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Abstract

Linear programming (LP) relaxations are a pop-
ular method to attempt to find a most likely con-
figuration of a discrete graphical model. If a so-
lution to the relaxed problem is obtained at an
integral vertex then the solution is guaranteed to
be exact and we say that the relaxation is tight.
We consider binary pairwise models and intro-
duce new methods which allow us to demonstrate
refined conditions for tightness of LP relaxations
in the Sherali-Adams hierarchy. Our results in-
clude showing that for higher order LP relax-
ations, treewidth is not precisely the right way
to characterize tightness. This work is primarily
theoretical, with insights that can improve effi-
ciency in practice.

1 INTRODUCTION

Discrete undirected graphical models are widely used in
machine learning, providing a powerful and compact way
to model relationships between variables. A key chal-
lenge is to identify a most likely configuration of variables,
termed maximum a posteriori (MAP) or most probable ex-
planation (MPE) inference. There is an extensive literature
on this problem from various communities, where it may
be described as energy minimization (Kappes et al., 2013)
or solving a valued constraint satisfaction problem (VCSP,
Schiex et al., 1995).

Throughout this paper, we focus on the important class
of binary pairwise models (Ising models), allowing arbi-
trary singleton and edge potentials. For this class, the
MAP problem is sometimes described as quadratic pseudo-
Boolean optimization (QPBO, e.g. Hammer et al., 1984).
In these models, each edge potential may be characterized
as either attractive (tending to pull its end variables toward
the same value; equivalent to a submodular cost function)
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or repulsive. Eaton and Ghahramani (2013) showed that
any discrete model may be arbitrarily well approximated
by a binary pairwise model, though this may require a large
increase in the number of variables.

MAP inference is NP-hard for a general binary pairwise
model, hence much work has attempted to identify settings
where polynomial-time methods are feasible. We call such
settings tractable and the methods efficient.

In this work, we consider a popular approach which first
expresses the MAP problem as an integer linear program
(ILP) then relaxes this to a linear program (LP), see §2 for
details. An LP attains an optimum at a vertex of the feasi-
ble region: if the vertex is integral then it provides an exact
solution to the original problem and we say that the LP is
tight. If the LP is performed over the marginal polytope,
which enforces global consistency (Wainwright and Jor-
dan, 2008), then the LP will always be tight but exponen-
tially many constraints are required, hence the method is
not efficient. The marginal polytope M is typically relaxed
to the local polytope L2, which enforces consistency only
over each pair of variables (thus yielding pseudomarginals
which are pairwise consistent but may not correspond to
any true global distribution), requiring only a number of
constraints which is linear in the number of edges.

LP relaxations are widely used in practice. However, the
most common form LP+L2 often yields a fractional solu-
tion, thus motivating more accurate approaches which en-
force higher order cluster consistency (Batra et al., 2011).
A well-studied example is foreground-background image
segmentation. If edge potentials are learned from data,
because objects in the real world are contiguous, most
edges will be attractive (typically neighboring pixels will
be pulled toward the same identification of foreground or
background unless there is strong local data from color
or intensity). On the horses dataset considered by Domke
(2013), LP+L2 is loose but if triplet constraints are added,
then the LP relaxation is often tight. Our work helps to
explain and understand such phenomena. This has clear
theoretical value and can improve efficiency in practice.

Sherali and Adams (1990) introduced a series of succes-
sively tighter relaxations of the marginal polytope: for any
integer r, Lr enforces consistency over all clusters of vari-
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ables of size ≤ r. For any fixed r, LP+Lr is solvable
in polynomial time: higher r leads to improved accuracy
but higher runtime. Most earlier work considered the case
r = 2, though recently there has been progress in under-
standing conditions for tightness for LP+L3 (Weller et al.,
2016; Weller, 2016b,a).

Here we significantly improve on the result for L3 of Weller
et al. (2016), and provide important new results for when
LP+L4 is guaranteed to be tight, employing an interesting
geometric perspective. Our main contributions are summa-
rized in §1.3. We first develop the background and context,
see (Deza and Laurent, 1997) for a more extensive survey.

Most previous work considers separately two different
types of restricted settings that guarantee tightness, either:
(i) constraining the potentials to particular families; or (ii)
placing structural restrictions on the topology of connec-
tions between variables. As an example of the first type
of restriction, it is known that if all edge potentials are at-
tractive (equivalently, if all cost functions are submodular),
then the basic relaxation LP+L2 is tight. In fact, Thap-
per and Živný (2016) showed that for discrete models with
variables with any finite number of labels, and potentials of
any order: if no restriction is placed on topology, then for
a given family of potentials, either the LP relaxation on the
natural local polytope is always tight, and hence solves all
such problems efficiently, or the problem set is NP-hard.

1.1 Treewidth, Minors and Conditions for Tightness

Exploring the class of structural restrictions, Chan-
drasekaran et al. (2008) showed that subject to mild as-
sumptions, if no restriction is placed on types of poten-
tials, then the structural constraint of bounded treewidth is
needed for tractable marginal inference.1 Indeed, Wain-
wright and Jordan (2004) proved that if a model topology
has treewidth ≤ r − 1 then this is sufficient to guarantee
tightness for LP+Lr. As a well-known simple example, if
a connected model has treewidth 1 (equivalent to being a
tree), then the standard relaxation LP+L2 is always tight.

The graph property of treewidth≤ r−1 is closed under tak-
ing minors (definitions in §5.1, examples in Figures 1 and
2), hence by the celebrated graph minor theorem (Robert-
son and Seymour, 2004), the property may be characterized
by forbidding a unique finite set of minimal forbidden mi-
nors. Said differently, of all the graphs with treewidth ≥ r,
there is a unique finite set Tr of graphs which are mini-
mal with respect to minor operations. Hence, the sufficient
condition of Wainwright and Jordan (2004) for tightness of
LP+Lr may be reframed as: if the graph of a model does

1The treewidth of a graph is one less than the minimum size of
a maximum clique in a triangulation of the graph, as used in the
junction tree algorithm. Marginal inference seeks the marginal
probability distribution for a subset of variables, which is typically
harder than MAP inference.

not contain any graph in the set Tr as a minor, then LP+Lr
is guaranteed to be tight for any potentials.

The relevant sets of forbidden minors for L2 and L3 are
particularly simple with just one member each: T2 = {K3}
and T3 = {K4}, where Kn is the complete graph on n
vertices. For higher values of r, Tr always contains Kr

but there are also other forbidden minors, and their number
grows rapidly: T4 has 4 members (Arnborg et al., 1990)
while T5 has over 70 (Sanders, 1993).

Weller (2016a) showed that, for any r, the graph property
of LP+Lr being tight for all valid potentials on the graph
is also closed under taking minors. Hence, by Robertson-
Seymour, the property for LP+Lr may be characterized by
forbidding a unique set of minimal forbidden minors Ur. It
was shown that, in fact, U2 = T2 = {K3} and U3 = T3 =
{K4}. However, until this work, all that was known about
U4 is that it contains the complete graph K5: it has been an
open question whether or not U4 = T4.

One of our main contributions here is to show that U4 6=
T4. Indeed, in §5 we show that U4 ∩ T4 = {K5} and that
U4 must contain at least one other forbidden minor, which
we cannot yet identify. This progress on understanding U4

is a significant theoretical development, demonstrating that
in general, treewidth is not precisely the right way to char-
acterize tightness of LP relaxations.

Whereas Weller (2016a) made extensive use of powerful
earlier results in combinatorics in order to identify U3, in-
cluding two results which won the prestigious Fulkerson
prize (Lehman, 1990; Guenin, 2001), our analysis takes
a different, geometric approach (developed in §4 and §5),
which may be of independent interest.

1.2 Stronger Hybrid Conditions

Throughout §1.1, we considered only the graph topology
of a model’s edge potentials. If we also have access to the
signs of each edge (attractive or repulsive), then stronger
results may be derived. By combining restrictions on both
classes of potentials and structure, these are termed hybrid
conditions (Cooper and Živný, 2011).

In this direction, Weller (2016a) showed that for a signed
graph, the property that LP+Lr is tight for all valid poten-
tials (now respecting the graph structure and edge signs),
is again closed under taking minors, hence again may be
characterized by a finite set of minimal forbidden minors
U ′r. Further, Weller showed that for r = 2 and r = 3,
the forbidden minors are precisely only the odd versions
of the forbidden minors for a standard unsigned graph,
where an odd version of a graph G means the signed ver-
sion of G where every edge is repulsive (a repulsive edge
is sometimes called odd). That is, U ′2 = {odd-K3} and
U ′3 = {odd-K4}. To see the increased power of these re-
sults, observe for example that this means that LP+L3 is
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tight for any model of any treewidth, even if it contains K4

minors, provided only that it does not contain the particu-
lar signing of K4 where all edges are odd (or an equivalent
resigning thereof, see §5.1).

In §5, we show somewhat similarly that of all possible
signings of K5, it is only an odd-K5 which leads to non-
tightness of LP+L4.

1.3 Main Contributions

Given the background in §1.1 and §1.2, here we highlight
key contributions.

In §3, we significantly strengthen the result of Weller et al.
(2016) for an almost balanced model (which contains a dis-
tinguished variable s.t. removing it renders the model bal-
anced, see §3.1 for precise definitions). For such a model, it
was shown that LP+L3 is always tight. Here we show that
we may relax the polytope from L3 to a variant we call Ls3,
which enforces triplet constraints only for those triplets in-
cluding the one distinguished variable s, while still guaran-
teeing tightness. This has important practical implications
since we are guaranteed tightness with dramatically fewer
linear constraints, and thus much faster runtime.

We also show in §3 that for any model (no restriction on
potentials), enforcing all triplet constraints of L3 is equiv-
alent to enforcing only those involving the edges of any
triangulation (chordal envelope) of its graph, which may
significantly improve runtime.

In §4, we introduce a geometric perspective on the tightness
of LP relaxations, which may be of independent interest.

In §5, we use these geometric methods to provide powerful
new conditions on the tightness of LP+L4. These show
that the relationship which holds between forbidden minors
characterizing treewidth and LP+Lr tightness for r = 2
and r = 3 breaks down for r = 4, hence demonstrating that
treewidth is not precisely the right condition for analyzing
tightness of higher-order LP relaxations.

1.4 Related Work

We discuss related work throughout the text. To our knowl-
edge, aside from (Weller, 2016a), there is little prior work
which considers conditions on signed minors for inference
in graphical models. Watanabe (2011) derives a similar
characterization to identify when belief propagation has a
unique fixed point.

2 BACKGROUND AND PRELIMINARIES

2.1 The MAP Inference Problem

A binary pairwise graphical model is a collection of ran-
dom variables (Xi)i∈V , each taking values in {0, 1}, such

that the joint probability distribution may be written in a
minimal representation (Wainwright and Jordan, 2008) as

P(Xi = xi ∀i ∈ V ) ∝

exp

∑
i∈V

θixi +
∑
ij∈E

Wijxixj

 , (1)

for some potentials θi ∈ R for all i ∈ V , and Wij ∈ R
for all ij ∈ E ⊆ V (2). We identify the topology of the
model as the graph G = (V,E). When Wij > 0, there is a
preference for Xi and Xj to take the same setting and the
edge ij is attractive; when Wij < 0, the edge is repulsive
(see Weller, 2014, §2 for details).

A fundamental problem for graphical models is maximum
a posteriori (MAP) inference, which asks for the identifica-
tion of a most likely joint state of all the random variables
(Xi)i∈V under the probability distribution specified in (1).

The MAP inference problem is clearly equivalent to maxi-
mizing the argument of the exponential in (1), yielding the
following integer quadratic program:

max
x∈{0,1}V

∑
i∈V

θixi +
∑
ij∈E

Wijxixj

 . (2)

2.2 LP Relaxations for MAP Inference

A widely used approach to solving Problem (2) is first to
replace the integer programming problem with an equiva-
lent linear program (LP), and then to optimize the objective
over a relaxed polytope with a polynomial number of linear
constraints. This leads to an LP which is efficient to solve
but may return a fractional solution (in which case, branch-
ing or cutting approaches are often used in practice).

In detail, from Problem 2, an auxiliary variable xij = xixj
is introduced for each edge, as in Problem (3):

max
x∈{0,1}V∪E

xij=xixj∀ij∈E

∑
i∈V

θixi +
∑
ij∈E

Wijxij

 . (3)

With the objective now linear, an LP may be formed by op-
timizing over the convex hull of the optimization domain of
Problem (3). This convex hull is called the marginal poly-
tope (Wainwright and Jordan, 2008) and denoted M(G).
Thus we obtain the equivalent problem:

max
q∈M(G)

∑
i∈V

θiqi +
∑
ij∈E

Wijqij

 . (4)

This LP (4) is in general no more tractable than Problem
(2), due to the number of constraints needed to describe
M(G). It is standard to obtain a tractable problem by relax-
ing the domain of optimization M(G) to some larger poly-
tope L which is easier to describe. The resulting relaxed
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optimization yields an upper bound on the optimal value of
Problem (2), though if the arg max over L is an extremal
point of M(G), then the approximation must be exact, and
we say that the relaxation is tight for this problem instance.

We focus on the family of relaxations introduced by Sher-
ali and Adams (1990), defined below. We first consider a
probabilistic interpretation of the marginal polytope.

Notation. For any finite set Z, let P(Z) be the set of
probability measures on Z.

The marginal polytope can then be written

M(G) = {((qi)i∈V , (qij)ij∈E) | ∃µ ∈P({0, 1}V )

s.t. qi = Pµ(Xi = 1) ∀i ∈ V , (5)
qij = Pµ(Xi = 1, Xj = 1) ∀ij ∈ E}.

Intuitively the constraints of the marginal polytope en-
force a global consistency condition for the set of param-
eters ((qi)i∈V , (qij)ij∈E), so that together they describe
marginal distributions of some global distribution over the
entire set of variables. A natural approach is to relax this
condition of global consistency to a less stringent notion of
consistency only for smaller clusters of variables.
Definition 1. The Sherali-Adams polytope Lr(G) of order
r for a binary pairwise graphical model on G = (V,E) is

Lr(G) = {((qi)i∈V , (qij)ij∈E) | ∀α ⊆ V with |α| ≤ r,
∃τα ∈P({0, 1}α) s.t. τα

∣∣
β

= τβ ∀β ⊂ α, and

τ{i,j}(1, 1) = qij ∀ij ∈ E, τ{i}(1) = qi ∀i ∈ V },
(6)

where for β ⊂ α, τα
∣∣
β

denotes the marginal distribution of
τα on {0, 1}β .

Considering successive fixed values of r ∈ N, the Sherali-
Adams polytopes therefore yield the following sequence of
tractable approximations to Problem (2):

max
q∈Lr(G)

∑
i∈V

θiqi +
∑
ij∈E

Wijqij

 . (7)

As r is increased, so too does the number of linear con-
straints required to define Lr, leading to a tighter polytope
and a more accurate solution, but at the cost of greater com-
putationally complexity. For r = |V |, Lr(G) is exactly
equal to the marginal polytope M(G).

A fundamental question concerning LP relaxations for
MAP inference is when it is possible to use a computa-
tionally cheap relaxation Lr(G) and still obtain an exact
answer to the original inference problem. This is of great
practical importance, as it leads to tractable algorithms for
particular classes of problems that in full generality are NP-
hard. In this paper we investigate this question for a vari-
ety of problem classes for the Sherali-Adams relaxations:

L2(G), L3(G), and L4(G); also referred to as the local,
triplet, and quad polytopes respectively.

3 REFINING TIGHTNESS RESULTS
FOR L3(G)

Here we first derive new results for the triplet polytope
L3 that significantly strengthen earlier work (Weller et al.,
2016) for almost balanced models. Then in §3.3, we
demonstrate that for any model, triplet constraints need be
applied only over edges in some triangulation of its graph
(that is, over any chordal envelope).

3.1 Graph-theoretic Preliminaries

A signed graph is a graph G = (V,E) together with a
function Σ : E → {even, odd}, where attractive edges are
even and repulsive edges are odd. A signed graph is bal-
anced (Harary, 1953) if its vertices V may be partitioned
into two exhaustive sets V1, V2 such that all edges with both
endpoints in V1 or both endpoints in V2 are even, whilst all
edges with one endpoint in each of V1 and V2 is odd.

A signed graph G = (V,E,Σ) is almost balanced (Weller,
2015b) if there exists some distinguished vertex s ∈ V such
that removing s leaves the remainder balanced (thus any
balanced graph is almost balanced). To detect if a graph
is almost balanced, and if so then to find a distinguished
vertex, may be performed efficiently (simply hold out one
variable at a time and test the remainder to see if it is bal-
anced, Harary and Kabell, 1980). A graphical model is al-
most balanced if the signed graph corresponding to its edge
potentials is almost balanced.

3.2 Tightness of LP Relaxations for Almost Balanced
Models

The following result was shown by Weller et al. (2016).
Theorem 2. Given a graph G, the triplet polytope L3(G)
is tight on the class of almost balanced models on G.

We present a significant strengthening of Theorem 2 in a
new direction, which identifies exactly which constraints
of L3(G) are required to ensure tightness for the class of
almost balanced models.

Given an almost balanced model with distinguished vari-
able s (that is, deleting s renders the model balanced), de-
fine the polytope Ls3(G) by taking all the pairwise con-
straints of L2(G), and adding triplet constraints only for
triplets of variables that include s (see §10.4.1 in the Sup-
plement for more details).

Ls3(G) is a significant relaxation of L3(G), requiring only
O(|V |2) linear constraints, rather than the O(|V |3) con-
straints needed for L3(G). Thus it is substantially faster to
optimize over Ls3(G). Nevertheless, our next result shows
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that Ls3(G) is still tight for an almost balanced model, and
indeed is the ‘loosest’ possible polytope with this property.

Theorem 3. The polytope Ls3(G) is tight on the class of al-
most balanced models on graph G with distinguished vari-
able s. Further, no linear constraint of Ls3(G) may be re-
moved to yield a polytope which is still tight on all models
in this class of potentials. Proof in the Supplement §10.

Considering cutting plane methods, Theorem 3 demon-
strates exactly which constraints from L3(G) may be nec-
essary to add to the polytope L2(G) in order to achieve
tightness for an almost balanced model.

3.3 Chordality and Extending Partial Marginals

By its definition, the polytope L2 enforces pairwise con-
straints on every pair of variables in a model, whether or
not they are connected by an edge, yet typically one en-
forces constraints only for edges E in the model. This is
sufficient because it is not hard to see that if one has edge
marginals for the graph G(V,E), it is always possible to
extend these to edge marginals for the complete graph on
V while remaining within L2 (and the values of these addi-
tional marginals are irrelevant to the score by assumption).

Here we provide an analogous result for L3, which shows
that for any model (no restriction on potentials), one
need only enforce triplet constraints over any triangulation
(chordal envelope) of its graph.

Theorem 4. For a chordal graph G, the polytope L2(G)
together with the triplet constraints only for those triplets
of variables that form 3-cliques inG, is equal to L3(G), i.e.
the polytope given by enforcing constraints on all triplets
of G. Proof in the Supplement §9.

4 THE GEOMETRY OF
SHERALI-ADAMS RELAXATIONS

Here we introduce several geometric notions for the
Sherali-Adams polytopes which we shall apply in §5.

4.1 The Geometry of the Sherali-Adams Polytopes

The study of tightness of LP relaxations is naturally ex-
pressed in the language of polyhedral combinatorics. We
introduce key notions from the literature, then provide new
proofs of characterizations of tightness for the local poly-
tope L2(G) with these geometric ideas.

Given a polytope P ⊂ Rm, and an extremal point (vertex)
v ∈ Ext(P ), the normal cone to P at v, denoted NP (v), is
the polyhedral cone defined by

NP (v) =

{
c ∈ Rm|v ∈ arg max

x∈P
〈c, x〉

}
. (8)

We define the conical hull of a finite set X as: Cone(X) =
{
∑
x∈X λxx | λx ≥ 0 ∀x ∈ X}. The following character-

ization of normal cones will be particularly useful.
Lemma 5 (Theorem 2.4.9, Schneider, 1993). Let P =
{x ∈ Rm|Ax ≤ b} be a polytope for some A =
[a1, . . . , ak]> ∈ Rk×m, b ∈ Rk (for some k ∈ N). Then
for v ∈ Ext(P ), we have

NP (v) = Cone({ai| 〈ai, v〉 = b}). (9)

Further, if the representation {x ∈ Rm|Ax ≤ b} has no
redundant constraints, then {ai| 〈ai, v〉 = b} is a complete
set of extremal rays of NP (v) (up to scalar multiplication).

With these geometric notions in hand, we have a succinct
characterization of the set of potentials for which a given
Sherali-Adams relaxation is tight.
Lemma 6. The set of potentials which are tight with re-
spect to Lr is exactly given by the following union of cones⋃

v∈Ext(M(G))

NLr(G)(v). (10)

This concise characterization, together with the explicit
parametrization of normal cones given by Lemma 5 and
the form of the linear constraints defining the local poly-
tope L2(G), yields an efficient algorithm for generating ar-
bitrary potentials which are tight with respect to L2(G).

We would like also to identify classes of potentials for
which L2(G) is guaranteed to be tight. We demonstrate the
power of our geometric approach by providing new proofs
in §7 of the Supplement of the following earlier results.
Lemma 7. If G is a tree, then L2(G) is tight for all poten-
tials, that is L2(G) = M(G).
Lemma 8. For an arbitrary graph G, L2(G) is tight for
the set of balanced models.

The proofs proceed by explicitly demonstrating that a given
potential lies in a cone NL2(G)(v) for some vertex v of the
marginal polytope, by expressing the potential as a conical
combination of the extremal rays of the cone.

4.2 The Symmetry of the Sherali-Adams Polytopes

The Sherali-Adams polytopes have rich symmetries which
can be exploited when classifying tightness of LP relax-
ations using the tools discussed in §4.1. Intuitively, these
symmetries arise either by considering relabellings of the
vertices of the graph G (permutations), or relabellings of
the state space of individual variables (flippings). The key
result is that a Sherali-Adams polytope is tight a for poten-
tial c iff it is tight for any permutation or flipping of c.

4.2.1 The Permutation Group

Let σ ∈ SV be a relabeling of the vertices of the graph
G. This permutation then induces a bijective map Yσ :
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Lr(G) → Lr(G) (which naturally lifts to a linear map on
RV ∪E), given by applying the corresponding relabeling to
the components of the pseudomarginal vectors:

Yσ((qi)i∈V , (qij)ij∈E) = ((qσ(i))i∈V , (qσ(i)σ(j))ij∈E)

∀((qi)i∈V , (qij)ij∈E) ∈ Lr(G) .

The element σ ∈ SV also naturally induces a linear map
on the space of potentials, which is formally the dual space
(RV ∪E)?, although we will frequently identify it with
RV ∪E . We denote the map on the space of potentials by
Y †σ : (RV ∪E)? → (RV ∪E)?, given by

Y †σ ((ci)i∈V , (cij)ij∈E) = ((cσ(i))i∈V , (cσ(i)σ(j))ij∈E)

∀((ci)i∈V , (cij)ij∈E) ∈ RV ∪E .

The sets {Yσ|σ ∈ SV } and {Y †σ |σ ∈ SV } obey the group
axioms (under the operation of composition), and hence
form groups of symmetries on Lr(G) and (RV ∪E)? respec-
tively; they are both naturally isomorphic to SV .

These symmetry groups form a useful formalism for think-
ing about tightness of Sherali-Adams relaxations. We pro-
vide one such result in this language, proof in §8 of the
Supplement.
Lemma 9. Lr(G) is tight for a given potential c ∈ RV ∪E
iff it is tight for all potentials Y †σ (c), σ ∈ SV .

4.2.2 The Flipping Group

Whilst the permutation group described above corresponds
to permuting the labels of vertices in the graph, it is also
useful to consider the effect of permuting the labels of the
states of individual variables. In the case of binary models,
the label set is {0, 1}, so permuting labels corresponds to
switching 0 ↔ 1, which we refer to as ‘flipping’. Given
a variable v ∈ V , define the affine map F(v) : RV ∪E →
RV ∪E which acts on any pseudomarginal q ∈ RV ∪E to flip
v as follows (see Weller et al., 2016 for details):[

F(v)(q)
]
v

= 1− qv,[
F(v)(q)

]
vw

= qw − qvw, ∀vw ∈ E,

while F(v) leaves unchanged all other coordinates of q.
Note that F(v) restricts to a bijection on Lr(G). The flip-
ping maps commute and have order 2, hence the group gen-
erated by them,

〈
F(v)|v ∈ V

〉
, is isomorphic to Z|V |2 . A

general element of this group can be thought of as simul-
taneously flipping a subset I ⊆ V of variables, written as
F(I) : Lr(G)→ Lr(G).

Flipping a subset of variables I ⊆ V also naturally induces
a map F †(I) : (RV ∪E)? → (RV ∪E)? on the space of po-
tentials. We give a full description of this map in §8 of the
Supplement. An analogous result to Lemma 9 also holds
for the group of flipping symmetries.
Lemma 10. Lr(G) is tight for a given potential c ∈ RV ∪E

iff it is tight for all potentials F †(I)(c), I ⊆ V .

Figure 1: The left graph is a minor (unsigned) of the right graph,
obtained by deleting the grey dotted edges and resulting isolated
grey vertex, and contracting the purple wavy edge. See §5.1.

4.2.3 The Joint Symmetry Group of the
Sherali-Adams Polytopes

Tying together the remarks of §4.2.1 and §4.2.2, note that
in general the symmetries of the flipping and permutation
groups on Lr(G) do not commute. In fact, observe that

Y −1
σ ◦ F(I) ◦ Yσ = F(σ−1(I)) . (11)

Thus the group of symmetries of Lr(G) generated by per-
mutations and flippings is isomorphic to the semidirect
product SV o Z|V |2 .

5 FORBIDDEN MINOR CONDITIONS
FOR TIGHTNESS OF L4(G)

We first introduce graph minors and their application to the
characterizations of both treewidth and tightness of LP re-
laxations over Lr. While these characterizations are the
same for r ≤ 3, a key contribution in this section is to use
the geometric perspective of §4 to show that the character-
izations are not the same for r = 4.

5.1 Graph Minor Theory

For further background, see (Diestel, 2010, Chapter 12).
Given a graph G = (V,E), a graph H is a minor of G,
written H ≤ G, if it can be obtained from G via a se-
ries of edge deletions, vertex deletions, and edge contrac-
tions. The result of contracting an edge uv ∈ E is the graph
G′(V ′, E′) where u and v are ‘merged’ to form a new ver-
tex w which is adjacent to any vertex that was previously
adjacent to either u or v. That is V ′ = V \ {u, v} ∪ {w},
andE′ = {e ∈ E | u, v 6∈ e}∪{wx | ux ∈ E or vx ∈ E}.
This is illustrated in Figure 1.

A property of a graph is closed under taking minors or
minor-closed if whenever G has the property and H ≤ G,
then H also has the property.

The celebrated graph minor theorem of Robertson and Sey-
mour (2004) proves that any minor-closed graph property
may be characterized by a unique finite set {H1, . . . ,Hm}
of minimal (wrt minor operations) forbidden minors; that
is, a graph G has the property iff it does not contain any
Hi as a minor. Checking to see if a graph contains some
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Figure 2: The left graph is a signed minor of the right signed
graph, obtained similarly to Figure 1 except that before contract-
ing the repulsive edge, first flip the vertex at its right end. Solid
blue (dashed red) edges are attractive (repulsive). Grey dotted
edges on the right are deleted and may be of any sign. See §5.1.

H as a minor may be performed efficiently (Robertson and
Seymour, 1995).

We shall also consider signed graphs (see §3.1) and their
respective signed minors. A signed minor of a signed graph
is obtained as before by edge deletion, vertex deletion, and
edge contraction but now: contraction may be performed
only on even (attractive) edges; and any resigning operation
is also allowed, in which a subset of vertices S ⊆ V is
selected then all edges with exactly one end in S are flipped
even ↔ odd.2 An example is shown in Figure 2. This
notion of flipping is closely related to the notion of flipping
of potentials, introduced in §4.2.2.

The graph minor theorem of Robertson and Seymour gen-
eralizes to signed graphs (Huynh, 2009; Geelen et al.,
2014): any property of a signed graph which is closed un-
der taking signed minors, may be characterized by a unique
finite set of minimal forbidden signed minors.

5.2 Treewidth Characterizations of Tightness

A fundamental result in the study of LPs over Sherali-
Adams relaxations is the following sufficient condition.

Theorem 11 (Wainwright and Jordan, 2004). If G has
treewidth ≤ r − 1, then Lr(G) = M(G); equivalently,
LP+Lr is tight for all valid potentials on G.

The goal of this section is to study to what extent a partial
converse to this result holds; that is, to what extent tightness
of a Sherali-Adams polytope can hold for graphs of high
treewidth. We focus on the case of L4(G), and proceed
based on the graph minor properties of G.

See §1.1 for a quick review of results that the properties,
for any r, of treewidth≤ r − 1, and of LP+Lr being tight
for any valid potentials, are both minor-closed (Weller,
2016a). Thus, by the graph minor theorem, both are char-

2Hence, to contract an odd edge, one may first flip either end
of the edge to make it even, then contract. In our context of binary
pairwise models, flipping a subset S is equivalent to switching
from a model with variables {Xi} to a new model with variables
{Yi : Yi = 1 − Xi ∀i ∈ S, Yi = Xi ∀i ∈ V \ S} and setting
potentials to preserve the distribution, which flips the sign of Wij

for any edge ij with one end in S; details in (Weller, 2015a, §2.4).

Figure 3: K3 (unsigned), the
only element of T2, the set of
minimal forbidden minors for
treewidth ≤ 1. T2 = U2,
the set of forbidden minors for
LP+L2 to be tight. See §5.2.

Figure 4: K4 (unsigned), the
only element of T3, the set of
minimal forbidden minors for
treewidth ≤ 2. T3 = U3,
the set of forbidden minors for
LP+L3 to be tight. See §5.2.

(a) K5 (b) Octahedral graph

(c) Wagner graph (d) Pentagonal prism graph

Figure 5: The four members of T4, the set of minimal forbidden
minors (unsigned) for treewidth ≤ 3. We show the new result
that T4 6= U4, in fact T4 ∩ U4 = {K5}, where U4 is the set of
forbidden minors for LP+L4 to be tight. See §5.2.

acterized by a finite set of minimal forbidden minors.

We shall often be interested in the set of potentials Σ̃ :=
{c ∈ RV ∪E | sign(ce) = Σ(e) ∀e ∈ E} that are consistent
with a given signing Σ of the graph G. We say that the
polytope Lr(G) is tight for a signing Σ if LP+Lr is tight
for all potentials in the set Σ̃ ⊂ RV ∪E .

The property of a signed graph (G,Σ) that Lr(G) is tight
for the signing Σ is also minor-closed (Weller, 2016a),
hence can also be characterized by forbidden minimal
signed minors.

Recalling the notation introduced in §1.1: for unsigned
graphs, we call the respective sets of minimal forbidden
minors Tr (for treewidth ≤ r− 1) and Ur (for LP tightness
over Lr); for signed graphs, U ′r is the set of minimal for-
bidden signed minors for tightness of LP+Lr. It is known
(Weller, 2016a) that in fact, Tr = Ur for r = 2, 3, and that
U ′r is exactly the set of odd signings (i.e. signings where
all edges of the graph are odd/repulsive) of the graphs of
Tr for r = 2, 3. We shall show in §5.3 that both of these
relationships break down for r = 4.

The sets T2, T3 and T4 are shown in Figures 3 to 5, whilst
the sets U ′2 and U ′3 are shown in Figures 6 and 7.
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Figure 6: Odd-K3, the unique
element of U ′

2, the set of min-
imal forbidden signed minors
for tightness of L2(G). Red
dashed edges represent repul-
sive edges. See §5.2.

Figure 7: Odd-K4, the unique
element of U ′

3, the set of min-
imal forbidden signed minors
for tightness of L3(G). Red
dashed edges represent repul-
sive edges. See §5.2.

5.3 Identifying Forbidden Signed Minors

L4(G) is tight for a potential c ∈ RV ∪E if and only if

max
q∈L4(G)

〈c, q〉 = max
x∈M(G)

〈c, x〉 , (12)

or equivalently if

max
q∈L4(G)

min
x∈M(G)

[〈c, q〉 − 〈c, x〉] = 0 . (13)

Since M(G) ⊆ L4(G), we have maxq∈L4(G) 〈c, q〉 ≥
maxx∈M(G) 〈c, x〉 ∀c ∈ RV ∪E . Hence, it follows that
L4(G) is not tight for some potential c ∈ Σ̃ (the set of
potentials respecting a signing Σ of G, see §5.2) iff the fol-
lowing optimization problem has a non-zero optimum:

max
c∈Σ̃

max
q∈L4(G)

min
x∈M(G)

[〈c, q〉 − 〈c, x〉] . (14)

For the graphs in T4, this is a high-dimensional indefi-
nite quadratic program which is intractable to solve. How-
ever, using the geometric ideas of §4, we may decompose
this problem into a sequence of tractable linear programs.
This process involves computing vertex representations (V-
representations) for a variety of polytopes using the ideas
of §4, and computing the orbits of the set of signings of G
under the natural action of the group described in §4.2.3,
see the Supplement §11 for full details. Solving these lin-
ear programs then allows the exact set of non-tight signings
of the graphs in Figure 5 to be identified; see Figure 8.

Theorem 12. The only non-tight signing for L4 of any min-
imal forbidden minor for treewidth ≤ 3 is the odd-K5.

5.4 Discussion: Other Forbidden Minors

Previous work showed that tightness for all valid poten-
tials of LP+L2 may be characterized exactly by forbidding
just an odd-K3 as signed minor, and that a similar result
for LP+L3 holds by forbidding just an odd-K4 (Weller,
2016a). These are precisely the odd versions of the forbid-
den minors for the respective treewidth conditions.

A natural conjecture for L4 was that one must forbid just
some signings of the four graphs in T4, see Figure 5. Now
given Theorem 12, it would seem sensible to wonder if

Figure 8: Odd-K5, the unique signing of an element of T4, the
set of minimal forbidden unsigned minors for treewidth ≤ 3, that
appears in U ′

4, the set of minimal forbidden signed minors for
L4(G), as shown by our new Theorem 12. It was previously
known that for Lr, r ≤ 3, the minimal forbidden signed minors
for LP-tightness are exactly the odd versions of the minimal for-
bidden unsigned minors for treewidth ≤ r − 1. We believe there
must be at least one other forbidden minor for tightness of L4, see
§5.4. Red dashed edges represent repulsive edges.

LP+L4 is tight for all valid potentials iff a model’s graph
does not contain an odd-K5?

However, this must be false (unless P=NP), since if it were
true: We would have LP+L4 is tight for any model not
containing K5 (as an unsigned minor). It is well-known
that planar graphs are those without K5 or K3,3 as a minor
(K3,3 is the complete bipartite graph where each partition
has 3 vertices), i.e. a subclass of graphs which are K5-free.
Hence, we would have a polytime method to solve MAP
inference for any planar binary pairwise model. Yet it is
not hard to see that we may encode minimal vertex cover in
such a model, and it is known that planar minimum vertex
cover is NP-hard (Lichtenstein, 1982).

We have not yet been able to identify any other minimal
forbidden minor for tightness of LP+L4, but note that one
natural candidate is some signing of a k × k grid of suffi-
cient size, since this is planar with treewidth k.

6 CONCLUSION

LP relaxations are widely used for the fundamental task of
MAP inference for graphical models. Considering binary
pairwise models, we have provided important theoretical
results on when various relaxations are guaranteed to be
tight, which guarantees that in practice, an exact solution
can be found efficiently.

A key result focuses on the connection between tightness
of LP relaxations of a model and the treewidth of its graph.
For the first two levels of the Sherali-Adams hierarchy, that
is for the pairwise and triplet relaxations, it was known that
the characterizations are essentially identical. However, we
have shown that this pattern does not hold for the next level
in the hierarchy, that is for the quadruplet polytope L4.

We refined this result by considering the signed graph of a
model and its signed minors. To derive these results we in-
troduced geometric methods which may be of independent
interest.
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APPENDIX: SUPPLEMENTARY MATERIAL
Conditions Beyond Treewidth for Tightness of Higher-order LP Relaxations

In this Appendix, we provide the following.

• §7 Geometric Proofs of Results for L2

• §8 Group-theoretic Results from §4.2

• §9 Proof of the Marginals Extension Result for L3

• §10 Proof of Theorem 3 for Ls3
• §11 Identifying Non-tight Signings of T4, Treewidth 3 Forbidden Minors

7 Geometric Proofs of Results for L2

In this section, we give proofs of Lemmas 7 and 8 using the geometric insights of §4.
Lemma 7. If G = (V,E) is a tree, then L2(G) is tight for any binary pairwise model on G.

Proof. We will show that given arbitrary potentials c ∈ RV ∪E with MAP optimum configuration v ∈ Ext(M(G)), we
have c ∈ NL2(G)(v), from which it immediately follows from the definition of normal cones that v is optimal for c in
L2(G), and hence the result follows.

We first argue that it is sufficient to consider potentials c ∈ RV ∪E such that c ∈ NM(G)(v0), where v0 ∈ {0, 1}V ∪E
is the configuration where every random variable Xv in the graphical model is set to 0. To see this, suppose that c ∈
RV ∪E \NM(G)(v0). Since RV ∪E = ∪v∈Ext(M(G))NM(G)(v), there exists v′ ∈ Ext(M(G)) such that c ∈ NM(G)(v

′). Now
consider a flipping map F (see §4.1) that maps v ∈ M(G) to v0 ∈ M(G), and recall by Lemma 10 that L2(G) is tight for
c iff it is tight for F †v′→v0(c).

We now proceed by induction on the number of vertices n of G. Our method will be to show that c ∈ NL2(G)(v0) by
directly showing that c can be written as a positive linear combination of extremal vectors of NL2(G)(v0). The cases
n = 1, 2 are trivial, as L2(G) = M(G) for such models immediately from the definition of Sherali-Adams polytopes.
For the inductive step, let x ∈ G be a leaf, with neighbor y ∈ G. As x, y are both equal to 0 at the marginal optimum,
there are three tight local constraints (see §10.4.1) corresponding to the pair x, y which are tight at the marginal optimum
v0, namely qxy ≤ qx, qxy ≤ qy , and qxy ≥ 0. By Lemma 5, the outward pointing normal to each hyperplane defined by
these constraints is an extremal vector of the cone NM(G)(v0); using the notation ei to denote a unit vector in the direction
corresponding to coordinate i, we can write the outward pointing normals as exy − ex, exy − ey , and −exy . Note that as
v0 is the optimal configuration, setting either of x and y cannot result in a higher scoring configuration, from which we
obtain θx, θy ≤ 0, and θx + θy +Wxy ≤ 0.

We now consider two cases: i) Wxy ≥ −θx; and ii) Wxy < −θx.

i) If Wxy ≥ −θx, we consider the following conical combination:

−θx(exy − ex) + (Wxy + θx)(exy − ey). (15)

Note that the coefficients of ex and exy exactly match the singleton potential on x and the edge potential y for the model.
We now consider the residual potentials (that is, the model whose potentials are the difference between the potentials
of the original model, and the potentials given by the conical combination of extremal vectors in (15)); it is sufficient
for the residual potentials to have the same optimal marginal vertex for the inductive step to be complete. Note that the
residual potentials are the same for all singletons except x and y; the new potential on x is 0 and the new potential on y is
θx + θy + Wxy . If some other vertex yields a higher score than v0 on this model, it must be the case that y is set to 1 in
this model - else the same vertex would yield a greater score than that of v0 in the original model. But if y is set to 1, the
residual model yields the same score as setting both x and y equal to 1 in the original model. Therefore we deduce that v0

is optimal for the original model, and the inductive step is complete.

ii) If Wxy < −θx, we consider the following conical combination

−θx(exy − ex) + (−Wxy − θx)(−exy). (16)
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Note again that the coefficients of ex and exy exactly match the singleton potential on x and the edge potential y for the
model. The residual potentials have 0 potential for the singleton x and the edge xy, and the original singleton potential
for y. It is immediate that the optimal marginal vertex for the residual potentials is again v0; if any other vertex yielded
a higher score, then by ensuring that the x variable is set 0 in this new configuration, this vertex would yield a higher
score than v0 in the original model, a contradiction. Therefore we deduce that v0 is optimal for the original model, and the
inductive step is complete.

Lemma 8 For an arbitrary graph G, L2(G) is tight for the set of balanced models.

Proof. Let c = ((ci)i∈V , (cij)ij∈E) be a balanced set of potentials on G. We may assume that all edge potentials are
attractive. To see this, partition V into two disjoint sets Va and Vb such that all edges between Va and Vb are repulsive,
whilst all within either Va or Vb are attractive (this is possible as c is assumed balanced). Then flip the the set Va (i.e. apply
the map F †(Va) described in §8 to c). By construction, F †(Va)(c) has all edge potentials attractive, and by Lemma 10, L2(G)

is tight for c iff it is tight for F †(Va)(c).

Let v? be the optimal marginal vertex for c, and partition V into two disjoint sets V0 = {i ∈ V |v?i = 0} and V1 = {i ∈
V |v?i = 1}. Given i ∈ V0 and j ∈ V1, note that the three tight local constraints corresponding to the edge ij are qij ≤ qi,
qij ≥ 0, and qij ≥ qi + qj − 1. In the notation introduced in the proof of Lemma 7, the three extremal vectors contributed
by this edge to the cone NL2(v?) are eij − ei, −eij and ei + ej − eij .

We construct the vector ∑
i∈V0,j∈V1

cij(eij − ei) , (17)

which lies in NL2
(v?), as each vector in the sum is extremal for NL2

(v?), and all coefficients are non-negative by assump-
tion of attractiveness of c. We then consider the model given by the residual potentials c′, which is the vector of potentials
given by taking the difference between the original potentials and the potentials given by the vector in (17) above:

c′i = ci +
∑
j∈V1

cij for i ∈ V0 , c′ij = 0 for i ∈ V0, j ∈ V1 , (18)

with all other components of c′ equal to the corresponding components of c . It is sufficent to show that i) the residual
model has the same optimal vertex v? as the model given by c, and ii) that the residual potentials can be written as the
conical combination of extremal vectors in NL2(v?).

We begin with i). Let v′ be the new optimal marginal vertex for the residual model. We further refine our partition
V = V0 ∪ V1 by defining

V0→0 = {i ∈ V |v?i = 0, v′i = 0} , V0→1 = {i ∈ V |v?i = 0, v′i = 1} , (19)
V1→0 = {i ∈ V |v?i = 1, v′i = 0} , V1→1 = {i ∈ V |v?i = 1, v′i = 1} . (20)

If V0→1 = V1→0 = ∅, we are done as v? = v′. Further, if V0→1 = ∅, then the score of v′ for c′ is the same as that for c,
and it immediately follows that v? is optimal for c′ too. Also if V1→0 = ∅, it is also the case that the score of v′ for c′ is the
same as for c, so again it follows that v? is optimal for c′. Thus we may assume that both V1→0 and V0→1 are non-empty.

We introduce the following notation: ΘA =
∑
i∈A ci +

∑
i,j∈A

distinct
cij , WA,B =

∑
i∈A,j∈Bdistinct cij , for disjoint subsets

A,B ⊂ V .

The score achieved by v′ for the residual potentials c′ is as follows, where we use the Θ and W notation as above to mean
the application of the original potential c, not the new potential c′:

〈c′, v′〉 = ΘV0→1 +WV0→1,V1 + ΘV1→1 . (21)

Since v′ is optimal for c′, it must have a higher score than the marginal vertex ṽ given by setting all variables in the set
V1 ∪ V0→1 equal to 1, and all others 0. Thus, we obtain

〈c′, ṽ〉 = ΘV0→1
+WV0→1,V1

+ ΘV1→1
+ ΘV1→0

+WV1→0,V1→1
≤ 〈c′, v′〉 . (22)
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By combining (21) and (22), it follows that

ΘV1→0
+WV1→0,V1→1

≤ 0 . (23)

We now define the marginal vertex v̄ as having all variables in V1→1 set to 1, and all others set to 0.

By examining the scores of v? and v̄ for the original potentials c, and recalling that v? is optimal for c, we obtain

ΘV1→1 = 〈c, v̄〉 ≤ 〈c, v?〉 = ΘV1→1 + ΘV1→0 +WV1→0,V1→1 . (24)

By combining (23) and (24), we note that it must be the case that ΘV1→0 +WV1→0,V1→1 = 0. But now we have

〈c′, v′〉 = 〈c′, ṽ〉 = 〈c, ṽ〉 ≤ 〈c, v?〉 = 〈c′, v?〉 , (25)

from which it follows that v? is optimal (over M(G)) for c′, as required for i).

It now remains to deal with point ii) - demonstrating that the residual potentials c′ can be written as a conical combination
of vectors in NL2(G)(v

?). Consider the graph G′ with vertex set V , with an edge between vertices i, j if and only if
ij ∈ E and cij is non-zero. It suffices to treat each connected component of G′ separately. By verifying i) above, all
edge potentials in a connected component of G′ are attractive, and the optimal marginal vertex has all variables set to the
same value within a connected component. Again, by flipping all variables in a connected component if necessary, we may
assume that their optimal value is 0. We then demonstrate that by considering a particular vector in NL2(G)(v

?), we may
remove an arbitrary edge to obtain a residual model with the same optimal marginal vertex. Applying this iteratively until
the residual model is a spanning tree and applying Lemma 7 then gives the result.

It therefore suffices to take an edge ij ∈ E, and consider the vector α(eij − ei) + β(eij − ej) ∈ NL2(G)(v
?), for some

α, β ≥ 0, so that the residual model has 0 edge potential for the edge ij ∈ E, and so that the optimal marginal vertex for
the model is unchanged. We now demonstrate that such α, β exist.

To ensure that the residual model has 0 edge marginal for the edge ij, we must take β = Wij − α. Therefore, it is no
sufficient to find 0 ≤ α ≤ Wij so that the residual model also has optimal marginal vertex given by taking all random
variables to have value 0. Denoting the potentials for the residual model by c′ = ((c′i)i∈V , (c

′
ij)ij∈E), we note that

c′i = α+ ci , c′j = (Wij − α) + cj , c′ij = 0 (26)

with all other components of c′ equal to the respective component of c. Now note that any configuration of the random
variables in which Xi = Xj has the same score with respect to c′ and with respect to c, meaning that such a configuration
cannot score more highly with respect to c′ than the configuration with all variables set to 0. Now consider a configuration
optimal for c′ subject to Xi = 1 and Xj = 0 (denote by Si the set of indices corresponding to variables set to 1 in this
configuration), and similarly consider a configuration optimal for c′ subject to Xi = 0 and Xj = 1 (denote by Sj the set of
indices corresponding to variables set to 1 in this configuration). It now suffices to show that both of these configurations
have lower score with respect to c′ than the configuration with all variables set to 0 (which has score 0). Therefore, it is
sufficient to find α ≥ 0 such that

α+ ΘSi
≤ 0 , (Wij − α) + ΘSj

≤ 0

Combining these inequalities, it is sufficient to show that Wij + ΘSi
+ ΘSj

≤ 0. Note that (by optimality of the score 0
for c) we have

0 ≥ ΘSi∪Sj = ΘSi + ΘSj −ΘSi∩Sj +W{j} ,Si\Sj
+W{i} ,Sj\Si

+WSi\Sj ,Sj\Si
+Wij

and so

ΘSi
+ ΘSj

+Wij ≤ ΘSi∩Sj
−W{j} ,Si\Sj

−W{i} ,Sj\Si
−WSi\Sj ,Sj\Si

≤ 0

where the second inequality above follows as each individual term is non-positive. The result then follows as described
above.

8 Group-theoretic Results from §4.2

In this section we provide additional definitions and proofs relating to §4.2. We refer the reader to (Weller et al., 2016) for
further background.
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8.1 Specification of the Maps F †(I)

We give a full specification of the maps F †(I) : RV ∪E → RV ∪E for I ⊆ V :

F(I)((ci)i∈V , (cij)ij∈E)v = −cv −
∑

vj∈E|v 6∈I

cvj v ∈ I , (27)

F(I)((ci)i∈V , (cij)ij∈E)vw = −cvw v ∈ I, w 6∈ I . (28)

with F(I) acting as the identity on all other coordinates. This is the natural form for such a map, as it yields the score-
preserving result of Lemma 10. Note that these maps form a group under the operation of composition; in fact we have
F †(I1) ◦ F

†
(I2) = F †(I1∆I2), where ∆ is the symmetric difference operator.

8.2 Proofs of Lemmas 9 and 10

Lemma 9 Lk(G) is tight for a given potential c ∈ RV ∪E iff it is tight for all potentials Y †σ (c), σ ∈ SV .

Proof. It is sufficient to show that if Lk(G) is tight for c, then given σ ∈ SV , Lk(G) is tight for Y †σ (c). Recalling that Yσ
maps any Sherali-Adams polytope to itself bijectively, we obtain

max
q∈Lk(G)

〈c, q〉 = max
q∈Lk(G)

〈c, Yσ−1q〉 = max
q∈Lk(G)

〈
Y †σ (c), q

〉
,

and

max
q∈M(G)

〈c, q〉 = max
q∈M(G)

〈c, Yσ−1q〉 = max
q∈M(G)

〈
Y †σ (c), q

〉
.

It follows that Lk(G) is not tight for c (i.e. maxq∈Lk(G) 〈c, q〉 > maxq∈M(G) 〈c, q〉) if and only if Y †σ (c) is not tight (i.e.
maxq∈Lk(G)

〈
Y †σ (c), q

〉
> maxq∈M(G)

〈
Y †σ (c), q

〉
).

Lemma 10 Lk(G) is tight for a given potential c ∈ RV ∪E iff it is tight for all potentials F †(I)(c), I ⊆ V .

Proof. It is sufficient to show that if Lk(G) is tight for c, then given I ⊆ V , Lk(G) is tight for F †(I). Recalling that F(I)

maps any Sherali-Adams polytope to itself bijectively, we obtain:〈
F †(I)(c), F(I)(q)

〉
=
∑
i∈I

F †(I)(c)iF(I)(q)i +
∑
i 6∈I

F †(I)(c)iF(I)(q)i+∑
ij∈E|i∈I,j 6∈I

F †(I)(c)ijF(I)(q)ij +
∑

ij∈E|i,j∈I or i,j 6∈I

F †(I)(c)ijF(I)(q)ij

=
∑
i∈I

(−ci −
∑

ij∈E|j 6∈I

cij)(1− qi) +
∑
i 6∈I

ciqi+

∑
ij∈E|i∈I,j 6∈I

−cij(qj − qij) +
∑

ij∈E|i,j∈I or i,j 6∈I

cijqij

=
∑
i∈I

ciqi +
∑
ij∈E

cijqij −
∑
i∈I

ci −
∑

ij∈E|i∈I,j 6∈I

cij

= 〈c, q〉 −
∑
i∈I

ci −
∑

ij∈E|i∈I,j 6∈I

cij

Therefore, q ∈ Lk(G) yields a score for c greater than the optimum over the marginal polytope M(G) iff F(I)(q) yields a
score for F †(I)(c) greater than the optimum over the marginal polytope M(G). From this it follows that Lk(G) is tight for

c iff it is tight for F †(I)(c).
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9 Proof of the Marginals Extension Result for L3

In this section, we provide a proof of the following result.
Theorem 4 If G is a chordal graph, then the polytope given by enforcing TRI constraints on just the triplets of distinct
variables that form 3-cliques in G is equal to L3(G), the polytope given by enforcing constraints on all triplets of distinct
variables in G.

An equivalent definition of chordality is the following.

Definition 13. A graph G = (V,E) is chordal if there exists a perfect elimination ordering for G. That is, if there exists
an ordering v1, . . . , vn of the vertex set V such that the set vi ∪ (NG(vi)∩ {vi+1, . . . , vn}) is a clique for all i = 1, . . . , n,
where NG(v) = {w ∈ V | vw ∈ E} is the neighbor set for vertex v ∈ V .

From this definition, it is straightforward to show the following result, which shows that edges may be added sequentially
to a chordal graph to make it complete without breaking the property of chordality at any point.

Lemma 14. If G = (V,E) is a non-complete chordal graph, then there exist distinct i, j ∈ V such that ij 6∈ E, and the
graph with vertex set V and edge set E ∪ {i, j} is chordal.

Proof. Let v1, . . . , vn be a perfect elimination ordering of the vertex set V forG. Letm be the largest element of {1, . . . , n}
such that the set {vm, . . . , vn} is not a clique. Such an m exists as G is assumed non-complete. We may assume without
loss of generality that {vm, vm+1} 6∈ E: there exists some vertex v ∈ {vm+1, . . . , vn} such that {vm, v} 6∈ E (else
{vm, . . . , vn} would be a clique), and swapping v with vm+1 leads to another valid perfect elimination ordering with the
desired property that {vm, vm+1} 6∈ E.

We now demonstrate that v1, . . . , vn is a perfect elimination ordering for the graph G′ with vertex set V and edge set
E ∪ {vi, vi+1}, which is the original graph G with an added edge {vm, vm+1}, is chordal. For j > m, note that we have
G[vj ∪ (NG(vj) ∩ {vj+1, . . . , vn})] = G′[vj ∪ (NG′(vj) ∩ {vj+1, . . . , vn})], and this subgraph is therefore complete,
meaning that vj ∪ (NG′(vj) ∩ {vj+1, . . . , vn}) is a clique in G′. For j < m, note that NG(vj) = NG′(vj), but since
G[vj ∪ (NG(vj) ∩ {vj+1, . . . , vn})] is complete, it follows that G′[vj ∪ (NG′(vj) ∩ {vj+1, . . . , vn})] is complete too,
and hence vj ∪ (NG′(vj) ∩ {vj+1, . . . , vn}) is a clique in G′. Finally we check that vm ∪ (NG′(vm) ∩ {vm+1, . . . , vn})
is a clique in G′. By construction of m, the set {vm+1, . . . , vn} forms a clique in G and hence in G′. Therefore vm ∪
(NG′(vm)∩ {vm+1, . . . , vn}) is a clique, as it is formed of the clique NG′(vm)∩ {vm+1, . . . , vn} with the addition of the
vertex vm+1, which has been shown to have an edge to every vertex in the set {vm} ∪ {vm+2, . . . , v}.

We now set out a key proposition which we will be able to apply iteratively in combination with Lemma 14 to prove
Theorem 4.

Proposition 15. IfG = (V,E) is a non-complete chordal graph, then given a configuration ((qi)i∈V , (qij)ij∈E) satisfying
all TRI constraints involving 3−cliques in G, there exists an edge e not present in E, and a corresponding pseudomarginal
qe such that: i) G′ = (V,E ∪ {e}) is chordal; ii) the augmented configuration ((qi)i∈V , (qij)ij∈E) satisfies all triplet
constraints enforced on 3-cliques of G′.

Proof. i) This is the statement of Lemma 14.

ii) Lemma 14 can be used to select the additional edge ij to be added to E. We consider the new TRI constraints that
will be enforced by adding this edge; they are exactly those corresponding to triplets of variables made up of i, j, and one
other variable, say k, such that ik ∈ E, jk ∈ E. For such a triplet, the TRI constraints (see §10.4.1) enforce the following
inequalities on the new pseudomarginal qij :

max(qik + qjk − qk, qi + qj + qk − qik − qjk − 1) ≤ qij ≤ min(qi + qjk − qik, qj + qik − qjk) (29)

Therefore each k ∈ K := {v ∈ V |iv, jv ∈ E} enforces an interval Ik of settings for qij which are valid for the TRI
constraints over the triplet i, j, k. Showing that there is an assignment to qij that respects all TRI constraints simultaneously
is equivalent to showing that ∩k∈KIk is non-empty. Since all the Ik are intervals, it suffices to show that their pairwise
intersections are all non-empty. To see this, note that ∩k∈KIk = [maxk inf Ik,min sup Ik], so it is enough that for each
k, l ∈ K, we have inf Ik ≤ sup Il. Therefore, it is sufficient to show that for any k1, k2 ∈ K, the right-hand side of the
inequalities of the form (29) induced by k1 is greater than or equal to the left-hand side of the inequalities of the form (29)
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induced by k2. In particular, it suffices to demonstrate the following four inequalities

qik2 + qjk2 − qk2 ≤qi + qjk1 − qik1 , (30)
qik2 + qjk2 − qk2 ≤qj + qik1 − qjk1 , (31)

qi + qj + qk2 − qik2 − qjk2 − 1 ≤qi + qjk1 − qik1 , (32)
qi + qj + qk2 − qik2 − qjk2 − 1 ≤qj + qik1 − qjk1 . (33)

By symmetry in i and j, it is enough to show Inequalities (30) and (32), since Inequalities (31) and (33) are given by
permuting indices i and j in (30) and (32). Note that since we have {i, k1}, {j, k1}, {i, k2}, {j, k2} ∈ E and {i, j} 6∈ E,
chordality of G implies that {k1, k2} ∈ E. In particular, it follows that all TRI constraints for the triplets i, k1, k2 and
j, k1, k2 are satisfied. By adding the inequalities qi + qk1k2 ≥ qik1 + qik2 and qk2 + qjk1 ≥ qjk2 + qk1k2 , we obtain
Inequality (30). By adding the TRI inequalities qjk1 + qjk2 + qk1k2 ≥ qj + qk1 + qk2 − 1 and qk1 + qik2 ≥ qk1k2 + qik1 ,
we obtain Inequality (32).

A proof of Theorem 4 is now straightforward.

Proof of Theorem 4. We may apply Proposition 15 inductively, to iteratively yield an edge not already in the graph, and a
valid pseudomarginal for that edge, until we have a complete graph.

10 Proof of Theorem 3 for Ls
3

In this section, we provide a proof of the following result.
Theorem 3 Given a graph G = (V,E), the polytope Ls3(G) is tight on the class of almost balanced models with distin-
guished variable s. Further, there are no linear constraints of Ls3(G) that may be removed and yield a polytope which is
tight on this class of potentials.

10.1 Proof of the Second Claim of Theorem 3

We first give a short proof for the second claim of Theorem 3, and then discuss the structure of the proof for the first claim.

Consider the polytope given by enforcing all linear constraints of Ls3(G) except one TRI constraint, say on a triangle sxy.
There are four possible inequalities to remove: a) qsx + qsy + qxy ≥ qs + qx + qy − 1; b) qs + qxy ≥ qsx + qsy; c)
qx + qsy ≥ qsx + qxy; d) qy + qsx ≥ qsy + qxy . In each case, we consider a model with all potentials apart from those
corresponding to the singletons s, x and y and the edges sx, sy, xy set to 0. We set the singleton potentials θs, θx, θy and
edge potentials Wsx,Wsy,Wxy as in the corresponding Figures 9a to 9d. We now show that these potentials are non-tight.

s

x y

sx : −1

xy : −1

sy : −1

(a) θs = θx = θy = 1

s

x y

sx : +1

xy : −1

sy : +1

(b) θs = θx = θy = −1/2

s

x y

sx : +1

xy : +1

sy : −1

(c) θs = θx = θy = −1/2

s

x y

sx : −1

xy : +1

sy : +1

(d) θs = θx = θy = −1/2

Figure 9: Solid blue edges are attractive, dashed red edges are repulsive.

• Inequality a). In this case the MAP score is 1/2, attained by the configuration (Xs, Xx, Xy) = (1, 0, 0). A valid con-
figuration in the polytope given by Ls3(G) without inequality a) is (qs, qx, qy, qsx, qsy, qxy) = (1/2, 1/2, 1/2, 0, 0, 0),
which has score 3/4, demonstrating non-tightness of this polytope.

• Inequality b). In this case the MAP score is 0, attained by the configuration (Xs, Xx, Xy) = (0, 0, 0). A valid configu-
ration in the polytope given by Ls3(G) without inequality b) is (qs, qx, qy, qsx, qsy, qxy) = (1/2, 1/2, 1/2, 1/2, 1/2, 0),
which has score 1/4, demonstrating non-tightness of this polytope.

• Inequality c). In this case the MAP score is 0, attained by the configuration (Xs, Xx, Xy) = (0, 0, 0). A valid configu-
ration in the polytope given by Ls3(G) without inequality b) is (qs, qx, qy, qsx, qsy, qxy) = (1/2, 1/2, 1/2, 1/2, 0, 1/2),
which has score 1/4, demonstrating non-tightness of this polytope.
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• Inequality d). In this case the MAP score is 0, attained by the configuration (Xs, Xx, Xy) = (0, 0, 0). A valid configu-
ration in the polytope given by Ls3(G) without inequality b) is (qs, qx, qy, qsx, qsy, qxy) = (1/2, 1/2, 1/2, 0, 1/2, 1/2),
which has score 1/4, demonstrating non-tightness of this polytope.

10.2 Structure of the Proof for the First Claim of Theorem 3

The structure of the proof of the first claim of Theorem 3 broadly follows that of the proof of Theorem 2, which appears
in (Weller et al., 2016). First note that it is sufficient to prove the result for almost attractive models, since given an almost
balanced model, there exists an element of the flipping group Z|V |2 (see §4.2) that renders the model almost attractive, and
preserves properties of (non-)tightness. Let c = ((θv)v∈V , (We)e∈E) be a set of potentials corresponding to an almost
balanced graphical model with distinguished variable s, so that the probability of a given configuration v ∈ Ext(M(G)) is
proportional to exp(〈c, v〉). Define the function F sLs

3(G) : [0, 1]→ R by

F sLs
3(G)(t) = sup

q∈Ls
3(G)

∣∣
qs=t

〈c, q〉

We will show that F sLs
3(G) is linear, and so its maximal value is attained for t = 0 or t = 1. This shows that a global

maximizer of θ is achieved over Ls3(G) when qs = 0 or qs = 1. But we know that Ls3
∣∣
qs=0

(resp. Ls3
∣∣
qs=1

) is tight wrt
M
∣∣
vs=0

(resp. Mvs=1), since these problems are equivalent to MAP inference problems over G \ {s}, which is balanced,
and regarding the polytopes Ls3

∣∣
qs=0

and Ls3
∣∣
qs=1

as polytopes over this reduced model, they are both equal to L2(G\{s}),
which is tight on balanced models. The result then follows.

10.3 Concavity

Demonstrating the concavity of F sLs
3(G) is straightforward; the proof below is an adaptation of (Weller et al., 2016, Lemma

5).

Lemma 16. F sLs
3(G) is concave.

Proof. Let t1, t2 ∈ [0, 1], and let λ ∈ [0, 1]. Let q?i ∈ arg maxq∈Ls
3|qs=ti

〈θ, q〉 for i = 1, 2, so that we have

F sLs
3(G)(ti) = 〈c, q?i 〉

for i = 1, 2. Let t̃ = λt1 + (1− λ)t2. Then consider q̃ = λq?1 + (1− λ)q?2 . By convexity, q̃ ∈ Ls3|qs=t̃. By linearity of the
score, we have

F sLs
3(G)(t̃) ≥ 〈c, q̃〉 = λ 〈c, q?1〉+ (1− λ) 〈c, q?2〉 = λF sLs

3(G)(t1) + (1− λ)F sLs
3(G)(t2)

which demonstrates concavity.

10.4 Convexity

We now prove that F sLs
3(G) is convex. To do this, we show that elements of the set arg maxq∈Ls

3|qs=x
〈θ, q〉 must have very

specific structural properties. We begin by introducing the structural properties that will be relevant.

10.4.1 Local and Triplet Inequalities

We describe the explicit form of the local inequalities (the pairwise inequalities each involving two variables sharing an
edge, describing the polytope L2(G)) and the triplet inequalities (which together with the local inequalities describe the
polytope L3(G)).

From the definition of the polytope L2(G) (see Definition 1), we need to ensure that for each pair of distinct vertices
i, j ∈ V , there exists a valid joint distribution over the variables Xi and Xj . Recalling that qij represents the probability
P(Xi = 1, Xj = 1) and qi (respectively qj) represent P(Xi = 1) (respectively P(Xj = 1)), we have the following
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parametrization for the atomic events associated with Xi and Xj :

P(Xi = 1, Xj = 1) = qij ,

P(Xi = 0, Xj = 1) = qj − qij ,
P(Xi = 1, Xj = 0) = qi − qij ,
P(Xi = 1, Xj = 1) = 1− qi − qj + qij .

By the form of our parametrization these quantities sum to 1, so it is sufficient to enforce that they are all non-negative
to ensure that the parameters qi, qj , and qij correspond to a valid distribution. Enforcing these non-negativity constraints
yields the linear constraints of the polytope L2(G):

max(0, qi + qj − 1) ≤ qij ≤ min(qi, qj) ∀i, j ∈ V .n (34)

The additional constraints needed to describe the polytope L3(G) can be derived in the same way; we now need to
ensure that for every triplet of distinct indices i, j, k ∈ V , there exists a joint distribution over Xi, Xj , Xk such that
qi, qj , qk, qij , qik, qjk are marginals of this distribution. The atomic events associated with this distribution over 3 variables
can be expressed in terms of these 6 parameters and one additional parameter α, which will represent the probability of all
three variables taking the value 1. We then have

P(Xi = 1, Xj = 1, Xk = 1) = α , P(Xi = 1, Xj = 0, Xk = 0) = qi − qij − qik + α

P(Xi = 0, Xj = 1, Xk = 1) = qjk − α , P(Xi = 0, Xj = 1, Xk = 0) = qj − qij − qjk + α

P(Xi = 1, Xj = 0, Xk = 1) = qik − α , P(Xi = 0, Xj = 0, Xk = 1) = qk − qik − qjk + α

P(Xi = 1, Xj = 1, Xk = 0) = qij − α , P(Xi = 0, Xj = 0, Xk = 0) = 1− qi − qj − qk + qij + qik + qjk − α

Again, by construction of the parametrization these eight quantities sum to 1, so we just need enforce non-negativity of
each entry to ensure that they describe a valid joint distribution. This gives rise to eight inequalities; performing Fourier-
Motzkin elimination of the variable α in these inequalities then yields the local inequalities derived above for each pair of
vertices (i, j and i, k and j, k), as well as four additional triplet inequalities involving all three vertices:

qi + qjk ≥ qij + qik

qj + qik ≥ qij + qjk

qk + qij ≥ qik + qjk

qij + qik + qjk ≥ qi + qj + qk − 1 (35)
(36)

We refer to these inequalities as the triplet (or TRI) inequalities. The polytope L3(G) is obtained by enforcing the local
constraints (34) for each pair of distinct vertices in V , and the TRI inequalities (35) for each triplet of distinct vertices in
V . To obtain the polytope Ls3(G) (see §3 for definition), we enforce the local constraints for each pair of distinct vertices
of vertices in V , and the TRI inequalities for each triplet of distinct vertices in V which includesp the variable s.

10.4.2 Strong and Locking Edges

Given q = ((qi)i∈V , (qij)ij∈E) ∈ Ls3(G), we say that edge ij is strong if a local constraint is tight for vertices i and j , so
that qij = min(qi, qj) or qij = max(0, qi + qj − 1); in the case of the former, we say that edge ij is strong up, and in the
case of the latter, strong down. We say that a cycle i1i2, . . . , imi1 in G is strong frustrated if all edges are strong, and there
are an odd number of strong down edges. We say that variables i and j are locking up (or locked up) if qi = qj = qij , and
that variables i and j are locking down (or locked down) if qi = 1− qj , and qij = 0.

10.4.3 Main Structural Result for Optimal Vertices of the Polytope Ls3|qs=x

With these definitions in hand, we will demonstrate the following:

Theorem 17. Any element of arg maxq∈Ls
3|qs=x

〈c, q〉 must have all singleton marginals in the set {0, x, 1 − x, 1}, any
edges between variables with singleton marginals in the set {x, 1− x} must be locking, and there are no strong frustrated
cycles in the configuration.
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With Theorem 17, we can then deduce convexity of F sLs
3(G) immediately by using the argument in (Weller et al., 2016,

§14). Namely, we may write

F sLs
3(G)(t) = sup

y∈[0,1]

〈c, q(t|y)〉 , (37)

where q(·|y) : [0, 1] → Ls3(G) is defined as follows. Let q? be optimal for c in Ls3|qs=y . By Theorem 17, the sets
Ay = {j : q?j = 0}, By = {j : q?j = y}, Cy = {j : q?j = 1− y} and Dy = {j : q?j = 1} exhaustively partition the set V .
Now define the components of q(·|y) as follows:

qj(t|y) =


0 j ∈ Ay
t j ∈ By
1− t j ∈ Cy
1 j ∈ Dy

, qij(t|y) =



0 i ∈ Ay or j ∈ Ay
qi j ∈ Dy

qj i ∈ Dj

t i, j ∈ By
1− t i, j ∈ Cy
0 i ∈ By and j ∈ Cy; or i ∈ Cy and j ∈ By.

Note that q(t|y) ∈ Ls3(G) for all t ∈ [0, 1] since all edges of q(t|y) are locking and there are no frustrated cycles. From
Equation (37), note that F sLs

3(G) is a supremum of linear functions, and is therefore convex.

We thus turn our attention to proving Theorem 17.

10.5 Structure and Locking Edges

We work up to proving Theorem 17 via several intermediate results. We first prove a structural result on the optimal vertices
of the polytope Ls3|qs=x for the potential c, assuming no locking edges or singletons equal to 0 or 1 at the extremal vertex.
These assumptions will be relaxed to obtain a more general result, Proposition 23, by using an argument that shows if an
optimal vertex has locking edges, these can be safely “contracted away” for the sake of analysis, and the results proven for
reduced models with no locking edges apply, which may then be “expanded” back up to the full model.

10.5.1 Structure for Models with No Locking Edges at Optimal Vertices

We state and prove two key structural results for models such that optimal vertices contain no locking edges.
Proposition 18. Suppose q ∈ arg maxq∈Ls

3|qs=x
〈c, q〉 is extremal, and moreover suppose there are no locking edges in q,

and no singleton marginals equal to 0 or 1. Then all edges involving s are weak.

Proof. Suppose the conclusion does not hold; let q be such that not all edges involving s are weak. Since we assume no
locking edges, any variable v ∈ V \ {s} such that sv is strong cannot have marginal qv ∈ {x, 1− x}. Then by sections 12
and 13 of Weller et al. (2016), there exists a non-zero perturbation p ∈ RV ∪E (as there is some strong edge involving s),
and is such that any constraints of the polytope L3(G) which are tight at q remain tight at q ± p. Since Ls3(G) is formed
of a subset of the constraints of L3(G), it follows that q + p, q − p ∈ Ls3(G). Further, by construction the perturbation
does not move qs; q is therefore a convex combination of two other points in Ls3|qs=x, and is therefore not extremal in this
polytope.

Proposition 19. Suppose q ∈ arg maxq∈Ls
3|qs=x

〈c, q〉 is extremal, and moreover suppose there are no locking edges in q,
and no singleton marginals equal to 0 or 1. Then it can only be the case that the graph underlying the model consists of the
single vertex s.

Proof. Suppose not. By Proposition 18, all edges of q involving s are weak. There are therefore no strong down edges in
q; as all edge potentials away from s are attractive, if an edge ab away from s is strong down, it must be because it is being
held down by a TRI constraint (involving s); without loss of generality, we have qa + qsb = qab + qas. If qas is strong
down and equal to 0, then we have qa = qas − qsb ≥ qas ≥ qa, and so we deduce that qas = qa and qsb = 0, contradicting
the fact that there are no strong down edges in q. A contradiction may similarly be reached in the case where qas is strong
down and equal to qa + qs − 1.

Therefore, as argued in Section 14 of Weller et al. (2016), the following perturbation p is such that all TRI constraints which
are tight at q remain tight at q ± εp, for sufficiently small ε > 0 and therefore q ± εp ∈ Ls3(G), yielding a contradiction
unless the underlying model is a single variable s.
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pv =

{
ps = 0 v = s

pv = +1 v ∈ V \ {s}
, puv =

{
+ 1

2 uv edge, with u = s

+1 uv edge, with u, v ∈ V \ {s} .

10.5.2 Structural Results Concerning Locking Edges

With these results in hand, we now relax the assumptions of having no locking edges in the arg max configuration q. To do
this, we first demonstrate that the relation on the set of variables defined by i ∼ j if the edge ij is locking (and prescribing
that i ∼ i ∀i ∈ V ) is an equivalence relation, and use this to show that these locking components can, in some sense,
be shrunk down to a single variable for the purposes of understanding the behavior of the arg max. Reflexivity of ∼ is
included in the definition, and symmetry is immediate. It remains to show transitivity. We provide a full proof of this result
as Lemma 22, first giving intermediate results in Lemmas 20 and 21.

Our first result deals specifically with locked up edges.

Lemma 20. Locking up is a transitive relation on the set of vertices of the graph.

Proof. Suppose a ∼ b and b ∼ c. Consider the triangle sab. TRI inequalities imply that qsa = qsb. Similarly, TRI
inequalities in sbc imply that qsb = qsc. Note that ac is locked up iff qac = qa. Suppose this does not hold. Since the
potential associated to edge ac is attractive, either sa or sc is holding ac down in a TRI constraint. By symmetry, suppose
sa is holding down ac. Then

qc + qsa = qsc + qac

=⇒ qa + qsa = qsa + qac

=⇒ qa = qac

and so we deduce that a ∼ c.

We then use the following lemma to deal with locking down edges.

Lemma 21. i) If two variables a, b are locked down, then the edges sa and sb are also locked. ii) For any variables x, y
such that sx and sy are both locked, then xy is locked too.

Proof. For i), let qb = 1 − qa, and qab = 0. Since ab is attractive, this edge is being held down by some TRI inequality
in the triangle sab. Without loss of generality, qa + qsb = qsa + qab, so qa + qsb = qsa, so qa = qsa and qsb = 0. Now
consider the following TRI inequality:

qsa + qsb + qab ≥ qs + qa + qb − 1

=⇒ qa + 0 + 0 ≥ qs + qa + (1− qa)− 1

=⇒ qa ≥ qs

But qsa = qa, so qa ≤ qs, so qs = qa, and so sa is locked up, and sb is locked down.

For ii), we show that any two variables locking to s lock with one another. Suppose x, y are locked to s. By flipping s if
necessary, we need not deal with the case where x and y are both locked up with s.

Consider the case where sx is locked up, and sy is locked down. Then consider the TRI inequality qx + qsy ≥ qsx + qxy .
Substituting our values in , this gives qx + 0 ≥ qx + qxy . So qxy = 0, and so qxy is locking down.

Now consider the case where sx and sy are locked down. Consider the following TRI inequality

qsx + qsy + qxy ≥ qs + qx + qy − 1

=⇒ qxy ≥ s+ (1− qs) + (1− qs)− 1

=⇒ qxy ≥ 1− qs

But qxy ≤ min(qx, qy) = 1− qs, so qxy = 1− qs and xy is locked up.
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Finally, the results above are combined to provide a full proof of transitivity.

Lemma 22. Locking is an equivalence relation on the set of vertices of the graph.

Proof. Let a ∼ b, b ∼ c; we aim to show that a ∼ c. If ab is locked up and bc is locked up, then Lemma20 applies
immediately to give a ∼ c. If both ab and ac are locked down, then we have from Lemma 21 i) that sa, sb, sc are all
locked, and by applying Lemma 21 ii) to sa and sc, we deduce that a ∼ c. Finally, if ab is locked down and bc is locked
up, Lemma 21 i) applies to give either that sa is locked down and sb is locked up, or that sa is locked up and sb is locked
down. In the case of the former, note that sb and bc are locked up, so sc is locked up by Lemma 20, and so ac is locked
up by Lemma 21 ii). In the case of the latter, we consider the TRI inequality qc + qsb ≥ qsc + qbc, and deduce that sc is
locked, and so by Lemma 21 ii), ac is locked. This completes the proof.

10.5.3 Proof of Main Structural Result

The results of §10.5.1 and §10.5.2 are now combined to yield the main structural result needed to deduce Theorem 17

Proposition 23. Suppose q ∈ arg maxq∈Ls
3|qs=x

〈θ, q〉 is extremal. Then all singleton marginals lie in the set {0, x, 1 −
x, 1}, and all variables lie in a single locking component.

Proof. We first may eliminate any variables with 0, 1 singleton marginals. We then consider the equivalence classes
of variables induced by the equivalence relation of having a locking edge, and then consider the submodel induced by
selecting one representative from each equivalence class. We apply Propositions 18 and 19 to obtain a perturbation for
this reduced model, and show that this perturbation can be “expanded” to the original model, so that the conclusions of
the proposition hold. The perturbation is expanded by specifying that if a variable a is locked up to its representative,
it moves in the same direction as the representative, whilst if it is locked down, it moves in the opposite direction to its
representative. Note that as all locking components contain no frustrated cycles, it follows that if two variables are locked
up they are perturbed in the same direction, whilst if they are locked down, they move in opposite directions. Strong edges
are re-optimized, weak edges do not move. It will then follow that the conclusion of Proposition 19 holds for the reduced
model, and so the expanded model must have a single locking component, and the conclusion of the proposition follows.

To be precise, we need to verify the following:

1. If the TRI inequalities corresponding to a triangle sab are satisfied under the perturbation, and b is locked to b′, then
the TRI inequalities associated with the triangle sab′ are also satisfied under the perturbation.

2. If the LOC constraints corresponding to a and b are satisfied under the perturbation, and b′ is locked (either up or
down) to b, then the LOC constraints corresponding to a and b′ are satisfied under the perturbation.

We deal with these in turn:

Firstly, let s, a, b, b′ be as mentioned in i) above, and assume b and b′ are locked up - see Figure 10.

s

a
b

b′

qsa

qab

qsb

qab′ = qab
qb

qsb′ = qsb

Figure 10: One case to consider from point 1. above.

Consider the triangle sbb′. By considering the inequalities qb + qsb′ ≥ qsb + qbb′ and qb′ + qsb ≥ qsb′ + qbb′ , we deduce
that qsb = qsb′ . We can also deduce that qab = qab′ ; if they are not both strong up (which would allow us to deduce that
they are equal), then one of them is held down by a TRI constraint. However, since all singleton and edge marginals in
triangles sab and sab′ match (apart from maybe qab and qab′ ), they must be held to the same value by their respective TRI
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constraints, and are hence equal. Therefore, since b′ is specified to move with b, the edges sb′ and ab′ move with sb and ab
respectively, and so any tight TRI constraint in sab′ remains tight under the perturbation.

Now consider the case where b and b′ are locked down. By Lemma 21, b and b′ are both locked to s - one is locked up,
one locked down. By flipping s, we may assume that sb is locked down, and sb′ is locked up. We may assume a is not
locking with s or b - if it were, then all singleton and edge marginals would be fixed under the perturbation, and so any TRI
inequalities would trivially be preserved.

s

a
b

b′

qsa = qa − qab

qab = qb

qsb = 0

qab′ = qab
qbb′ = 0

qsb′ = qs

Figure 11: Solid blue edges are attractive, dashed red edges are repulsive.

Now sab has a single locking edge, from this it follows that there are two tight TRI constraints, namely qa+qsb = qsa+qab,
and qsa + qsb + qab = qs + qa + qb − 1. This leads to qsa = qa − qab. Considering sab′, again two TRI constraints must
be tight, namely qa + qsb′ = qsa + ab′ and qsa + q′sb + q′ab = qs + qa + q′b − 1, which leads to q′ab = qsa. Now note that
the perturbation moves exactly the same set of singleton and edge marginals in sab as it does in sab′ (b, b′ are both locked
to s so don’t move), and the same TRI constraints are tight in each triangle. Therefore, the fact that all TRI constraints in
sab are satisfied under the perturbation implies the same is true for sab′, as required.

Now consider a, b, b′ as mentioned in ii) above. The case where one of these variables is s is dealt with the argument for
i). When none of the variables are s, this point is in fact also dealt with by the argument for i) - we have shown above that
if the perturbation respects TRI constraints for sab, then it respects TRI constraints for sab′. But TRI constraints being
respected for sab′ implies that LOC constraints are respected for ab′, so we are done.

Theorem 17 then follows from Proposition 23, from which in turn the linearity of F sLs
3(G) follows from the discussion in

§10.4.3, and hence Theorem 3 follows.

11 Identifying Non-tight Signings of T4, Treewidth 3 Forbidden Minors

We provide a proof of the following result from §5.
Theorem 12 The only non-tight signing for L4 of any minimal forbidden minor for treewidth ≤ 3 is the odd-K5.

Recall from §5 that for a given signed graph (G,Σ), L4(G) is tight for all signings of G with signed topology Σ iff the
following problem has optimal value 0:

max
c∈Σ̃

max
q∈L4(G)

min
x∈M(G)

[〈c, q〉 − 〈c, x〉] (38)

11.1 Linearizing the Problem

We first convert this indefinite quadratic program over a conic region to an optimization problem over a polytope, by
intersecting the feasible region with some convex polytope containing the origin in its interior:

Lemma 24. Problem (38) has a non-zero optimum iff

max
c∈Σ̃∩P

max
q∈L4(G)

min
x∈M(G)

[〈c, q〉 − 〈c, x〉] (39)

has a non-zero optimum, where P is any polytope containing the origin in its interior.
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Proof. Since Σ̃∩ P ⊆ Σ̃, if (39) has a non-zero optimum then so does (38). For the opposite direction, suppose (38) has a
non-zero optimum, so in particular there exist c′ ∈ RV ∪E , q′ ∈ L4(G) and x′ ∈M(G) such that

〈c′, q′〉 − 〈c′, x′〉 > 0

As 0 ∈ int(P ), P contains an open ball around the origin, and so there exists λ > 0 such that λc′ ∈ P . Then note

〈λc′, q′〉 − 〈λc′, x′〉 = λ (〈c′, q′〉 − 〈c′, x′〉) > 0

and so it follows that (39) has a non-zero optimum.

Problem (39) is a non-definite quadratic program, and so is difficult to solve directly. Instead, we convert it into a tractable
number of linear programs, using the geometric constructions introduced in §4, as follows.

Lemma 25. The problem (39) has non-zero optimum iff at least one of the following set of problems has a non-zero
optimum

Pv : max
c∈Σ̃∩P∩NM(G)(v)

max
q∈L4(G)

min
x∈M(G)

[〈c, q〉 − 〈c, x〉] where v iterates over the extremal points of M(G) . (40)

Proof. We have RV ∪E = ∪v∈Ext(M(G))NM(G)(v), as M(G) is a polytope. Therefore if (c, q, v) is optimal for (39), then
it is optimal for Pv , where v ∈ Ext(M(G)) is such that c ∈ NM(G)(v). Conversely, the optimal value for (39) is the
maximum of the optimal values for each problem Pv for v ∈ Ext(M(G)).

Lemma 26. We can remove the optimization over M(G) in each problem (40); that is, the problem Pv is equivalent to

P ′v : max
c∈Σ̃∩P∩NM(G)(v)

max
q∈L4(G)

[〈c, q〉 − 〈c, v〉] . (41)

Proof. Note that

max
c∈Σ̃∩P∩NM(G)(v)

max
q∈L4(G)

min
x∈M(G)

[〈c, q〉 − 〈c, x〉] = max
c∈Σ̃∩P∩NM(G)(v)

[
max

q∈L4(G)
〈c, q〉 − max

x∈M(G)
〈c, x〉

]
.

Now observe for c ∈ NM(G)(v), we have maxx∈M(G) 〈c, x〉 = 〈c, v〉.

The problem P ′v in (41) still has a quadratic objective, but has some particularly nice properties that will allow us to make
progress. Firstly, it is now purely a maximization problem. Secondly, the region of optimization is the direct product of
two polytopes, and the only quadratic terms in the objective are “cross-terms” between variables in these two polytopes.

Lemma 27. An optimum (c?, q?) of P ′v (see (41)) occurs with c? (resp. q?) extremal in Σ̃ ∩ P ∩NM(G)(v) (resp. L4.)

Proof. Let (c?, q?) ∈ Σ̃ ∩ P ∩ NM(G)(v) × L4(G) be optimal for P ′v . Consider the objective of P ′v with q? fixed as a
function of the potential parameter c. The resulting objective is linear in c, and so we can move c? to some extremal point
of Σ̃ ∩ P ∩NM(G)(v) without reducing the score attained with q? fixed. Therefore we may take c? to be extremal. By an
analogous argument holding c? fixed, we may take q? to be extremal.

The above lemma tells us that to establish whether P ′v has a non-zero optimum, it suffices to check whether any of the
following linear programs P ′′v,c have a non-zero optimum:

P ′′v,c : max
q∈L4(G)

[〈c, q〉 − 〈c, x〉] , (42)

for each v ∈ Ext(M(G)), and for each c ∈ Ext(Σ̃ ∩ P ∩NM(G)(v)). Each problem P ′′v,c is a linear program over L4(G),
and is therefore efficiently solvable.

Note that the number of problems P ′′v,c we have to solve scales with the size of the set Ext(Σ̃ ∩ P ∩ NM(G)(v)), and so
for computational reasons it is preferable to select the polytope P containing the origin in its interior so that the polytope
Σ̃ ∩ P ∩NM(G)(v) has as few vertices as possible.
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One way in which to do this is to consider a H-representation for NM(G)(v) as {x ∈ RV ∪E |Ax ≤ 0} (note that as
NM(G)(v) is a cone based at the origin, all halfspaces intersect the origin, so we may conclude that the linear inequalities
defining its H-representation are all of the form A>i x ≤ 0), and consider the vector (−

∑
iAij)j , enforcing the additional

linear constraint that the inner product of all vectors in the convex body with this vector are not too large (say less than or
equal to 1). This ensures that we obtain a polytope with number of vertices equal to the number of unique (up to scalar
multiplication) extremal rays of the cone (plus an additional vertex at the origin).

11.2 Exploiting Symmetries of the Marginal Polytope and Sherali-Adams Relaxations

Whilst we have reduced the problem (39) to finding the greatest optimal value in a set of linear programs (42), we note
that a priori there are a vast number of such LPs that must be solved. Given a graph G = (V,E), there are 2|E| possible
signings of the graph, whilst there are 2|V | vertices of the marginal polytope, and therefore in general many vertices of
Σ̃ ∩ P ∩ NM(v) . Therefore, if possible, we would like to make arguments to reduce the number of linear programs that
must be solved to establish whether (39) has a non-zero optimum or not. Fortunately, the rich symmetry groups associated
with the marginal polytope and Sherali-Adams relaxations, as discussed in §4, allow large computational savings to be
made.

From the remarks in §4, L4(G) is not tight for some potential c ∈ RV ∪E iff it is not tight for F (c) for any F ∈ SV oZ|V |2 ,
the symmetry group of the Sherali-Adams polytope. Note that as well as acting naturally on the space of potentials, the
symmetry group SV o Z|V |2 of the polytope L4(G) also acts naturally on the set of signings of G. From this, we deduce
that a given signing Σ of G is non-tight iff F (Σ) is non-tight for any (all) F ∈ SV o Z|V |2 . Therefore it suffices to check
the optimal value of Problem (42) only for one representative signing of G in each orbit under the action of SV o Z|V |2 .

Finally, since we have an explicit H-representation of the polytope Σ̃ ∩ P ∩ NM(v), we can find a V-representation (i.e.
an exhaustive collection of extremal points), and hence recover a list of all LPs of the form of Problem (42) that we need
to solve in order to find the optimum of Problem (38). We now detail the results of these calculations for each of the four
graphs G of interest i.e. the four graphs in T4, the minimal forbidden minors for treewidth ≤ 3. The statement of Theorem
12 follows by considering the four minimal forbidden minors for treewidth 3 in turn.

11.3 Forbidden Signed Versions of K5

We initially calculate the orbits of the set of signings of K5 under the action of SV o Z|V |2 , as discussed in §11.2. There
are 7 different orbits of signings of K5 - one representative of each is shown in Figure 12:

(a) (b) (c) (d)

(e) (f) (g)

Figure 12: One representative of each of the 7 orbits of signings of K5 under the action of SV oZ|V |2 . Solid blue edges are
attractive and dashed red edges are repulsive.

The tightness of some classes can be determined by known results:
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• Figure 12g corresponds to balanced signings; it is known that L2(K5) is tight for such potentials, and so it follows
that L4(K5) is too, as L4(G) ⊆ L2(G).

• Figures 12d and 12e are almost balanced, so are tight for L3(K5) (by Weller et al. (2016)) and so are tight for L4(K5)
too, as L4(G) ⊆ L3(G).

Checking the relevant LPs of the form (42) for the remaining signings reveals that the signings shown in Figures 12b, 12c
and 12f are tight with respect to L4(K5), whilst Figure 12a is not. We therefore deduce that the only forbidden signing of
K5 for L4(K5) is that in Figure 12a: the odd-K5.

11.4 Forbidden Signed Versions of the Octahedral Graph

We initially calculate the orbits of the set of signings of the octahedral graphO6 under the action of SV oZ|V |2 , as discussed
in §11.2. There are 14 different orbits of signings of O6 - one representative of each is shown in Figure 13:

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Figure 13: One representative of each of the 14 orbits of signings of O6 under the action of SV o Z|V |2 . Solid blue edges
are attractive and dashed red edges are repulsive.

Checking the relevant LPs of the form (42) for all 14 signings reveals that all signings are tight with respect to L4(O6),
and it immediately follows that L4(O6) is tight for any potentials on O6, and so O6 need not be forbidden as a minor of a
graph G to ensure tightness of L4(G).

11.5 Forbidden Signed Versions of the Wagner Graph

We initially calculate the orbits of the set of signings of the Wagner graph M8 under the action of SV oZ|V |2 , as discussed
in §11.2. There are 8 different orbits of signings of M8 - one representative of each is shown in Figure 14:

Checking the relevant LPs of the form (42) for all 8 signings reveals that all signings are tight with respect to L4(M8), and
it immediately follows that L4(M8) is tight for any potentials on M8, and so M8 need not be forbidden as a minor of a
graph G to ensure tightness of L4(G).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: One representative of each of the 8 orbits of signings of M8 under the action of SV o Z|V |2 . Solid blue edges
are attractive and dashed red edges are repulsive.

11.6 Forbidden Signed Versions of the Pentagonal Prism Graph

We initially calculate the orbits of the set of signings of the pentagonal prism graph Y5 under the action of SV o Z|V |2 , as
discussed in §11.2. There are 8 different orbits of signings of Y5 - one representative of each is shown in Figure 15:

Checking the relevant LPs of the form (42) for all 14 signings reveals that all signings are tight with respect to L4(Y5), and
it immediately follows that L4(Y5) is tight for any potentials on Y5, and so Y5 need not be forbidden as a minor of a graph
G to ensure tightness of L4(G).



Conditions Beyond Treewidth for Tightness of Higher-order LP Relaxations

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15: One representative of each of the 12 orbits of signings of Y5 under the action of SV o Z|V |2 . Solid blue edges
are attractive and dashed red edges are repulsive.
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