An Introduction to
LP Relaxations for MAP Inference

Adrian Weller

MLSALT4 Lecture
Feb 15, 2016

With thanks to David Sontag (NYU)
for use of some of his slides and illustrations

For more information, see
http://mlg.eng.cam.ac.uk/adrian/
Example of MAP inference: image denoising

Inference is combining prior beliefs with observed evidence to form a prediction.
Example of MAP inference: protein side-chain placement

- Find “minimum energy” configuration of amino acid side-chains along a fixed carbon backbone:

 ![Diagram of protein backbone with side-chains](image)

 (Yanover, Meltzer, Weiss ‘06)

- Orientations of the side-chains are represented by discretized angles called rotamers
- Rotamer choices for nearby amino acids are energetically coupled (attractive and repulsive forces)

Joint distribution over the variables is given by

\[
\begin{align*}
\theta_{12}(x_1, x_2) \\
\theta_{13}(x_1, x_3) \\
\theta_{34}(x_3, x_4)
\end{align*}
\]

“Potential” function for each edge

A table
Outline of talk

- Background on undirected graphical models
- Basic LP relaxation
- Tighter relaxations
- Message passing and dual decomposition

We’ll comment on
- When is an LP relaxation tight
Background: *undirected graphical models*

- Powerful way to represent relationships across variables
- Many applications including: computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on pairwise models with discrete variables (sometimes *binary*)

Example: Grid for computer vision
Background: *undirected graphical models*

- Discrete variables X_1, \ldots, X_n with $X_i \in \{0, \ldots, k_i - 1\}$
- Potential functions, will somehow write as vector θ
- Write $x = (\ldots x_1, \ldots, x_n, \ldots)$ for one ‘overcomplete configuration’ of all variables, $\theta \cdot x$ for its total score
- Probability distribution given by

$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

- To ensure probabilities sum to 1, need normalizing constant or partition function $Z = \sum_x \exp(\theta \cdot x)$
- We are interested in maximum a posteriori (MAP) inference i.e., find a global configuration with highest probability

$$x^* \in \arg \max p(x) = \arg \max \theta \cdot x$$
Background: *how do we write potentials as a vector θ?*

- $\theta \cdot x$ means the total score of a configuration x, where we sum over all potential functions.
- If we have potential functions θ_c over some subsets $c \in C$ of variables, then we want $\sum_{c \in C} \theta_c(x_c)$, where x_c means a configuration of variables just in the subset c.
- $\theta_c(x_c)$ provides a measure of local compatibility, a table of values.
Background: how do we write potentials as a vector θ?

- $\theta \cdot x$ means the total score of a configuration x, where we sum over all potential functions.
- If we have potential functions θ_c over some subsets $c \in C$ of variables, then we want $\sum_{c \in C} \theta_c(x_c)$, where x_c means a configuration of variables just in the subset c.
- $\theta_c(x_c)$ provides a measure of local compatibility, a table of values.
- If we only have some unary/singleton potentials θ_i and edge/pairwise potentials θ_{ij} then we can write the total score as:
 $$\sum_i \theta_i(x_i) + \sum_{(i,j)} \theta_{ij}(x_i, x_j)$$

- Indices? Usually assume either no unary potentials (absorb them into edges) or one for every variable, leading to a graph topology (V, E) with total score:
 $$\sum_{i \in V = \{1, \ldots, n\}} \theta_i(x_i) + \sum_{(i,j) \in E} \theta_{ij}(x_i, x_j)$$
The overcomplete representation conveniently allows us to write
\[
\theta \cdot x = \sum_{i \in V} \theta_i(x_i) + \sum_{(i,j) \in E} \theta_{ij}(x_i, x_j)
\]

- Concatenate singleton and edge terms into big vectors

\[
\theta = \begin{pmatrix}
\vdots \\
\vdots \\
\theta_i(0) \\
\theta_i(1) \\
\vdots
\end{pmatrix}

\begin{pmatrix}
\theta_{ij}(0,0) \\
\theta_{ij}(0,1) \\
\theta_{ij}(1,0) \\
\theta_{ij}(1,1) \\
\vdots
\end{pmatrix}

x = \begin{pmatrix}
\vdots \\
1[X_i = 0] \\
1[X_i = 1] \\
\vdots
\end{pmatrix}

\begin{pmatrix}
1[X_i = 0, X_j = 0] \\
1[X_i = 0, X_j = 1] \\
1[X_i = 1, X_j = 0] \\
1[X_i = 1, X_j = 1] \\
\vdots
\end{pmatrix}

- There are many possible values of \(x \)
The overcomplete representation conveniently allows us to write

\[\theta \cdot x = \sum_{i \in V} \theta_i(x_i) + \sum_{(i,j) \in E} \theta_{ij}(x_i, x_j) \]

- Concatenate singleton and edge terms into big vectors

\[
\theta = \begin{pmatrix}
\ldots \\
\ldots \\
\theta_i(0) \\
\theta_i(1) \\
\ldots \\
\theta_{ij}(0, 0) \\
\theta_{ij}(0, 1) \\
\theta_{ij}(1, 0) \\
\theta_{ij}(1, 1) \\
\ldots
\end{pmatrix}
\]

\[
x = \begin{pmatrix}
\ldots \\
\ldots \\
1[X_i = 0] \\
1[X_i = 1] \\
\ldots \\
1[X_i = 0, X_j = 0] \\
1[X_i = 0, X_j = 1] \\
1[X_i = 1, X_j = 0] \\
1[X_i = 1, X_j = 1] \\
\ldots
\end{pmatrix}
\]

- There are many possible values of \(x \)

\[\text{how many? } \prod_{i \in V} k_i \]
Background: *Binary pairwise models*

- $\theta \cdot x$ is the score of a configuration x
- Probability distribution given by
 \[p(x) = \frac{1}{Z} \exp(\theta \cdot x) \]

- For MAP inference, want $x^* \in \arg\max p(x) = \arg\max \theta \cdot x$
- Want to optimize over $\{0, 1\}$ coordinates of ‘overcomplete configuration space’ corresponding to all 2^n possible settings
- The convex hull of these defines the marginal polytope \mathcal{M}
- Each point $\mu \in \mathcal{M}$ corresponds to a probability distribution over the 2^n configurations, giving a vector of marginals
Background: *the marginal polytope* (all valid marginals)

Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes that have states in \{0, 1\}.

The vertices correspond one-to-one with global assignments to the variables in the MRF. The marginal polytope is alternatively defined as the convex hull of these vertices, where each vertex is obtained by stacking the node indicator vectors and the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of an optimization over the marginal polytope. The marginal polytope is the set of realizable mean vectors \(\mu \) that can arise from some joint distribution on the graphical model:

\[
\mathcal{M}(G) = \{ \mu \in \mathbb{R}^d | \exists \theta \in \mathbb{R}^d \text{ s.t. } \mu = \mathbb{E}_{\Pr(x; \theta)}[\phi(x)] \}
\]

Said another way, the marginal polytope is the convex hull of the \(\phi(x) \) vectors, one for each assignment \(x \in \chi^n \) to the variables of the Markov random field. The dimension \(d \) of \(\phi(x) \) is a function of the particular graphical model. In pairwise MRFs where each variable has \(k \) states, each variable assignment contributes \(k \) coordinates to \(\phi(x) \) and each edge assignment contributes \(k^2 \) coordinates to \(\phi(x) \). Thus, \(\phi(x) \) will be of dimension \(k|V| + k^2|E| \).

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random field on three nodes. In this case, \(\phi(x) \) is of dimension \(2 \cdot 3 + 2^2 \cdot 3 = 18 \). The figure shows two vertices corresponding to the assignments \(x = (1, 1, 0) \) and \(x' = (0, 1, 0) \). The vector \(\phi(x) \) is obtained by stacking the node indicator vectors for each of the three nodes, and then the edge indicator vectors for each of the three edges. \(\phi(x') \) is analogous. There should be a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge marginals for some graphical model with the same sufficient statistics. By construction, the valid marginal probabilities

\[
\frac{1}{2}(\mu' + \mu) = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

Assignment for \(X_1 \)

\(X_1 = 1 \)

\(X_2 = 1 \) \(X_3 = 0 \)

Assignment for \(X_2 \)

\(X_1 = 0 \)

\(X_2 = 1 \) \(X_3 = 0 \)
The overcomplete representation is highly redundant, e.g. \(\mu_i(0) + \mu_i(1) = 1 \ \forall i \)

How many dimensions if \(n \) binary variables with \(m \) edges?
The overcomplete representation is highly redundant, e.g. \(\mu_i(0) + \mu_i(1) = 1 \ \forall i \)

How many dimensions if \(n \) binary variables with \(m \) edges? \(2n + 4m \)

Instead, we sometimes pick a minimal representation

What’s the minimum number of dimensions we need?
The overcomplete representation is highly redundant, e.g. $\mu_i(0) + \mu_i(1) = 1 \ \forall i$

How many dimensions if n binary variables with m edges? $2n + 4m$

Instead, we sometimes pick a minimal representation

What’s the minimum number of dimensions we need? $n + m$

For example, we could use $q = (q_1, \ldots, q_n, \ldots, q_{ij}, \ldots)$ where $q_i = \mu_i(1) \ \forall i$, $q_{ij} = \mu_{ij}(1, 1) \ \forall (i, j)$, then

$$
\mu_i = \begin{pmatrix} 1 - q_i \\ q_i \end{pmatrix}, \quad
\mu_j = \begin{pmatrix} 1 - q_j \\ q_j \end{pmatrix}, \quad
\mu_{ij} = \begin{pmatrix} 1 + q_{ij} - q_i - q_j & q_j - q_{ij} \\ q_i - q_{ij} & q_{ij} \end{pmatrix}
$$

Note many other possible minimal representations
LP relaxation: MAP as an integer linear program (ILP)

- MAP inference as a discrete optimization problem is to identify a configuration with maximum total score

\[
\begin{align*}
x^* \in \arg \max_x & \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j) \\
& = \arg \max_x \theta \cdot x \\
& = \arg \max_{\mu} \sum_{i \in V} \sum_{x_i} \theta_i(x_i) \mu_i(x_i) + \sum_{ij \in E} \sum_{x_i, x_j} \theta_{ij}(x_i, x_j) \mu_{ij}(x_i, x_j) \\
& = \arg \max_{\mu} \theta \cdot \mu \quad \text{s.t. } \mu \text{ is integral}
\end{align*}
\]

- Any other constraints?
What are the constraints?

- Force every “cluster” of variables to choose a local assignment:

\[
\mu_i(x_i) \in \{0, 1\} \quad \forall i \in V, x_i
\]

\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]

\[
\mu_{ij}(x_i, x_j) \in \{0, 1\} \quad \forall ij \in E, x_i, x_j
\]

\[
\sum_{x_i, x_j} \mu_{ij}(x_i, x_j) = 1 \quad \forall ij \in E
\]

- Enforce that these assignments are consistent:

\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]

\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]
MAP as an integer linear program (ILP)

\[
\text{MAP}(\theta) = \max_{\mu} \sum_{i \in V} \sum_{x_i} \theta_i(x_i) \mu_i(x_i) + \sum_{ij \in E} \sum_{x_i, x_j} \theta_{ij}(x_i, x_j) \mu_{ij}(x_i, x_j)
\]

\[
= \max_{\mu} \theta \cdot \mu
\]

subject to:

\[
\mu_i(x_i) \in \{0, 1\} \quad \forall i \in V, x_i \quad \text{(edge terms?)}
\]

\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]

\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]

\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]

- Many good off-the-shelf solvers, such as CPLEX and Gurobi
Integer linear program was:

\[
\text{MAP}(\theta) = \max_{\mu} \theta \cdot \mu
\]

subject to

\[
\mu_i(x_i) \in \{0, 1\} \quad \forall i \in V, x_i
\]

\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]

\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]

\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]

Now relax integrality constraints, allow variables to be between 0 and 1:

\[
\mu_i(x_i) \in [0, 1] \quad \forall i \in V, x_i
\]
Basic LP relaxation for MAP

\[\text{LP}(\theta) = \max_{\mu} \theta \cdot \mu \]

s.t. \[
\mu_i(x_i) \in [0, 1] \quad \forall i \in V, x_i
\]
\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]
\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]
\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]

- Linear programs can be solved efficiently: simplex, interior point, ellipsoid algorithm
- Since the LP relaxation maximizes over a larger set, its value can only be higher

\[
\text{MAP}(\theta) \leq \text{LP}(\theta)
\]
The *local polytope*

\[
\text{LP}(\theta) = \max_{\mu} \theta \cdot \mu
\]

s.t. \(\mu_i(x_i) \in [0, 1] \quad \forall i \in V, x_i \)

\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]

\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]

\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]

- All these constraints are linear
- Hence define a polytope in the space of marginals
- Here we enforced only local (pairwise) consistency, which defines the *local polytope*
- If instead we had optimized over the marginal polytope, which enforces global consistency, then we would have MAP(\(\theta\)) = LP(\(\theta\)), i.e. the LP is tight why? why don’t we do this?
Tighter relaxations of the marginal polytope

- Enforcing consistency of pairs of variables leads to the local polytope \mathbb{L}_2
- The marginal polytope enforces consistency over all variables $\mathbb{M} = \mathbb{L}_n$
- Natural to consider the Sherali-Adams hierarchy of successively tighter relaxations \mathbb{L}_r $2 \leq r \leq n$ which enforce consistency over clusters of r variables
- Just up from the local polytope is the triplet polytope $\text{TRI} = \mathbb{L}_3$
Stylized illustration of polytopes

marginal polytope $\mathcal{M} = \mathcal{L}_n$

global consistency

...

triplet polytope \mathcal{L}_3

triplet consistency

local polytope \mathcal{L}_2

pair consistency

More accurate \leftrightarrow Less accurate

More computationally intensive \leftrightarrow Less computationally intensive
Stylized illustration of polytopes

marginal polytope $\mathcal{M} = \mathbb{L}_n$
global consistency

...

triplet polytope \mathbb{L}_3
triplet consistency

local polytope \mathbb{L}_2
pair consistency

More accurate \leftrightarrow Less accurate
More computationally intensive \leftrightarrow Less computationally intensive

Can be shown that for binary variables, $\text{TRI} = \text{CYC}$, the cycle polytope, which enforces consistency over all cycles
In general, $\text{TRI} \subseteq \text{CYC}$, open problem if $\text{TRI} = \text{CYC}$ [SonPhD §3]
When is the LP tight?

- For a model without cycles, the local polytope $L_2 = M$ marginal polytope, hence the basic LP (‘first order’) is always tight.
- More generally, if a model has treewidth r then $LP + L_{r+1}$ is tight [WaiJor04].
- Separately, if we allow any structure but restrict the class of potential functions, interesting results are known.
- For example, the basic LP is tight if all potentials are supermodular.
- Fascinating recent work [KolThaZiv15]: if we do not restrict structure, then for any given family of potentials, either the basic LP relaxation is tight or the problem class is NP-hard!
- Identifying HYBRID conditions is an exciting current research area.
When is MAP inference (relatively) easy?

- Both can be handled efficiently by the **basic LP relaxation, LP+\(\mathbb{L}_2\)**
Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b) Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the tighter LP relaxation. (d) Finally, we find the MAP assignment.
We want to add constraints that are both valid and useful:

- **Valid:** does not cut off any integer points
- **Useful:** leads us to update to a better solution
Local search
- Start from an arbitrary assignment (e.g., random).
- Choose a variable.

Branch-and-bound
- Exhaustive search over space of assignments, pruning branches that can be provably shown not to contain a MAP assignment
- Can use the LP relaxation or its dual to obtain upper bounds
- Lower bound obtained from value of any assignment found

Branch-and-cut (most powerful method; used by CPLEX & Gurobi)
- Same as branch-and-bound; spend more time getting tighter bounds
- Adds cutting-planes to cut off fractional solutions of the LP relaxation, making the upper bound tighter
Message passing

- Can be a computationally efficient way to obtain or approximate a MAP solution, takes advantage of the graph structure
- Classic example is ‘max-product’ belief propagation (BP)
- Sufficient conditions are known s.t. this will always converge to the solution of the basic LP, includes that the basic LP is tight [ParkShin-UAI15]
- In general, however, this may not converge to the LP solution (even for supermodular potentials)
- Other methods have been developed, many relate to dual decomposition...
Dual decomposition and reparameterizations

- Consider the MAP problem for pairwise Markov random fields:

$$\text{MAP}(\theta) = \max_x \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j).$$

- If we push the maximizations inside the sums, the value can only increase:

$$\text{MAP}(\theta) \leq \sum_{i \in V} \max_{x_i} \theta_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \theta_{ij}(x_i, x_j)$$

- Note that the right-hand side can be easily evaluated

- One can always reparameterize a distribution by operations like

$$\begin{align*}
\theta_i^{\text{new}}(x_i) &= \theta_i^{\text{old}}(x_i) + f(x_i) \\
\theta_{ij}^{\text{new}}(x_i, x_j) &= \theta_{ij}^{\text{old}}(x_i, x_j) - f(x_i)
\end{align*}$$

for any function $f(x_i)$, without changing the distribution/energy
Dual decomposition

Introduction to Dual Decomposition for Inference

In what follows we show how the dual optimization in Eq. 1.2 is derived from the original MAP problem in Eq. 1.1. We first slightly reformulate the problem by duplicating the x_i variables, once for each factor, and then enforce that these are equal. Let x_{f_i} denote the copy of x_i used by factor f_i.

Also, denote by $x_f = \{ x_{f_i} \}_{i \in f}$ the set of variables used by factor f, and by $x_F = \{ x_{f} \}_{f \in F}$ the set of all variable copies. This is illustrated graphically in Fig. 1.3. Then, our reformulated – but equivalent – optimization problem is:

$$
\theta_f(x_1, x_2) - \delta_{f_1}(x_1) - \delta_{f_2}(x_2) \\
\theta_g(x_1, x_3) - \delta_{g_3}(x_3) - \delta_{g_1}(x_1) \\
\theta_h(x_2, x_4) - \delta_{h_2}(x_2) - \delta_{h_4}(x_4) \\
\theta_k(x_3, x_4) - \delta_{k_3}(x_3) - \delta_{k_4}(x_4)
$$
Dual decomposition

- Define:

\[
\tilde{\theta}_i(x_i) = \theta_i(x_i) + \sum_{ij \in E} \delta_{j \rightarrow i}(x_i)
\]

\[
\tilde{\theta}_{ij}(x_i, x_j) = \theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j)
\]

- It is easy to verify that

\[
\sum_i \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j) = \sum_i \tilde{\theta}_i(x_i) + \sum_{ij \in E} \tilde{\theta}_{ij}(x_i, x_j) \quad \forall x
\]

- Thus, we have that:

\[
\text{MAP}(\theta) = \text{MAP}(\tilde{\theta}) \leq \sum_{i \in V} \max_{x_i} \tilde{\theta}_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)
\]

- Every value of \(\delta \) gives a different upper bound on the value of the MAP

- The **tightest** upper bound can be obtained by minimizing the RHS with respect to \(\delta \)
We obtain the following **dual** objective:

\[L(\delta) = \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j) \right), \]

\[
\text{DUAL-LP}(\theta) = \min_{\delta} L(\delta)
\]

This provides an upper bound on the MAP assignment

\[\text{MAP}(\theta) \leq \text{DUAL-LP}(\theta) \leq L(\delta) \]

How can find \(\delta \) which give tight bounds?
Solving the dual efficiently

- Many ways to solve the dual linear program, i.e. minimize with respect to δ:

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j\rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j\rightarrow i}(x_i) - \delta_{i\rightarrow j}(x_j) \right),$$

- One option is to use the subgradient method
- Can also solve using **block coordinate-descent**, which gives algorithms that look very much like max-sum belief propagation
Many ways to solve the dual linear program, i.e. minimize with respect to δ:

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j) \right),$$

One option is to use the subgradient method.

Can also solve using **block coordinate-descent**, which gives algorithms that look very much like max-sum belief propagation.
Many ways to solve the dual linear program, i.e. minimize with respect to δ:

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j) \right),$$

One option is to use the subgradient method.

Can also solve using **block coordinate-descent**, which gives algorithms that look very much like max-sum belief propagation.
Max-product linear programming (MPLP) algorithm

Input: A set of potentials $\theta_i(x_i), \theta_{ij}(x_i, x_j)$

Output: An assignment x_1, \ldots, x_n that approximates a MAP solution

Algorithm:

- Initialize $\delta_{i\rightarrow j}(x_j) = 0, \delta_{j\rightarrow i}(x_i) = 0, \forall ij \in E, x_i, x_j$
- Iterate until small enough change in $L(\delta)$:
 - For each edge $ij \in E$ (sequentially), perform the updates:
 - $\delta_{j\rightarrow i}(x_i) = -\frac{1}{2}\delta_{i\rightarrow j}(x_i) + \frac{1}{2}\max_{x_j} \left[\theta_{ij}(x_i, x_j) + \delta_{j\rightarrow i}(x_j) \right] \quad \forall x_i$
 - $\delta_{i\rightarrow j}(x_j) = -\frac{1}{2}\delta_{j\rightarrow i}(x_j) + \frac{1}{2}\max_{x_i} \left[\theta_{ij}(x_i, x_j) + \delta_{i\rightarrow j}(x_i) \right] \quad \forall x_j$

 where $\delta_{i\rightarrow j}(x_i) = \theta_i(x_i) + \sum_{ik \in E, k \neq j} \delta_{k\rightarrow i}(x_i)$

- Return $x_i \in \arg \max_{\hat{x}_i} \tilde{\theta}_i(\hat{x}_i)$
Introduction to Dual Decomposition for Inference

Inputs:
- A set of factors $\theta_i(x_i), \theta_f(x_f)$.

Output:
- An assignment x_1, \ldots, x_n that approximates the MAP.

Algorithm:
- Initialize $\delta_{fi}(x_i) = 0, \forall f \in F, i \in f, x_i$.
- Iterate until small enough change in $L(\delta)$ (see Eq. 1.2):
 - For each $f \in F$, perform the updates

 $$
 \delta_{fi}(x_i) = -\delta_{i}^{-f}(x_i) + \frac{1}{|f|} \max_{x_f \setminus i} \left[\theta_f(x_f) + \sum_{\hat{i} \in f} \delta_{\hat{i}}^{-f}(x_{\hat{i}}) \right],
 $$

 simultaneously for all $i \in f$ and x_i. We define $\delta_{i}^{-f}(x_i) = \theta_i(x_i) + \sum_{f \neq f} \delta_{\hat{f}i}(x_i)$.
- Return $x_i \in \arg\max_{\hat{x}_i} \check{\theta}_{i}(\hat{x}_i)$ (see Eq. 1.6).
Performance on stereo vision inference task:

- Objective
- Duality gap
- Decoded assignment
- Dual obj.

Iteration vs. Objective

Solved optimally
Dual decomposition = basic LP relaxation

- Recall we obtained the following dual linear program: \(L(\delta) = \)
 \[
 \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{j \in E} \delta_{j \rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j) \right),
 \]
 \[
 \text{DUAL-LP}(\theta) = \min_{\delta} L(\delta)
 \]

- We showed two ways of upper bounding the value of the MAP assignment:
 \[
 \text{MAP}(\theta) \leq \text{Basic LP}(\theta) \leq \text{DUAL-LP}(\theta) \leq L(\delta)
 \]

- Although we derived these linear programs in seemingly very different ways, in turns out that:
 \[
 \text{Basic LP}(\theta) = \text{DUAL-LP}(\theta) \quad \text{[SonGloJaa11]}
 \]

- The dual LP allows us to upper bound the value of the MAP assignment without solving an LP to optimality
MAP assignment

MAP(\theta) \leq \text{Basic LP}(\theta) = \text{DUAL-LP}(\theta) \leq L(\delta)
Conclusion

- LP relaxations yield a powerful approach for MAP inference
- Naturally lead to
 - considerations of polytope or cutting planes
 - dual decomposition and message passing
- Close relationship to methods for marginal inference
- Help build understanding as well as develop new algorithmic tools
- Exciting current research

Thank you

