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Example of MAP inference: image denoising

Inference is combining prior beliefs with observed evidence to form a
prediction.

−→ MAP inference
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Example of MAP inference: protein side-chain placement

Find “minimum energy” configuration of amino acid side-chains
along a fixed carbon backbone:  Given desired 3D structure, choose amino-acids giving the most stable folding

  Joint distribution over the variables is given by

   Key problems

  Find marginals:

  Find most likely assignment (MAP): 

Probabilistic inference

Partition function

Protein backbone

Side-chain�
(corresponding to�

 1 amino acid)

X1

X2 X3
X3

X1

X2 

X4

θ34(x3, x4)

θ12(x1, x2)
θ13(x1, x3)

(Yanover, Meltzer, Weiss ‘06)

Focus of this talk

“Potential” function�
 for each edge

         a table 

Orientations of the side-chains are represented by discretized
angles called rotamers

Rotamer choices for nearby amino acids are energetically coupled
(attractive and repulsive forces)
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Outline of talk

Background on undirected graphical models

Basic LP relaxation

Tighter relaxations

Message passing and dual decomposition

We’ll comment on

When is an LP relaxation tight

4 / 37



Background: undirected graphical models

Powerful way to represent relationships across variables

Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

In this talk, focus on pairwise models with discrete variables
(sometimes binary)

Example: Grid for computer vision
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Background: undirected graphical models

Discrete variables X1, . . . ,Xn with Xi ∈ {0, . . . , ki − 1}
Potential functions, will somehow write as vector θ

Write x = (. . . x1, . . . , xn, . . . ) for one ‘overcomplete configuration’
of all variables, θ · x for its total score

Probability distribution given by

p(x) =
1

Z
exp(θ · x)

To ensure probabilities sum to 1, need normalizing constant or
partition function Z =

∑
x exp (θ · x)

We are interested in maximum a posteriori (MAP) inference
i.e., find a global configuration with highest probability

x∗ ∈ argmax p(x) = argmax θ · x
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Background: how do we write potentials as a vector θ?

θ · x means the total score of a configuration x , where we sum
over all potential functions
If we have potential functions θc over some subsets c ∈ C of
variables, then we want

∑
c∈C θc(xc), where xc means a

configuration of variables just in the subset c
θc(xc) provides a measure of local compatibility, a table of values

If we only have some unary/singleton potentials θi and
edge/pairwise potentials θij then we can write the total score as

∑

i

θi (xi ) +
∑

(i ,j)

θij(xi , xj)

Indices? Usually assume either no unary potentials (absorb them
into edges) or one for every variable, leading to a graph topology
(V ,E ) with total score

∑

i∈V={1,...,n}
θi (xi ) +

∑

(i ,j)∈E
θij(xi , xj)
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Background: overcomplete representation

The overcomplete representation conveniently allows us to write

θ · x =
∑

i∈V
θi (xi ) +

∑

(i ,j)∈E
θij(xi , xj)

Concatenate singleton and edge terms into big vectors

θ =




. . .

. . .
θi (0)
θi (1)
. . .
. . .

θij(0, 0)
θij(0, 1)
θij(1, 0)
θij(1, 1)
. . .
. . .




x =




. . .

. . .
1[Xi = 0]
1[Xi = 1]

. . .

. . .
1[Xi = 0,Xj = 0]
1[Xi = 0,Xj = 1]
1[Xi = 1,Xj = 0]
1[Xi = 1,Xj = 1]

. . .

. . .




There are many possible values of x how many?

∏
i∈V ki
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Background: Binary pairwise models

θ · x is the score of a configuration x

Probability distribution given by

p(x) =
1

Z
exp(θ · x)

For MAP inference, want x∗ ∈ argmax p(x) = argmax θ · x
Want to optimize over {0, 1} coordinates of ‘overcomplete
configuration space’ corresponding to all 2n possible settings

The convex hull of these defines the marginal polytope M
Each point µ ∈M corresponds to a probability distribution over
the 2n configurations, giving a vector of marginals
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Background: the marginal polytope (all valid marginals)

Marginal polytope!
1!
0!
0!
1!
1!
0!
1"
0"
0"
0"
0!
1!
0!
0!
0!
0!
1!
0"

�µ =

= 0!

= 1! = 0!X2!

X1!

X3 !

0!
1!
0!
1!
1!
0!
0"
0"
1"
0"
0!
0!
0!
1!
0!
0!
1!
0"

�µ� =

= 1!

= 1! = 0!X2!

X1!

X3 !

1

2

�
�µ� + �µ

�

valid marginal probabilities!

(Wainwright & Jordan, ’03)!

Edge assignment for"
!

Edge assignment for"
X1X2!

Edge assignment for"
X2X3!

Assignment for X1 "

Assignment for X2 "

Assignment for X3!

Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
{
µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]

}
(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V |+ k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x′ = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x′) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17

X1X3
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Background: overcomplete and minimal representations

The overcomplete representation is highly redundant,
e.g. µi (0) + µi (1) = 1 ∀i
How many dimensions if n binary variables with m edges?

2n + 4m

Instead, we sometimes pick a minimal representation

What’s the minimum number of dimensions we need? n + m

For example, we could use q = (q1, . . . , qn, . . . , qij , . . . ) where
qi = µi (1) ∀i , qij = µij(1, 1) ∀(i , j), then

µi =

(
1− qi
qi

)
, µj =

(
1− qj
qj

)
, µij =

(
1 + qij − qi − qj qj − qij

qi − qij qij

)

Note many other possible minimal representations
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LP relaxation: MAP as an integer linear program (ILP)

MAP inference as a discrete optimization problem is to identify a
configuration with maximum total score

x∗ ∈ argmax
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj)

= argmax
x

θ · x

= argmax
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

= argmax
µ

θ · µ s.t. µ is integral

Any other constraints?
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What are the constraints?

Force every “cluster” of variables to choose a local assignment:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ∈ {0, 1} ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these assignments are consistent:

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj
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MAP as an integer linear program (ILP)

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

= max
µ
θ · µ

subject to:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi (edge terms?)∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Many good off-the-shelf solvers, such as CPLEX and Gurobi
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Linear programming (LP) relaxation for MAP

Integer linear program was:

MAP(θ) = max
µ
θ · µ

subject to

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Now relax integrality constraints, allow variables to be between 0 and 1:

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi
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Basic LP relaxation for MAP

LP(θ) = max
µ
θ · µ

s.t. µi (xi ) ∈ [0, 1] ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Linear programs can be solved efficiently: simplex, interior point,
ellipsoid algorithm

Since the LP relaxation maximizes over a larger set, its value can only be
higher

MAP(θ) ≤ LP(θ)
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The local polytope

LP(θ) = max
µ
θ · µ

s.t. µi (xi ) ∈ [0, 1] ∀i ∈ V , xi∑
xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑
xj

µij (xi , xj ) ∀ij ∈ E , xi

µj (xj ) =
∑
xi

µij (xi , xj ) ∀ij ∈ E , xj

All these constraints are linear

Hence define a polytope in the space of marginals

Here we enforced only local (pairwise) consistency, which defines the
local polytope

If instead we had optimized over the marginal polytope, which enforces
global consistency, then we would have MAP(θ) =LP(θ),
i.e. the LP is tight why? why don’t we do this?
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Tighter relaxations of the marginal polytope

Enforcing consistency of pairs of variables leads to the local
polytope L2

The marginal polytope enforces consistency over all variables
M = Ln

Natural to consider the Sherali-Adams hierarchy of successively
tighter relaxations Lr 2 ≤ r ≤ n which enforce consistency over
clusters of r variables

Just up from the local polytope is the triplet polytope TRI= L3
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Stylized illustration of polytopes

marginal polytope M = Ln

global consistency . . .

triplet polytope L3

triplet consistency
local polytope L2

pair consistency

More accurate ↔ Less accurate

More computationally intensive ↔ Less computationally intensive

Can be shown that for binary variables, TRI=CYC, the cycle
polytope, which enforces consistency over all cycles
In general, TRI ⊆ CYC, open problem if TRI = CYC [SonPhD §3]
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When is the LP tight?

For a model without cycles, local polytope L2=M marginal
polytope, hence the basic LP (‘first order’) is always tight

More generally, if a model has treewidth r then LP+Lr+1 is tight
[WaiJor04] STRUCTURE

Separately, if we allow any structure but restrict the class of
potential functions, interesting results are known POTENTIALS

For example, the basic LP is tight if all potentials are supermodular

Fascinating recent work [KolThaZiv15]: if we do not restrict
structure, then for any given family of potentials, either the basic
LP relaxation is tight or the problem class is NP-hard!

Identifying HYBRID conditions is an exciting current research area
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When is MAP inference (relatively) easy?

Tree Attractive (binary) model

STRUCTURE POTENTIALS

Both can be handled efficiently by the basic LP relaxation, LP+L2

21 / 37



Cutting planes

max θ · µ

µ ∈

θ

µ∗

(a)

max θ · µ

µ ∈

θ

µ∗

(b)

max θ · µ

µ ∈

µ∗

θ

(c)

max θ · µ

µ ∈

θ

µ∗

(d)

Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b)
Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the
tighter LP relaxation. (d) Finally, we find the MAP assignment.

of the clusters considered. Even optimizing over TRI(G), the first lifting of the Sherali-
Adams hierarchy, is impractical for all but the smallest of graphical models. Our approach
is motivated by the observation that it may not be necessary to add all of the constraints
that make up a higher-order relaxation such as TRI(G). In particular, it possible that the
pairwise LP relaxation alone is close to being tight, and that only a few carefully chosen
constraints would suffice to obtain an integer solution.

Our algorithms tighten the relaxation in a problem-specific way, using additional com-
putation just for the hard parts of each instance. We illustrate the general approach in
Figure 2-6. This is an example of a cutting-plane algorithm. We first solve the pairwise LP
relaxation. If we obtain an integer solution, then we have found the MAP assignment and
can terminate. Otherwise, we look for a valid constraint to add to the relaxation. By valid,
we mean that the constraint should not cut off any of the integral vertices. For example,
we show in Figure 2-7 an example of an invalid constraint that happens to cut off the MAP
assignment (so it could never be found by solving the new LP). Once we find a violated
valid constraint, we add it to the relaxation and then repeat, solving the tighter relaxation.

Cutting-plane algorithms have a long history in combinatorial optimization. Gomory
(1958) invented a generic recipe for constructing valid inequalities for integer linear pro-
gramming problems. Gomory cuts play a major role in commercial ILP solvers, such as
CPLEX’s branch-and-cut algorithm. However, for many combinatorial optimization prob-
lems it is possible to construct special purpose valid inequalities that are more effective
than Gomory cuts. For example, the cycle inequalities are known to be valid for the cut
polytope, and have been studied in polyhedral combinatorics because of its relevance to
max cut and Ising models. There is a huge literature in the operations research community
on cutting-plane algorithms for max cut that use the cycle inqualities (Barahona & Anbil,
2000; Liers et al., 2004; Frangioni et al., 2005).

To apply the cutting-plane approach, we must answer several key questions:

1. What are valid constraints for the marginal polytope?

We already discussed the pairwise and higher-order relaxations. In Chapter 3 we
introduce the cycle relaxation and the k-ary cycle inequalities, which will be more
efficient to optimize over.

2. How do we efficiently solve the linear program, even for the pairwise LP

28

SonPhD

22 / 37



Cutting planes

max θ · µ

µ ∈

θ
Invalid!

constraint"

µ∗

Useless !

constraint"

Figure 2-7: We want to choose constraints that are both valid and useful. A valid constraint
is one that does not cut off any of the integer points. One way to guarantee that the con-
straints added are useful is to use them within the cutting-plane algorithm. Constraints are
added if they separate the current fractional solution from the rest of the integer solutions.
Note that the tightest valid constraints to add are the facets of the marginal polytope.

relaxation?

We address this in Chapter 4, showing how to use the technique of dual decomposition
to solve the dual of the LP relaxation efficiently.

3. How do we efficiently find violated constraints?

Such an algorithm is called a separation algorithm, and must be designed with respect
to any class of constraints. We show how to design a separation algorithm for the k-
ary cycle inequalities in Chapter 3. In Chapters 5 and 7 we give separation algorithms
that work directly in the dual of the LP relaxation.

The above problems are shared by the cutting-plane approaches for max cut, and in
many cases have not yet been solved. For example, in their conclusions, Liers et al. (2004)
comment that

“In practical computations, around 90% of the total running time is spent
in solving the linear programs by the simplex algorithm. Therefore, a topic of
current research is to study the performance of branch-and-cut by replacing the
simplex algorithm with fast approximate linear program solvers. The rationale
for using an approximate solver is that especially in the beginning of the op-
timization process the current relaxation is not a “tight” relaxation of the cut
polytope anyway.”

Frangioni et al. (2005) study Lagrangian relaxation approaches to solving the max cut prob-
lem, which bear some similarity to the dual algorithms that we propose in Chapter 4. Our
dual algorithms for tightening the LP relaxation, given in Chapter 5 and Chapter 7, are a
delayed column generation method, where variables rather than constraints are iteratively
added to the LP (Bertsimas & Tsitsiklis, 1997). By solving and tightening the LP relax-
ations completely in the dual, our algorithms resolve many of the problems raised by Liers
et al. (2004), and thus may also be of interest to the operations research community.

In the next chapter we will describe the class of constraints that we will use in tightening
the relaxation. Broadly speaking, these constraints all enforce that the edge marginals for
every cycle of the graph are consistent with one another.

29

SonPhD

We want to add constraints that are both valid and useful

Valid: does not cut off any integer points

Useful: leads us to update to a better solution
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Methods for solving general integer linear programs

Local search

Start from an arbitrary assignment (e.g., random).
Choose a variable.

Branch-and-bound

Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment
Can use the LP relaxation or its dual to obtain upper bounds
Lower bound obtained from value of any assignment found

Branch-and-cut (most powerful method; used by CPLEX & Gurobi)

Same as branch-and-bound; spend more time getting tighter bounds
Adds cutting-planes to cut off fractional solutions of the LP
relaxation, making the upper bound tighter
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Message passing

Can be a computationally efficient way to obtain or approximate a
MAP solution, takes advantage of the graph structure

Classic example is ‘max-product’ belief propagation (BP)

Sufficient conditions are known s.t. this will always converge to
the solution of the basic LP, includes that the basic LP is tight
[ParkShin-UAI15]

In general, however, this may not converge to the LP solution
(even for supermodular potentials)

Other methods have been developed, many relate to dual
decomposition...
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Dual decomposition and reparameterizations

Consider the MAP problem for pairwise Markov random fields:

MAP(θ) = max
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj).

If we push the maximizations inside the sums, the value can only
increase:

MAP(θ) ≤
∑

i∈V
max
xi

θi (xi ) +
∑

ij∈E
max
xi ,xj

θij(xi , xj)

Note that the right-hand side can be easily evaluated

One can always reparameterize a distribution by operations like

θnewi (xi ) = θoldi (xi ) + f (xi )

θnewij (xi , xj) = θoldij (xi , xj)− f (xi )

for any function f (xi ), without changing the distribution/energy
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Dual decomposition

8 Introduction to Dual Decomposition for Inference

x1 x2
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Figure 1.2: Illustration of the the dual decomposition objective. Left: The
original pairwise model consisting of four factors. Right: The maximization
problems corresponding to the objective L(�). Each blue ellipse contains the
factor to be maximized over. In all figures the singleton terms ✓i(xi) are set
to zero for simplicity.

pairwise model.

We will introduce algorithms that minimize the approximate objective

L(�) using local updates. Each iteration of the algorithms repeatedly finds

a maximizing assignment for the subproblems individually, using these to

update the dual variables that glue the subproblems together. We describe

two classes of algorithms, one based on a subgradient method (see Section

1.4) and another based on block coordinate descent (see Section 1.5). These

dual algorithms are simple and widely applicable to combinatorial problems

in machine learning such as finding MAP assignments of graphical models.

1.3.1 Derivation of Dual

In what follows we show how the dual optimization in Eq. 1.2 is derived

from the original MAP problem in Eq. 1.1. We first slightly reformulate

the problem by duplicating the xi variables, once for each factor, and then

enforce that these are equal. Let xf
i denote the copy of xi used by factor f .

Also, denote by xf
f = {xf

i }i2f the set of variables used by factor f , and by

xF = {xf
f}f2F the set of all variable copies. This is illustrated graphically

in Fig. 1.3. Then, our reformulated – but equivalent – optimization problem
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Dual decomposition

Define:

θ̃i (xi ) = θi (xi ) +
∑

ij∈E
δj→i (xi )

θ̃ij(xi , xj) = θij(xi , xj)− δj→i (xi )− δi→j(xj)

It is easy to verify that
∑

i

θi (xi ) +
∑

ij∈E
θij(xi , xj) =

∑

i

θ̃i (xi ) +
∑

ij∈E
θ̃ij(xi , xj) ∀x

Thus, we have that:

MAP(θ) = MAP(θ̃) ≤
∑

i∈V
max
xi

θ̃i (xi ) +
∑

ij∈E
max
xi ,xj

θ̃ij(xi , xj)

Every value of δ gives a different upper bound on the value of the MAP

The tightest upper bound can be obtained by minimizing the RHS with
respect to δ
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Dual decomposition

We obtain the following dual objective: L(δ) =

∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

This provides an upper bound on the MAP assignment

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ)

How can find δ which give tight bounds?
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Solving the dual efficiently

Many ways to solve the dual linear program, i.e. minimize with respect
to δ:
∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

One option is to use the subgradient method

Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation

30 / 37



Solving the dual efficiently

Many ways to solve the dual linear program, i.e. minimize with respect
to δ:
∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

One option is to use the subgradient method

Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation

30 / 37



Solving the dual efficiently

Many ways to solve the dual linear program, i.e. minimize with respect
to δ:
∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

One option is to use the subgradient method

Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation

30 / 37



Max-product linear programming (MPLP) algorithm

Input: A set of potentials θi (xi ), θij(xi , xj)

Output: An assignment x1, . . . , xn that approximates a MAP solution

Algorithm:

Initialize δi→j(xj) = 0, δj→i (xi ) = 0, ∀ij ∈ E , xi , xj

Iterate until small enough change in L(δ):

For each edge ij ∈ E (sequentially), perform the updates:

δj→i (xi ) = −1

2
δ−ji (xi ) +

1

2
max
xj

[
θij(xi , xj) + δ−ij (xj)

]
∀xi

δi→j(xj) = −1

2
δ−ij (xj) +

1

2
max
xi

[
θij(xi , xj) + δ−ji (xi )

]
∀xj

where δ−ji (xi ) = θi (xi ) +
∑

ik∈E ,k 6=j δk→i (xi )

Return xi ∈ arg maxx̂i θ̃
δ
i (x̂i )
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Generalization to arbitrary factor graphs [SonGloJaa11]

16 Introduction to Dual Decomposition for Inference

Inputs:

A set of factors θi(xi), θf (xf ).

Output:

An assignment x1, . . . , xn that approximates the MAP.

Algorithm:

Initialize δfi(xi) = 0, ∀f ∈ F, i ∈ f, xi.

Iterate until small enough change in L(δ) (see Eq. 1.2):
For each f ∈ F , perform the updates

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i


θf (xf ) +

�

î∈f

δ−f

î
(xî)


 , (1.16)

simultaneously for all i ∈ f and xi. We define δ−f
i (xi) = θi(xi) +

�
f̂ �=f δf̂ i(xi).

Return xi ∈ arg maxx̂i θ̄
δ
i (x̂i) (see Eq. 1.6).

Figure 1.4: Description of the MPLP block coordinate descent algorithm
for minimizing the dual L(δ) (see Section 1.5.2). Similar algorithms can
be devised for different choices of coordinate blocks. See sections 1.5.1 and
1.5.3. The assignment returned in the final step follows the decoding scheme
discussed in Section 1.7.

1.5.1 The Max-Sum Diffusion algorithm

Suppose that we fix all of the dual variables δ except δfi(xi) for a specific f

and i. We now wish to find the values of δfi(xi) that minimize the objective

L(δ) given the other fixed values. In general there is not a unique solution

to this restricted optimization problem, and different update strategies will

result in different overall running times.

The Max-Sum Diffusion (MSD) algorithm (Kovalevsky and Koval, approx.

1975; Werner, 2007, 2008) performs the following block coordinate descent

update (for all xi simultaneously):

δfi(xi) = −1
2δ

−f
i (xi) + 1

2 max
xf\i


θf (xf )−

�

î∈f\i

δf î(xî)


 , (1.17)

where we define δ−f
i (xi) = θi(xi) +

�
f̂ �=f δf̂ i(xi). The algorithm iteratively

chooses some f and performs these updates, sequentially, for each i ∈ f . In

Appendix 1.A we show how to derive this algorithm as block coordinate de-

scent on L(δ). The proof also illustrates the following equalization property:

after the update, we have θ̄δi (xi) = maxxf\i
θ̄δf (xf ), ∀xi. In other words, the

reparameterized factors for f and i agree on the utility of state xi.
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Experimental results

Performance on stereo vision inference task:

Decoded assignment!

Dual obj.!

Iteration!

Objective!

Solved optimally!

Duality gap!
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Dual decomposition = basic LP relaxation

Recall we obtained the following dual linear program: L(δ) =
∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

We showed two ways of upper bounding the value of the MAP
assignment:

MAP(θ) ≤ Basic LP(θ) (1)

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ) (2)

Although we derived these linear programs in seemingly very different
ways, in turns out that:

Basic LP(θ) = DUAL-LP(θ) [SonGloJaa11]

The dual LP allows us to upper bound the value of the MAP assignment
without solving an LP to optimality
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Linear programming duality

(Dual) LP relaxation!

MAP assignment!
(Primal) LP relaxation!

�
µ�

x*! Integer linear program!

MAP(θ) ≤ Basic LP(θ) = DUAL-LP(θ) ≤ L(δ)
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Conclusion

LP relaxations yield a powerful approach for MAP inference

Naturally lead to

considerations of polytope or cutting planes
dual decomposition and message passing

Close relationship to methods for marginal inference

Help build understanding as well as develop new algorithmic tools

Exciting current research

Thank you
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