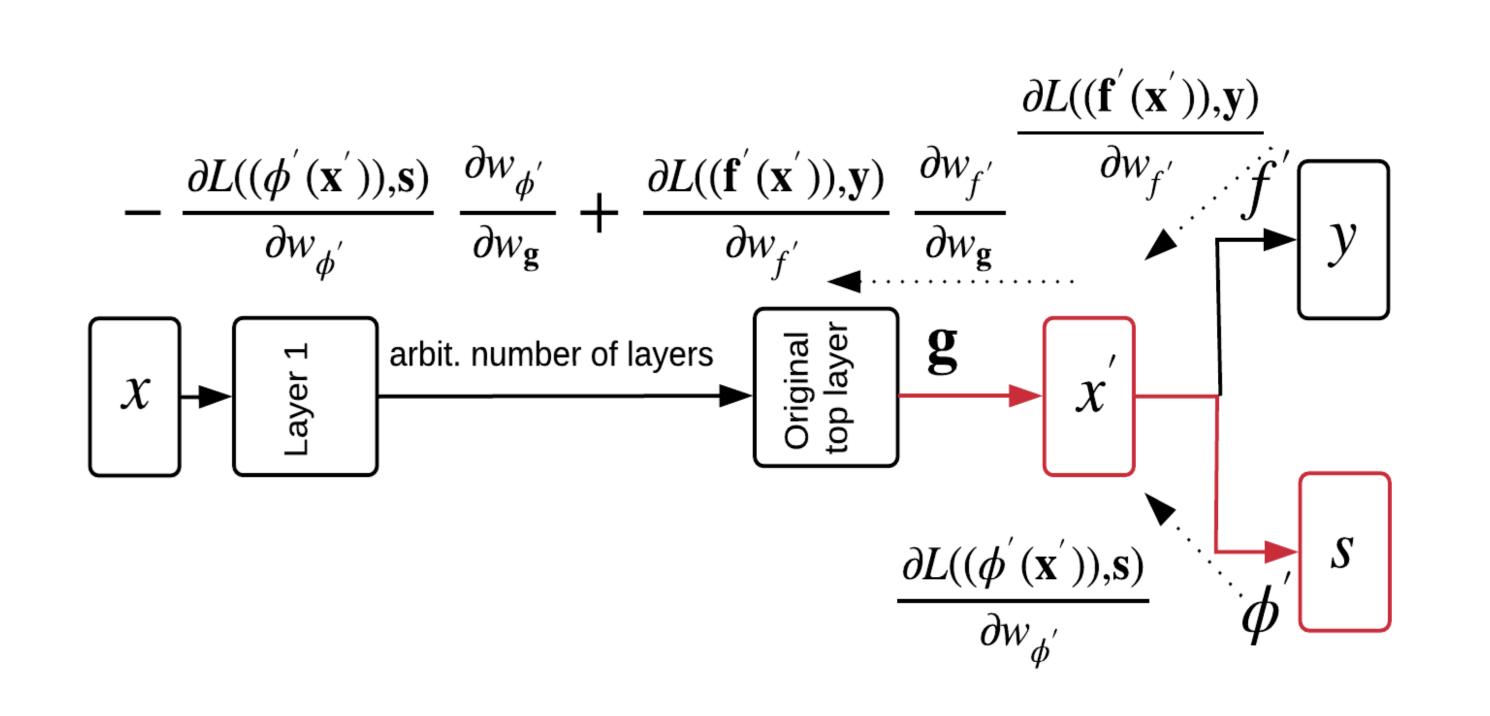
One-network Adversarial Fairness Tameem Adel¹, Isabel Valera², Zoubin Ghahramani^{1,3} & Adrian Weller^{1,4} ¹University of Cambridge, UK. ²MPI-IS, Germany. ³Uber AI Labs, USA. ⁴The Alan Turing Institute, UK. tah47@cam.ac.uk

Introduction

- Machine learning (ML) algorithms optimized:
- Not only for task performance, e.g. accuracy.
- But also other criteria, e.g. safety, interpretability, fairness.
- Here, our aim is to build an *accurate* as well as *fair* learner.
- Fairness: the outcome of a system should not discriminate between subgroups characterized by sensitive attributes such as gender or race.

FAD



Motivation

- Our Fair Adversarial Discriminative (FAD) learner adds a hidden layer, and an extra classifier at the network's top.
- This leads to a neural network (NN) that is:
 - maximally uninformative about the sensitive attributes; and
 predictive of the class labels.
- The whole adversarial game happens in *one single NN*, leading to:
 - -a much less tricky adversarial optimization; and
- -minimal overhead on the original model (slight modifications).

Contributions

- A fairness algorithm (FAD) that slightly modifies an unfair model's architecture to simultaneously optimize for accuracy and fairness.
- FAD also quantifies the tradeoff between accuracy and fairness.

Figure 1: Architecture of the proposed FAD. The parts added, due to FAD, to an unfair deep architecture with input x are (shown in red): i) the layer g where x' is learned and; 2) the sensitive attribute s predictor ϕ' at the network's top.

Experiments

Classification Accuracy

	Unfair ($\beta = 0$)	Unfair (Zafar et al. 2017b)	Unfair (Zafar et al. 2017a)	FAD	
	89.3%	66.8%	69.0%	88.4%	
	FAD-MD	Zafar et al. (2017b)	Zafar et al. (2017a)	Hardt et al. (2016)	
COMPAS	88.7 %	66.2%	67.5%	64.4%	
COMPAS	Feldman et al. (2015)	Kamishima et al. (2012)	Fish et al. (2016)	Bechavod (2017)	
	86.8%	72.4%	81.2%	66.4%	
	Komiyama et al. (2018)	Agarwal et al. (2018)	Narasimhan (2018)		
	86.6%	71.2%	77.7%		
	Unfair ($\beta = 0$)	Unfair (Zafar et al. 2017b)	Unfair (Zafar et al. 2017a)	FAD	
Adult	90.1%	85.8%	87.0%	88.6%	
Aduit	FAD-MD	Zafar et al. (2017b)	Zafar et al. (2017a)	Hardt et al. (2016)	
	89 %	83.1%	84.0%	84.6%	
	Feldman et al. (2015)	Kamishima et al. (2012)	Fish et al. (2016)	Bechavod (2017)	
	82.1%	84.3%	84.0%	78.3%	
	Komiyama et al. (2018)	Agarwal et al. (2018)	Narasimhan (2018)		
	85.7%	86.2%	81.5%		

- A variation of the algorithm in which diversity among minibatch elements is increased (FAD-MD).
- A novel generalization bound illustrating the theoretical relationship between the label classifier and the fair adversary.
- Experiments on two datasets demonstrate state-of-the-art effectiveness.

FAD with Minibatch diversity (FAD-MD)

We form minibatch elements as follows to make them as diverse as possible:

• Randomly choose few points to belong to the minibatch.

- From a pool of points, select the point via the score resulting from a oneclass SVM. The class consists of the current minibatch elements.
- The next added data point is the point with the lowest score, i.e. the point least likely to be similar to the current minibatch elements.
- Continue this process until reaching the prespecified minibatch size.

Experiments

(Un)fairness

	Unfair ($\beta = 0$)	Unfair (Zafar et al. 2017b)	Unfair (Zafar et al. 2017a)	FAD	FAD-MD	Zafar et al. (2017b)	Zafar et al. (2017a)	Hardt et al. (2016)
	Disp _{DI} : 0.6	—	0.62	0.08	0.11	—	0.38	_
	Disp _{FPR} : 0.21	0.18	—	0.01	0.01	0.03	_	0.01
COMPAS	Disp _{FNR} : 0.29	0.3	—	0.01	0.02	0.1	_	0.01
	Feldman et al. (2015)	Kamishima et al. (2012)	Fish et al. (2016)	Bechavod (2017)	Komiyama et al. (2018)	Agarwal et al. (2018)	Narasimhan (2018)	
	0.95	0.9	0.15	-	0.2	0.09	0.1	
	0.4	0.2	0.03	0.01	_	0.05	0.09	
	0.45	0.15	0.03	0.03	_	0.05	0.11	
	Unfair ($\beta = 0$)	Unfair (Zafar et al. 2017b)	Unfair (Zafar et al. 2017a)	FAD	FAD-MD	Zafar et al. (2017b)	Zafar et al. (2017a)	Hardt et al. (2016)
	Disp _{DI} : 0.71	—	0.68	0.14	0.13	—	0.29	_
	Disp _{FPR} : 0.36	0.35	—	0.02	0.01	0.12	_	0.04
Adult	Disp _{FNR} : 0.32	0.4	—	0.01	0.02	0.09	_	0.03
Addit	Feldman et al. (2015)	Kamishima et al. (2012)	Fish et al. (2016)	Bechavod (2017)	Komiyama et al. (2018)	Agarwal et al. (2018)	Narasimhan (2018)	
	0.25	0.3	0.16	_	0.28	0.13	0.19	
	0.3	0.07	0.02	0.0	_	0.04	0.14	
	0.4	0.08	0.03	0.04	_	0.05	0.08	

Conclusion

• We introduced a fair adversarial framework applicable to any differentiable discriminative model.

- Instead of having to establish the architecture from scratch, we make slight adjustments to an existing differentiable classifier by:
- -adding a new hidden layer; and
- -adding a new classifier above it,
- to concurrently optimize for fairness and accuracy in one network.

Conclusion (contd.)

- We analyzed and evaluated the tradeoff between fairness and accuracy.
- We proposed a minibatch diversity variation of the learning procedure which is of independent interest for adversarial frameworks in general.
- We provided a theoretical interpretation of the two classifiers (adversaries) constituting the model.
- We demonstrated strong empirical performance of our methods compared to previous leading approaches.