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ABSTRACT

Typically we fit a model by optimizing performance on training data. Here we
focus on the case of a binary classifier that predicts ‘yes’ or ‘no’ for any given test
point. We explore a notion of confidence in a particular prediction by asking: If
we were to fit an alternative classifier from our model class to the same training
data, how much training accuracy would we have to give up so that the prediction
for the test point would change?

1 INTRODUCTION

Suppose you are a loan officer using an algorithmic decision-making system to support your abilities.
You have done your due diligence by scrutinizing the training data then optimizing and evaluating
the model’s performance, and now feel comfortable to use the model on unseen test points in the real
world. Yet upon seeing a prediction on a particular test individual which would lead to their loan
being denied, you wonder before making your final decision: what if there were an alternative model
– with only slightly worse performance on the training data – which instead granted this individual
a loan? If so, this could give you pause before potentially making a mistake by denying the loan.

The idea that multiple classifiers can fit a training dataset well, leading to different stories about the
relationship between the input features and output response, is not new (Breiman, 2001), but has
received recent attention under the theme of predictive multiplicity (Fisher et al., 2019; Marx et al.,
2019). Fisher et al. (2019) consider the ε-set of models, i.e. those whose empirical training loss is
within ε of a baseline classifier.

In this paper, we solve a similar problem: we want to find the minimum ε such that the empirical
ε-set contains at least one model with different predictions for a selected test point. Specifically, if
we have a classifier that denies a test individual of a loan, we are interested in finding an alternate
classifier that would have granted the individual a loan. Using our approach, called counterfactual
accuracy, we first quantify how these classifiers differ, provide intuition behind our approach, and
finally experiment with our approach on real-world datasets.

2 METHODOLOGY

We restrict ourselves to standard binary classification tasks, where our goal is to find a classifier f
from a family of functions F such that f learns a mapping between inputs x ∈ Rd, vectors of d
real-valued features, and labels, y ∈ {−1, 1}. Given a training dataset Dn = {(xi, yi)}ni=1 from
some underlying, unknown distribution D and a nonnegative loss function ` : Y × Y → R≥0,
our goal is to learn a classifier f that minimizes training error yet performs well on unseen test
data. The expected loss of f is given by: R(f) = ED [` (f(x), y)]. Since we do not know D,
we calculate the average loss R̂ over the training dataset, R̂(f) = 1

n

∑n
i=1 ` (f(xi), yi). If we
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want our classifier to learn a linear decision boundary parameterized by θ, we assume it has the
following form: f(x;θ) = sgn(θTx), where θTx represents the distance between the x and the
linear separator and where sgn(·) is the standard sign function. For notational simplicity, we drop the
parameters θ from f(x;θ) in the rest of the document. For classifiers, irrespective of loss function,
we define the number of training errors, M , as: M(f) = nR̂0/1(f) =

∑n
i=1 1 [f(xi) 6= yi]. Let

Mo = M(fo) be the number of errors made by the empirical risk minimization (ERM) solution on
Dn. We now outline our approach and then highlight its properties.

2.1 OUR APPROACH

In an ERM setup, one finds the optimal classifier fo parameterized by θ as follows:

fo = argmin
f∈F

N∑
i=1

` (f(xi), yi)

. Given an unseen test point z, its predicted label is given by fo(z). Now, we want to find an
alternate classifier fz parameterized by θ′ such that we minimize average loss over Dn with the
condition that the predicted label of z if flipped, that is, fo(z) 6= fz(z). With this setup, we find an
alternate classifier via:

fz =argmin
f∈F

N∑
i=1

` (f(xi), yi)

s.t. fo(z) 6= fz(z)

(1)

Let F ′z = {f ∈ F : f(z) 6= fo(z)}. Note that F ′z ⊆ F . Let the number of training errors made by
fz be denoted by Mz =M(fz). The expected loss of fz is given by: R(fz) = ED [` (fz(x), y)].
Definition 1 (Extra Loss). Let the extra loss (EL) of fz and fo be:

C(fz, fo) = R(fz)−R(fo) = ED [` (fz(x), y)]− ED [` (fo(x), y)] (2)

C(fz, fo) tells us how much our loss suffers when we introduce a constraint to conflict the predic-
tions of fz and fo on a test point z. For ease of reading, we let Cz = C(fz, fo). Since we do not
knowD, we calculate an empirical variant over our training dataset. The average loss of fz over our
training dataset is given by R̂(fz) = 1

n

∑n
i=1 ` (fz(xi), yi).

Definition 2 (Empirical Extra Loss). Let the empirical extra loss (EEL) of fz and fo over a training
dataset Dn be given by:

Ĉ(fz, fo) = R̂(fz)− R̂(fo) =
1

n

n∑
i=1

` (fz(xi), yi)− ` (fo(xi), yi) (3)

Specifically when we let ` = `0/1, the training accuracy of classifier f is given by 1 − R̂(f). We
can rewrite the empirical extra loss Ĉz as the difference in training accuracy between fo and fz: we
call this the counterfactual accuracy, denoted by C̃z .1

Definition 3 (Counterfactual Accuracy). Let the counterfactual accuracy of fz and fo over a train-
ing dataset Dn be given by:

C̃z = R̂(fz)− R̂(fo) =
(
1− R̂(fo)

)
−
(
1− R̂(fz)

)
(4)

2.2 PREDICTED LABEL FLIPS IN TRAINING DATA

We can highlight the set of training points whose predicted labels flip as a result of the new con-
straint. The number of training points whose classification went from correct under fo to incor-
rect under fz is given by: K− =

∑n
i=1 1 [fz(xi) 6= yi]1 [fo(xi) = yi]. Similarly, the num-

ber of training points whose classification went from incorrect under fo to correct under fz is:
1Here we do not use “counterfactual” in the causal sense as in Pearl (2009); we use the term since it captures

what would happen to training accuracy if we were to constrain our optimization objective to flip the predicted
label of a specific datapoint from its ERM prediction.
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(a) Green points are those fo and fz get correct (6).
Red points are those fo and fz get incorrect (6). Blue
points are those fo gets correct but fz gets incorrect
(K− = 3). Gold points are those fo gets incorrect but
fz gets correct (K+ = 2). fz gets the blue and red
points incorrect (9), but gets the green and gold points
correct (8). The counterfactual accuracy, C̃z between
fo and fz , is 1
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(b) Line A shows 7 points distributed along a 1D line.
Each point is either a circle or a square. Line B shows
a classifier fo that is fit to the training data. The errors
made by fo are in red, and the correctly predicted are
in green. Note that any fo between point 4 and point
5 would achieve optimal accuracy. Line C shows a test
point z that appears on the line and will be predicted
to be a square under fo. Line D shows a candidate
classifier fz that flips the label of z but reaches sub-
optimal performance. Line E shows an alternate classi-
fier fz that flips the label of z and reaches optimal per-
formance. Note that any fo between point 6 and point
7 would achieve a counterfactual accuracy, C̃z , of 0

Figure 1: Building intuition around counterfactual accuracy

K+ =
∑n
i=1 1 [fz(xi) = yi]1 [fo(xi) 6= yi]. Thus, the total number of predicted labels that

changed from fo to fz is K = K− + K+. Let Ki be the number of points whose predicted la-
bels changed when we added a constraint to flip the label of test point, zi. We can relate the number
of flipped points K to the number of training errors M , and can bound K, K+, and K− when
constraining for test point zi as:

n ≥ Ki ≥ 0; Mo ≥ K+
i ≥ 0; n−Mo ≥ K−i ≥ 0

In Figure 1a, we visualize label flips for a contrived example and walk through an example of
how one would calculate counterfactual accuracy. Under 0/1 loss, we can rewrite counterfactual
accuracy, C̃z , in terms of label flips.

C̃z =
Mz −Mo

n
=
K− −K+

n
(5)

If we rewrite the training dataset errors of the alternate classifier fz as Mz = Mo + K− − K+,
the second equality follows. Counterfactual accuracy, a specific case of EEL, captures how much
model suffers (in terms of training error) from the additional constraint in the ERM optimization.

We could also run our procedure on training datapoints. Once we add a constraint to flip the pre-
dicted class of a training point xi, we could obtain fxi via an ERM, except we would exclude xi
from the training set; that is, we would only train on n−1 samples. When we calculate the EEL of the
alternate classifier as well as the number of label flips Ki, we would only use Dni = Dn \ {xi, yi}.

3 EXPERIMENTS

To build further intuition around counterfactual accuracy, consider a one dimensional setting. In
Figure 1b, we distribute points across a line: our goal is to build a classifier, which will be a point
on the line, that distinguishes between circles and squares. With this example, we illustrate that our
alternate classifier need not lie directly near the test point z and that the accuracy of the optimal and
alternate classifiers can be identical, implying that the counterfactual accuracy C̃z = 0.

In practice, we would ideally optimize the 0/1 loss for all datasets; unfortunately, this can be com-
putationally expensive. Instead, we optimize over surrogate convex losses (hinge loss and log loss).
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(a) Using log loss, the counterfactual accuracy, C̃z1 ,
at z1 is 0.05

(b) Using hinge loss, the counterfactual accuracy,
C̃z2 , at z2 is 0.14

Figure 2: Experimentation with counterfactual accuracy: let the solid cyan line represent fo and the
dotted magenta line represent fz where z is the point denoted by the black X. Let circle and square
denote the true label of each data point. Green points are those that both classifiers get correct. Red
points are those that both classifiers get wrong. Blue points are those that fo got right but fz got
wrong. Gold points are those that fo got wrong but fz got right.

When using hinge loss, we additionally regularize the norm of θ to train a support vector machine
in its primal formulation (Chapelle, 2007). In Figure 2, we find an optimal classifier for a synthetic
dataset of two overlapping Gaussians, as used in Zafar et al. (2017)), and then we constrain for
a random test point to obtain counterfactual accuracy. The loss function used is denoted inline.
Though the alternate model’s decision boundary appears nearly on top of the constrained test point
in the synthetic dataset example, this is an artifact of the solver we use (Sequential Least Squares
Programming) and not of our formulation.

We also find counterfactual accuracies for the following datasets: Adult (predicting income level
given 1994 US census information) (Dua & Graff, 2017) and COMPAS (predicting criminal re-
offense given demographics and history) (Angwin et al., 2016). On the Adult dataset’s test set, we
get an average counterfactual accuracy of 0.667%, which we means we gain less than a percentage
of training error when we introduce our constraint for a test point. On the Adult test set, we get
an average number of label flips of 225.08. Similarly, for the COMPAS dataset, we get an average
counterfactual accuracy of 1.437% over a test set, and get an average number of label flips of
260.43. On both datasets, the large number of label flips and the small counterfactual accuracy can
be attributed to the large dimensionality of the data. When we recalculate counterfactual accuracy
using Equation 5, we get the exact same values as listed above, suggesting that the use of a surrogate
loss may not hinder our objective.

On both real world datasets, we find that the Kendall rank correlation coefficient between the coun-
terfactual accuracy of z and the distance from z to the decision boundary is strongly positive: we
think this due to limited flexibility of our model class, F . Were we to introduce non-linearity into
the model, we may see a performance bump and a decrease in this correlation.

4 RELATED WORK

To the best of our knowledge, no existing work uses difference in average loss between optimal
and constrained alternate classifiers as a proxy for other metrics; however, there are a few works
that relate to our formulation. Firstly, Marx et al. (2019) does analysis of a “pathological” classifier
which forces a datapoint to have a different classification than that of a baseline classifier; however,
whereas they using a mixed integer program (MIP) to find an optimal solution only for 0/1 loss, we
add our constraint to any standard, convex loss function. The empirical ε-Rashomon set in Fisher
et al. (2019) (ε-level set in Marx et al. (2019)) is defined as: Ŝε = {f ∈ F : R̂(f) ≤ R̂(fo) + ε}.
Ŝε can be seen as the set of all classifiers in F that have an average loss no more than ε greater
than the average loss of fo. While these works study how to deal with varying predictions in Ŝε,
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we essentially solve a dual problem where we want to find the minimum ε such that the empirical
ε-Rashomon set contains at least one model with different predictions for a test point of interest,
zi. More concretely, we want to find εi > 0, where εi = min ε s.t. ∃fi ∈ Ŝε : fi(zi) 6= fo(zi).
Moreover, Letham et al. (2016) looks across Ŝε to identify the two models which have maximally
different predictions. We do something similar but different: we ask how far does your average loss
of a model need to suffer in order to change the prediction of an unseen test point.

5 CONCLUSION

In this paper, we propose the concept of counterfactual accuracy, the empirical extra loss suffered
by a classifier when we force a point’s prediction to flip. We can use this quantity to estimate the
uncertainty associated with a point. Future work can look at how the parameters between fo and
fz change, ||θ′ − θ||, as this may convey information about the point being constrained. More-
over, a Bayesian formulation, which would model the posterior over the parameters given the data
P (θ|Dn), is suitable for this problem; in this setup, we want to know the difference in the probabil-
ity mass of parameters that classifies a point as 1 and the probability mass that classifies the same
point as −1. In future work, we hope to address a Bayesian variation of counterfactual accuracy
and manage the intractability of estimating the difference in probability mass.
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