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ABSTRACT

Uncertainty estimates from machine learning models allow domain experts to
asses prediction reliability and can help practitioners identify model failure modes.
We introduce Counterfactual Latent Uncertainty Explanations (CLUE), a method
that answers: ”How should we change an input such that our model produces more
certain predictions?” We perform a user study, concluding that CLUE allows users
to understand which regions of input space contribute to predictive uncertainty.

1 INTRODUCTION

Machine learning (ML) models that produce uncertainty estimates can be helpful in decision-critical
applications. These applications are behind the burgeoning interest in probabilistic ML. Probabilis-
tic models express model uncertainty and provide reliable error bars with their predictions (Gal,
2016). Well-calibrated uncertainty can be equally as important as making accurate predictions. It
can prevent automated systems from behaving erratically when faced with unbalanced or biased
datasets or with out-of-distribution (OOD) test cases.

In practice, predictive uncertainty conveys skepticism about a model’s output; however, its utility
need not stop there: we posit predictive uncertainty could be rendered useful and actionable were
it to be put in terms of model inputs, answering the question: “Which input features lead my pre-
diction to be uncertain?” This reformulation has two stakeholders: ML practitioners and domain
experts working in tandem with ML models. Understanding which input features are responsible
for epistemic uncertainty can help practitioners learn in which regions the training data is sparse.
For example, when training a loan default predictor, a data scientist (i.e., practitioner) can identify
sub-groups (by age, gender, race, etc.) under-represented in the training data. Collecting more data
from these groups, and thus further constraining their model’s parameters, could lead to accurate
predictions for a broader range of clients. In a clinical scenario, a doctor (i.e., domain expert) can
use an automated decision-making system to assess whether a patient should receive a treatment.
In the case of high uncertainty, the system will suggest the doctor reject its output in order to avoid
introducing noise into the doctor’s reasoning. Were the uncertainty to be explained in terms of which
features the model found anomalous, the doctor could direct their attention appropriately.

To that end, we present CLUE; to the best of our knowledge, the first algorithm for contextualizing
the predictive uncertainty of Bayesian Neural Networks (BNN) in terms of specific input features.
We proceed as follows: we review uncertainty in probabilistic models, describe our method, and
analyze its properties with both functional and human-subject experiments.
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2 PRELIMINARIES: UNCERTAINTY IN BAYESIAN MODELS

Given a dataset D = {xn,yn}Nn=1, the posterior distribution over a predictive model’s parameters,
p(w|D), encodes our uncertainty about what value w should take. Through marginalization, this
uncertainty is translated into predictive uncertainty, yielding reliable error bounds and preventing
overfitting. For NNs, computing the exact posterior is intractable, but there are many approximate
algorithms (MacKay, 1992; Hernández-Lobato & Adams, 2015). We consider two types of uncer-
tainties: Irreducible or aleatoric uncertainty is caused by class overlap in our dataset. Model or
epistemic uncertainty arises when points are off the training manifold or belong to sparse regions
(Depeweg, 2019). Explaining these uncertainties separately can provide further insights to users.

We consider models which parameterize two types of distributions over target variables: the cate-
gorical for classification problems and the Gaussian for regression. In both cases, we approximate
NNs’ predictive posteriors and uncertainty estimates with Monte Carlo estimators. These are dif-
ferentiable with respect to model inputs. Following Depeweg (2019), we quantify the uncertainty
of categorical distributions using predictive entropy: H(y∗|x∗,D) and of Gaussians with variance.
Leveraging their additive nature, these quantities can be decomposed into aleatoric (Ha, σ

2
a) and

epistemic components (He, σ
2
e).

To the best of our knowledge, the only existing method for the interpretation of uncertainty esti-
mates is Uncertainty Sensitivity Analysis (Depeweg et al., 2017). This method quantifies the global
relevance of individual input dimensions to a chosen metric of uncertainty H as a sum of linear
approximations centered at each test point:

Ii =
1

|Dtest|

|Dtest|∑
n=1

|∂H(y∗n|x∗n)

∂x∗n,i
| (1)

As discussed by Rudin (2019), linear explanations of non-linear models, such as this one, can be mis-
leading. High-dimensional input spaces limit the actionability of these explanations, as∇xH likely
will not point in the direction of the data manifold. Our method, CLUE, leverages the latent space
of a deep generative model (DGM) to avoid having to work with high-dimensional input spaces and
to ensure that its explanations are in-distribution. It does not rely on crude linear approximations.

3 OUR APPROACH

We propose Counterfactual Latent Uncertainty Explanations (CLUE). We refer to the explanations
given by our method as CLUEs. They answer the question: “What is the smallest change that would
have had to be made to an input, while staying in-distribution, for our model to have been more
confident in its decision about said input?” We use x0 to refer to the original input for which we
want to find a CLUE. We introduce a latent variable DGM: pθ(x) =

∫
(pθ(x|z)p(z) dz, which, in the

rest of this paper, will be the decoder from a variational autoencoder (VAE). The VAE’s encoder is
denoted as qφ(z|x). The predictive mean of the decoder is: Epθ(x|z)[x]=µθ(x|z) and of the encoder
is: Eqφ(z|x)[z]=µφ(z|x). CLUE tries to find points in latent space that generate inputs similar to x0

while being assigned low uncertainty. This is achieved by minimizing:

L(z) = H(y|µθ(x|z)) + d(µθ(x|z),x0) (2)
xCLUE = µθ(x|zCLUE); zCLUE = arg min

z
L(z) (3)

We choose d(x,x0) =λxdx(x,x0) + λydy(f(x), f(x0)) in order to encourage similarity between
uncertain points and CLUEs in both input and prediction space. The hyperparameters (λx, λy)
control the trade-off between producing low uncertainty CLUEs and CLUEs which are close to the
original inputs. We select dx(x,x0) = ‖x− x0‖1. For regression, dy(f(x), f(x0)) is mean squared
error. For classification, we use cross-entropy. A diagram of the minimization of (2) is shown
in Figure 1. To facilitate optimization, the initial value of z is chosen to be z0 = µφ(z|x0). The
resulting algorithm is given in Algorithm 1. Our hyperparameters are described in appendix A.
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Algorithm 1: CLUE
Inputs: original datapoint x0, distance

function d(x,x0), BNN uncertainty
estimator H , DGM decoder µθ(·),
DGM encoder µφ(·)

1 Set initial value of z = µφ(z|x0);
2 while loss L is not converged do
3 Decode: x = µθ(x|z);
4 Use BNN to obtain H(y|x) ;
5 L = H(y|x) + d(x,x0);
6 Update z with∇z L;
7 end
8 Decode explanation: xCLUE = µθ(x|z);

Output: Counterfactual example xCLUE

Figure 1: Latent codes are decoded into inputs for
which a BNN generates uncertainty estimates; its
gradients are backpropagated to latent space.

Figure 2: Illustration of how a CLUE is generated for a high aleatoric entropy MNIST digit. The
mask, placed to the right, highlights pixel amplitude increases in red and decreases in blue.

We now describe how to show CLUEs to stakeholders. We do not want noise from DGM recon-
struction to affect our CLUEs. To right this for tabular data, we use the change in the percentile of
each input feature with respect to the training set distribution as a measure of relevance. We only
highlight continuous variables for which the CLUE is separated by 15 percentile points or more
from the original input. All changes to discrete variables are shown to users. For images, we gen-
erate masks by applying a sign-preserving quadratic function to the difference between CLUEs and
original samples: |∆x| · ∆x with ∆x = xCLUE − x0. In Figure 3, we showcase CLUEs for an
uncertain sample from the COMPAS dataset and two high uncertainty MNIST digits.

Figure 3: Left: CLUEs for two MNIST digits. Right: a CLUE from the COMPAS dataset.

4 EXPERIMENTS

We now describe empirical results for CLUE, leveraging the following datasets: MNIST, COMPAS,
and LSAT. We train BNNs and VAEs on these datasets. For the former, we use scale adapted
SG-HMC (Springenberg et al., 2016) as the approximate inference technique. We define rejected
samples as those with uncertainty estimates above their dataset’s 80th percentile. We only generate
explanations for rejected samples. Implementation details can be found in appendix A.

4.1 QUANTITATIVE ANALYSIS OF CLUE

We introduce a localized version of sensitivity analysis that is directly comparable to CLUE; Expla-
nations are generated for individual datapoints by taking a step in the direction of their uncertainty’s
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Figure 4: On the left, we compare the values of fm obtained on the datasets under consideration.
On the right, we compare the uncertainty assigned by our BNN to VAE reconstructions with the
uncertainty assigned to CLUEs for different capacity VAEs on the COMPAS dataset. An 8 latent
dimension VAE seems to be flexible enough to completely retain the original dataset’s uncertainty.

gradient xs = x0 − η∇xH(y|x0). Averaging |xs − x0| across the test set, we recover (1). We use
fm = ∆H/‖∆x‖1 as a figure of merit, with ∆H =H(y|x0)−H(y|xCLUE). Because BNNs are non-
linear, local sensitivity can increase H if the step size is too large. Thus, a very small η is required,
rendering the approach ineffective. In Figure 4, we see how CLUE obtains fm scores an order of
magnitude larger than local sensitivity analysis.

To capture our predictive model’s reasoning, CLUE’s DGM must be flexible enough to preserve
atypical features in the inputs. As shown in Figure 4, COMPAS reconstructions from low-capacity
VAEs are assigned low predictive uncertainty. The CLUEs generated from these DGMs either leave
the inputs unchanged or present large values of ∆x while barely reducing H: these degenerate
CLUEs simply emphasize regions of large reconstruction error. As our DGM’s capacity increases,
so does the predictive uncertainty explained by CLUEs. For 5 or more VAE latent dimensions,
reconstructions preserve the BNN’s uncertainty about inputs, allowing it to be explained by CLUE.

4.2 QUALITATIVE UTILITY OF CLUE: USER STUDY

We conduct a human subject experiment to assess how well CLUEs help users identify whether
a model will be uncertain on new datapoints. Specifically, we run two experiments: one with 20
graduate students and another with 30 individuals on the Prolific crowd-sourcing platform. Each
experiment has two variants. The first variant involves showing users a set of context points labeled
with if their uncertainty surpasses our predefined threshold. We then ask them to predict if new
test points will be certain or uncertain to the model. The second variant contains the same labeled
context points and test datapoints. However, together with uncertain context points, users are shown
CLUEs of how the input features can be changed such that the model’s uncertainty falls below the
rejection threshold. The users are then asked to decide if unseen points’ predictions will be certain
or not. If CLUE works as intended, users who take the second test variant should be able to identify
new points on which the model will be uncertain more precisely.

Table 1: The ”Surveyed” column denotes who participated: either Prolific users from the US, grad-
uate students with machine learning expertise, or Prolific users holding at least a Bachelor’s. ”Vari-
ant” denotes if the surveyed group was just shown uncertainty labels or labels and CLUEs. ”Sample
Size” denotes how many people received this variant. The next two columns contain the proportion
of correct answers when identifying epistemic or aleatoric uncertainty for LSAT, respectively. The
following two columns report the same but for COMPAS. The number in the column heading de-
notes the number of questions asked. The final column denotes total proportion of correct answers.

Surveyed Variant Sample
Size

LSAT
Ep. (6)

LSAT
Al. (7)

COMPAS
Ep. (6)

COMPAS
Al. (5) Total (24)

Prolific Unc. 10 0.50 0.40 0.53 0.67 0.54
Students Unc. 8 0.65 0.58 0.56 0.66 0.61
Prolific CLUE 10 0.60 0.70 0.60 0.40 0.59

Prolific (BS+) CLUE 9 0.61 0.68 0.54 0.69 0.63
Students CLUE 7 0.50 0.8 0.67 0.71 0.67
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Humans struggle to make decisions that require considering more than 3-5 entities jointly (Cowan,
2010). The LSAT and COMPAS datasets have 4 and 7 input features respectively. Additionally, in
our test, users have to identify trends based on between 4 and 6 context points. These characteristics
make our test very difficult. In Table 1, we report the results obtained by subgroup of users and
task. Users making predictions without CLUEs tend to perform similarly to random guessing. When
providing CLUEs to users, especially to those with machine learning knowledge, we find an increase
in their ability to identify uncertain samples. In appendix B, we discuss a similar study on MNIST.

5 CONCLUSION

Uncertainty estimates can help stakeholders know when to place trust in a model’s output. In this
work, we have introduced CLUE, an approach to give insight into which features are responsible for
a model’s uncertainty. Experimentally, we find that CLUE produces in-distribution explanations,
which effectively trade-off the changes made to inputs and the amount of uncertainty explained
away. Our human study reveals that, even after only having been shown a very limited number of
samples, CLUEs help users understand the sources of a model’s uncertainty.
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A IMPLEMENTATION DETAILS

We minimize (2) with the Adam optimizer, running it for a minimum of 5 iterations and a maximum
of 30 iterations with a learning rate of 0.1. If the decrease in L(z) is smaller than L(z0)/100 for 3
consecutive iterations, we apply early stopping. Since the prior on z constrains VAE latent spaces to
the same range of values for all datasets and we normalize inputs to be zero mean and unit variance,
we find that these hyperparameter settings work well across tasks. In all of the experiments shown
in the main text, λy is set to 0. Because the scale of H varies with the dimensionality of the targets
and number of train samples, and the scale of d varies with the input dimensionality, λx is selected
individually for each dataset. Our choices are 25/nd for MNIST, 2/nd for COMPAS and 1.5/nd for
LSAT. Here, nd refers to the number of input features of each dataset.

We model continuous targets with Gaussian distributions. We use BNNs to parametrize their means
and standard deviations. Discrete targets are modeled with categorical distributions, which are also
parametrized by BNNs. When building DGMs, we model continuous inputs with diagonal, unit vari-
ance Gaussian distributions. This choice makes these models weigh all input dimensions equally,
a desirable trait for explanation generation. We place categorical distributions over discrete inputs,
expressing them as one-hot vectors. For the LSAT and COMPAS datasets, where there are both
continuous and discrete features, data likelihood values are obtained as the product of Gaussian
likelihoods and categorical likelihoods. During the CLUE optimization procedure, we approximate
gradients through one-hot vectors with the gradients through softmax functions. This is known
as the softmax straight-through estimator (Bengio, 2013). It is biased but works well in practice.
For MNIST, we model pixels as the probabilities of Bernoulli distributions. We feed these proba-
bilities directly into our BNNs and DGMs. We use 20-dimensional latent spaces for MNIST and
8-dimensional latent spaces for COMPAS and LSAT.

We normalize all continuously distributed features such that they have 0 mean and unit variance.
This facilitates model training and also ensures that all features are weighed equally under CLUE’s
distance term in (2). For MNIST, this normalization is applied to whole images instead of individual
pixels. Categorical variables are not normalized. Changing a categorical variable implies changing
two bits in the corresponding one-hot vector. This creates the same L1 regularisation penalty as
shifting a continuously distributed variable two standard deviations.

We use fixed-width fully connected architectures for all BNNs and tabular data VAEs. We use
skip connections and batch normalization at every hidden layer. The VAE used for MNIST uses
convolutional ResNets (He et al., 2016) for both its encoder and decoder. Network architecture
parameters are given in Table 2.

Table 2: Hyperparameters of the NN architectures used with each of the datasets under considera-
tion. The VAE encoder and decoder used for MNIST are formed of bottleneck residual blocks, as
described by He et al. (2016). Their depth refers to the number of blocks.

Dataset BNN Depth BNN Width VAE Depth VAE Width

MNIST 2 1200 6 -
LSAT 2 200 3 300

COMPAS 2 200 3 300

B FURTHER DETAILS ON OUR USER STUDIES AND MNIST STUDY

In order to validate CLUE on image data, we create a modified MNIST dataset with clear failure
modes for our users to identify. We first discard all classes except four, seven and nine. We then
manually identify 40 sevens from the training set which have dashes crossing their stems. Using
K nearest neighbors, we identify the 12 sevens closest to each of the ones manually selected. We
delete these 520 sevens from our dataset. We repeat the same procedure for fours which have a
closed, triangle-shaped top. We do not delete any digits from the test set. We train a BNN on this
new dataset. Our BNN presents high epistemic uncertainty when tested on dashed sevens and closed
fours as a consequence of the sparsity of these features in the train set.
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We evaluate the test set of fours, sevens, and nines with our BNN. Datapoints that surpass our
uncertainty threshold are selected as candidates to be shown in our user study as uncertain context
examples or questions. We show CLUEs for a four and a seven that display the characteristics of
interest in Figure 5.

Leveraging the modified MNIST dataset, we ran another human-subject experiment with 10 ques-
tions and two variants. The first variant was shown to 5 graduate students with machine learning
expertise who only received context points and rejection labels (uncertain or not). This group was
able to correctly classify 67% of the unseen test points as high or low uncertainty. The second vari-
ant was shown to 5 other graduate students with machine learning expertise who received context
points together with CLUEs in cases of high uncertainty. This group was able to reach an accuracy
of 88% on unseen test points.

Figure 5: Examples of high uncertainty digits containing characteristics that are uncommon in our
modified MNIST dataset. Their corresponding CLUEs and masks are displayed beside them.

In Figure 6, we show an example of the interface presented to users.
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Figure 6: A screenshot of a section from the second test variant for LSAT. The top box shows context
examples, with CLUEs. The bottom box shows a question asked to the user.
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C MULTIPLICITY OF CLUES

We can exploit the fact that CLUE involves solving a non-convex optimization problem in order to
address the existence of multiple plausible counterfactuals. We set our initialisation of z to z =
µφ(z|x0) + ε where ε ∼ N (z;0, σ0 · I) and perform algorithm 1 multiple times to obtain different
CLUEs. Note that this process is parallelizable with batches. We find σ0 = 0.15 to give a good
trade-off between optimization speed and sample diversity.

In Figure 7, we showcase how different CLUEs for the same original input converge to digits of
different classes. Despite this, all explanations resemble the original datapoint being explained. In
this way, being exposed to multiple counterfactuals could potentially inform users about similarities
of the original input to multiple classes that confuse our model. In Figure 8, we show multiple
CLUEs for a single individual from the COMPAS dataset. In this case, uncertainty can be reduced
by changing the individual’s prior and charge degree or by changing their sex and age range. Making
both sets of changes simultaneously also reduces uncertainty.

Figure 7: The leftmost column contains three high uncertainty digits from the MNIST test-set. The
other five columns contain CLUEs obtained by sampling different z initialisations.

Figure 8: Four possible explanation for a high uncertainty individual from the COMPAS dataset.
The ”AI is uncertain” row indicates if the configuration displayed would have been rejected by our
model due to high uncertainty. Notice how, for the rightmost example, CLUE fails to converge to an
input configuration bellow the uncertainty threshold.

D SENSITIVITY ANALYSIS IN HIGH DIMENSIONAL SPACES

In high-dimensional input spaces, often ∇xH will not point in the direction of the data manifold.
This can result in meaningless explanations. In Figure 9, we show an example where a step in the
direction of −∇xH leads to a seemingly noisy input configuration for which the predictive entropy
is low. Aggregating these steps for every point in the test set leads to an uncertainty sensitivity
analysis explanation that resembles white noise. In Figure 10, we display a CLUE obtained from
the same starting digit. The counterfactual explanation corrects the lower portion of the 8.

9



ML-IRL: Machine Learning in Real Life Workshop at ICLR 2020

Despite being able to generate ”adversarial examples for uncertainty” in large input spaces, local
uncertainty sensitivity analysis performs poorly on our figure of merit fm as shown in Figure 4.
We find that, for each MNIST sample, a different η is required to minimize uncertainty with this
approach. A single choice of step size overshoots for some datapoints, increasing their uncertainty,
while barely changing it for others.

Figure 9: Left: A digit from the MNIST test set with large predictive entropy. Centre: The same
digit after a step is taken in the direction of −∇xH . Non-zero weight is assigned to pixels which
are always zero valued. Right: Uncertainty sensitivity analysis for the MNIST test set.

Figure 10: CLUE and difference mask for a high uncertainty test point from the MNIST test-set.
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