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Random sampling in ML

•Approximate Bayesian inference: use Markov chain Monte
Carlo in order to sample from complex untractable
posterior.

•Reinforcement learning: Monte Carlo gradient estimation.
•Variational autoencoders: outputs generated from random
samples.

Main ideas

When faced with expensive downstream applications,
Monte Carlo samples need to be of high quality and di-
versity.

Improve sample diversity by enforcing geometric conditions
on random samples:
•Orthogonal samples,
•Antithetic samples,
• Samples with coupled norms.

Contributions

•Formulation of optimal coupling problem as a
multi-marginal transport problem.

•Example solutions derived from those problems.
•Comparison with classical QMC low-discrepancy methods.
•Theoretical bounds on estimating gradients of function
smoothings when coupling samples.

•Experimental results on learning navigation policies with
evolution strategies and ELBO estimation.

Key results

Optimal coupling problem

Aim: Estimate If = EX∼η[f (X)] with Monte Carlo esti-
mator 1

m

∑m
i=1 f (Xi).

Problem: Optimal coupling when f is unknown?

Solution: Model f ∼ GP(0, K), find distribution µ solv-
ing

min
µ

Ef∼GP(0,K)

EX1:m∼µ

(∑m
i=1 f (Xi)
m

− If
)2
 ,

where marginals of µ are all equal to η. Solutions to this
problem are called a K-optimal couplings.

Link to optimal transport problem

Multi-marginal transport formulation: A joint dis-
tribution µ is a K-optimal coupling if and only if it mini-
mizes

EX1:m∼µ

∑
i 6=j

K(Xi, Xj)
 .

Repulsive costs: Unlike many optimal transport prob-
lems in machine learning, here the cost is repulsive, en-
couraging diversity of samples.

Example solutions

• Antithetic norm coupling. When the marginal η is
radially symmetric and K is a RBF kernel
K(x, y) = Φ(||x− y||) with Φ decreasing and convex, then
the optimal transport problem with m = 2 is solved when

X2 = −F−1
η (1− Fη(||X1||))

X1

||X1||
,

or in other words

Fη(||X1||) + Fη(||X2||) = 1.
• Orthogonal directions coupling. When the marginal
η is radially symmetric and K is a RBF kernel

K(x, y) = Φ(||x− y||2)
with Φ decreasing and convex, then the optimal transport
problem is solved when 〈Xi, Xj〉 = 0. This supports the
experimental results shown in [1].

Discrepancy of GCMC samples

Discrepancy: D∗η(S) = supu∈[0,1]

∣∣∣u− |{i:Xi≤u}|
|S|

∣∣∣ where
S = {X1, . . . , X|S|}.
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Experimentally, the discrepancy is lower for antitheti-
cally coupled samples. Naturally, randomized quasi-Monte
Carlo sampling also achieves low discrepancy.

This leads to a concentration of the error towards 0 thanks
to the Koksma-Hlawka inequality:∣∣∣∣∣∣ 1

m

m∑
i=1

f (Xi)− If

∣∣∣∣∣∣ ≤ VHK(f )D∗η(S).

Application to ELBO estimation

In training VAEs, one estimates the ELBO and its gradient
by passing random samples through the network. We use
coupled samples and observe:
• improved training speed,
• best performance when combining antithetic and
orthogonal samples.

Application to gradient estimation
of function smoothings

Aim: estimate the gradient of a function smoothing
through sampling.
Observation: using orthogonal samples leads to a sub-
Gaussian estimator which is more concentrated than the
one using i.i.d. samples.

Application to policy learning

• Aim: maximize J(θ) = EX∼N(θ,σI)[F (X)] with respect to
θ where F is only available through function evalutions.

• Strategy: use coupled samples to estimate ∇J(θ) by
1
mσ

∑m
i=1F (θ + σεi)εi, e.g. antithetic and orthogonal

samples or samples of fixed lengths.
•Allows to learn walkable policies for simulated and real
robots.

Conclusion

•Orthogonal and antithetic sampling can be motivated by a
multi-marginal transport problem.

•The observed increase in performance can be explained by a
lower discrepancy of the samples.

•Orthogonal samples can be applied in a wide range of
domains where diversity of samples matters.
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