x

]

This characteristic function denotes the negative of the ex-
pected number of bits required to encode the predictor’s out-
put based on the features in a subset S [Chen et al., 2019].
Shapley value contributions can be approximated via Monte

Carlo sampling [Štrumbelj and Kononenko, 2014] or via
weighted least squares [Lundberg and Lee, 2017].

6.3 Aggregate Valuation of Antecedents

We now explore how to explain a test point in terms of the
Shapley value explanations of its neighbors. Termed Aggre-
gate Valuation of Antecedents (AVA), we derive an explana-
tion function that explains a data point in terms of the expla-
nations of its neighbors. We do the following: suppose we
want to find an explanation function gAVA(f ,xtest) for a point
of interest xtest. First we find the k nearest neighbors of xtest

under ρ denoted by Nk(xtest,D).

Nk(xtest,D) = argmin
N⊂D,|N |=k

∑

z∈N

ρ(xtest, z)
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We define gAVA(f ,xtest) = Φxtest
as the explanation function

where:

gAVA(f ,xtest)i = φi(vAVA) =
∑

z∈Nk(xtest)

gSHAP(f , z)i
ρ(xtest, z)

=
∑

z∈Nk(xtest)

φi(vz)

ρ(xtest, z)

In essence, we weight each neighbor’s Shapley value con-
tribution by the inverse distance from the neighbor to the test
point. AVA is closely related to bootstrap aggregation from
classical statistics, as we take an average of model outputs to
improve explanation function stability.

Theorem 5. gAVA(f ,xtest) is a Shapley value explanation.

Proof. We want to show that gAVA(f ,xtest) = Φxtest
is indeed

a vector of Shapley values. Let gSHAP(f , z) = Φz be the
vector of Shapley value contributions for a point z ∈ Nk. By
[Lundberg and Lee, 2017], we know gSHAP(f , z)i = φi(vz)
is a unique Shapley value for the characteristic function vz .
By linearity of Shapley values [Shapley, 1953], we know that:

φi(vz1
+ vz2

) = φi(vz1
) + φi(vz2

) (3)

This means that the Φz1
+ Φz2

will yield a unique Shapley
value contribution vector for the characteristic function vz1 +
vz2

. By linearity (or additivity), we know for any scalar α:

αφi(vz) = φi(αvz) (4)

This means αΦz will yield a unique Shapley value contribu-
tion vector for the characteristic function αvz . Now define:

Φxtest
=

∑

z∈Nk(xtest)

Φz

ρ(xtest, z)

We can conclude that Φxtest
is a vector of Shapley values

While [Sundararajan et al., 2017] takes a path
integral from a fixed reference baseline x̄ and
[Lundberg and Lee, 2017] only considers attribution
along the straight line path between x̄ and xtest, AVA
takes a weighted average of attributions along paths from
training points in Nk to xtest. AVA can similarly be
thought of as a convex combination of explanation functions
where the explanation functions are the explanations of
the neighbors of xtest and the weights are ρ(xtest, z)

−1.
Though the weights are guaranteed to be non-negative,
we normalize the weights to sum to 1 and edit the AVA
formulation to be: gAVA(f ,xtest) = ρtotΦxtest

where
ρtot =

∑

z∈Nk(xtest)
ρ(xtest, z)

−1. Notice this formulation is

a specific convex combination as described before; therefore,
AVA will result in a lower sensitivity than gSHAP(f ,x) alone.

6.4 Medical Connection

Similar to how a model uses input features to reach an out-
put, medical professionals learn how to proactively search
for risk predictors in a patient. Medical professionals not
only use patient attributes (e.g., vital signs, personal infor-
mation) to make a diagnosis but also leverage experiences

with past patients; for example, if a doctor treated a rare dis-
ease over a decade ago, then that experience can be crucial
when attributes alone are uninformative about how to diag-
nose [Goold and Lipkin Jr, 1999]. This is the analogous to
“close” training points affecting a predictor’s output. AVA
combines the attributions of past training points (past pa-
tients) to explain an unseen test point (current patient). When
using the MIMIC dataset [Johnson et al., 2016], AVA models
the aforementioned intuition.

7 Experiments

We now report some empirical results. We evalu-
ate models trained on the following datasets: Adult,
Iris [Dua and Graff, 2017], MIMIC [Johnson et al., 2016],
and MNIST [LeCun et al., 1998]. We use the following
explanation functions: SHAP [Lundberg and Lee, 2017],

Shapley Sampling (SS) [Štrumbelj and Kononenko, 2014],
Gradient Saliency (Grad) [Baehrens et al., 2010],
Grad*Input (G*I) [Shrikumar et al., 2017], Integrated
Gradients (IG) [Sundararajan et al., 2017], and DeepLift
(DL) [Shrikumar et al., 2017].

For all tabular datasets, we train a multilayer perceptron
(MLP) with leaky-ReLU activation using the ADAM opti-
mizer. For Iris [Dua and Graff, 2017], we train our model
to 96% test accuracy. For Adult [Dua and Graff, 2017], our
model has 82% test accuracy. As motivated in Section 6.4,
we use MIMIC (Medical Information Mart for Intensive Care
III) [Johnson et al., 2016]. We extract seventeen real-valued
features deemed critical, per [Purushotham et al., 2018], for
sepsis prediction. Our model gets 91% test accuracy on the
task. For MNIST [LeCun et al., 1998], our model is a convo-
lutional neural network and has 90% test accuracy.

For experiments with a baseline x̄, zero baseline implies
that we set features to 0 and average baseline uses the average
feature value in D. Before doing aggregation, we unit norm
all explanations. For the complexity criterion, we take the
positive ℓ1 norm. We set D = ℓ2 and ρ = ℓ∞.

7.1 Faithfulness µF

In Table 2, we report results for faithfulness for various ex-
planation functions. When evaluating, we take the average
of multiple runs where, in each run, we see at least 50 dat-
apoints; for each datapoint, we randomly select |S| features
and replace them with baseline values. We then calculate the
Pearson’s correlation coefficient between the predicted logits
of each modified test point and the average explanation at-
tribution for only the subset of features. We notice that, as
subset size increases, faithfulness increases until the subset is
large enough to contain all informative features. We find that
Shapley values, approximated with weighted least squares,
are the most faithful explanation function for smaller datasets.

7.2 Max and Avg Sensitivity µM and µA

In Table 3, we report the max and average sensitivities for
various explanation functions. To evaluate the sensitivity cri-
terion, we sample a set of test points from D and an additional
larger set of training points. We then find the training points
that fall within a radius r neighborhood of each test point and
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INPUT BEST (DEEPLIFT) CONVEX GRADIENT-DESCENT REGION-SHRINKING

µC = 3.688 µC = 3.685 µC = 3.575 µC = 3.208

Table 1: Qualitative example of aggregation to lower complexity (µC ): We show that it is possible to lower complexity slightly with both of
our approaches; note that achieving lowest complexity on an image would imply that all attribution is placed on a single pixel.

METHOD ADULT IRIS MIMIC MIMIC
SUBSET 2 2 10 20

SHAP (62, 60) (67, 68) (31, 36) (37, 47)
SS (46, 27) (32, 36) (59, 58) (38, 45)
GRAD (30, 53) (14, 16) (37, 41) (28, 63)
G*I (38, 39) (27, 30) (54, 48) (59, 43)
IG (47, 33) (60, 57) (66, 51) (68, 51)
DL (58, 43) (46, 48) (84, 54) (43, 45)

Table 2: Faithfulness µF averaged over a test set: (Zero Baseline,
Training Average Baseline). Exact quantities can be obtained by
dividing table entries by 102

METHOD ADULT IRIS MIMIC
RADIUS 2 0.2 4

SHAP (60, 54) (310, 287) (6, 5)
SS (191, 168) (477 , 345) (83, 81)
GRAD (60, 50) (68, 66) (28, 28)
G*I (86, 71) (298, 279) (77, 50)
IG (19, 17) (495, 462) (19, 15)
DL (74, 74) (850, 820) (135, 111)

Table 3: Sensitivity: (Max µM, Avg µA). Exact quantities can be
obtained by dividing table entries by 103

find the distance between each nearby training point explana-
tion and the test point explanation to get a mean and max. We
average over ten random runs of this procedure. Sensitivity is
highly dependent on the dimensionality d and on the radius r.
We find that as sensitivity decreases as r increases. Empiri-
cally, for MIMIC, Shapley values approximated by weighted
least squares (SHAP) are the least sensitive.

7.3 MNIST Complexity µC

In Table 1, we provide a qualitative example for the gradi-
ent descent-style and region-shrinking methods for lowering
complexity of explanations from a model trained on MNIST.
We show an example with images since it illustrates the no-
tion of lower complexity well; however, other data types (tab-
ular) might be better suited for complexity optimization.

7.4 AVA

Our empirical findings support use of an AVA explanation if
low sensitivity is desired. [Ghorbani et al., 2019] note that
perturbation-based explanations (like gSHAP) are less sensi-
tive than their gradient-based counterparts. In Table 4, we
show that AVA explanations not only have lower sensitivities

METHOD ADULT IRIS MIMIC

µA(f , gSHAP) 0.16 ± 0.11 0.22 ± 0.25 0.47 ± 0.12
µA(f , gAVA) 0.07 ± 0.07 0.13 ± 0.18 0.31 ± 0.13

µM (f , gSHAP) 0.68 ± 0.13 1.20 ± 0.36 0.83 ± 0.17
µM (f , gAVA) 0.52 ± 0.11 1.18 ± 0.28 0.72 ± 0.22

µC(f , gSHAP) 1.94 ± 0.26 1.36 ± 0.36 2.33 ± 0.23
µC(f , gAVA) 1.93 ± 0.24 1.24 ± 0.32 2.61 ± 0.29

Table 4: AVA lowers the sensitivity of Shapley value explanations
across all datasets. When d is small (fewer features), AVA explana-
tions are slightly less complex.

in all experiments but also have less complex explanations
(depending on the radius r and number of features d). After
finding the average distance between pairs of points, we use
r = 1 for Adult, r = 0.3 for Iris, and r = 10 for MIMIC.

8 Conclusion

Borrowing from earlier work in social science and the philos-
ophy of science, we codify low sensitivity, high faithfulness,
and low complexity as three desirable properties of explana-
tion functions. We define these three properties for feature-
based explanation functions, develop an aggregation scheme
for learning combinations of various explanation functions,
and devise schemes to learn explanations with lower com-
plexity (iterative approaches) and lower sensitivity (AVA).
We hope that this work will provide practitioners with a prin-
cipled way to evaluate feature-based explanations and to learn
an explanation which aggregates and optimizes for criteria
desired by end users. Though we consider one criterion at
a time, future work could further axiomatize our criteria, ex-
plore the interaction between different evaluation criteria, and
devise a multi-objective optimization approach to finding a
desirable explanation; for example, can we develop a proce-
dure for learning a less sensitive and less complex explanation
function simultaneously?
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