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High level overview of our 3 lectures

o 1. Directed and undirected graphical models (today)
@ 2. LP relaxations for MAP inference (Monday)

@ 3. Junction tree algorithm for exact inference, belief propagation,
variational methods for approximate inference (next Friday)

Further reading / viewing:
o Murphy, Machine Learning: a Probabilistic Perspective
o Barber, Bayesian Reasoning and Machine Learning
@ Bishop, Pattern Recognition and Machine Learning
@ Koller and Friedman, Probabilistic Graphical Models
https://www.coursera.org/course/pgm

o Wainwright and Jordan, Graphical Models, Exponential Families,
and Variational Inference


https://www.coursera.org/course/pgm

Key ideas for graphical models

© Represent the world as a collection of random variables
Xi,. .., Xp with joint distribution p(Xi, ..., X,)

@ Learn the distribution from data

@ Perform inference (typically MAP or marginal)



Challenges

© Represent the world as a collection of random variables
Xi,..., Xp with joint distribution p(Xi, ..., Xy)
o How can we compactly describe this joint distribution?
o Directed graphical models (Bayesian networks)
o Undirected graphical models (Markov random fields, factor graphs)

@ Learn the distribution from data

o Maximum likelihood estimation, other methods?
o How much data do we need?
o How much computation does it take?

© Perform inference (typically MAP or marginal)

o Exact inference: Junction Tree Algorithm
o Approximate inference (belief propagation, variational methods...)



How can we compactly describe the joint distribution?

Example: Medical diagnosis

@ Binary variable for each symptom (e.g. “fever’, “cough”, “fast
breathing”, “shaking”, “nausea”, “vomiting")

@ Binary variable for each disease (e.g. “pneumonia”, “flu”,
“common cold”, “bronchitis”, “tuberculosis™)

@ Diagnosis is performed by inference in the model:
p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

@ One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 symptoms



Representing the distribution

@ Naively, we could represent the distribution with a big table of

probabilities for every possible outcome
e How many outcomes are there in QMIR-DT? 24600
@ Learning of the distribution would require a huge amount of data

@ Inference of conditional probabilities, e.g.
p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many values

@ Moreover, gives no way to make predictions with previously unseen
observations

@ We need structure



Structure through independence

o If X1,...,X, are independent, then

p(x1, ..., xn) = p(x1)p(x2) - - - p(xn)

@ For binary variables, probabilities for 2”7 outcomes can be described
by how many parameters?



Structure through independence

o If X1,...,X, are independent, then

p(x1, ..., xn) = p(x1)p(x2) - - - p(xn)

@ For binary variables, probabilities for 2”7 outcomes can be described
by how many parameters? n

@ However, this is not a very useful model — observing a variable X;
cannot influence our predictions of X;

@ Instead: if Xi,..., X, are conditionally independent given Y,
denoted as X; L X_; | Y, then

n

p(y.x1,.-.xn) = p(y) [[ p(xi | ¥)

i=1

@ This is a simple yet powerful model



Example: naive Bayes for classification

@ Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let i€ {1,...,n} index the words in our vocabulary
e X; =1 if word i appears in an e-mail, and 0 otherwise
o E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Suppose that the words are conditionally independent given Y
Then,

p(y:xi,. . xa) = p(y) [T (i | ¥)
i=1

Easy to learn the model with maximum likelihood. Predict with:

p(Y =DII, p(xi | Y =1)
Zy:{o,l} p(Y =y) [T p(xi | Y =)

@ Is conditional independence a reasonable assumption?

p(Y=1|x1,...xp) =
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@ Is conditional independence a reasonable assumption?

p(Y=1|x1,...xp) =

@ A model may be “wrong” but still useful



Directed graphical models = Bayesian networks

o A Bayesian network is specified by a directed acyclic graph
DAG= (V, E) with:
O One node i € V for each random variable X;
@ One conditional probability distribution (CPD) per node,
p(xi | xpa(i)), specifying the variable’s probability conditioned on its
parents’ values
@ The DAG corresponds 1-1 with a particular factorization of the
joint distribution:

p(xa, ... x Hle|xPa
ieVv

Markov chain: @-—)@—@ Example binary events:

x = president says war

slomap=ploiplplelpisle)  ro oo

! _‘
@‘ @_@ plz yA::M:p:ry
e ¢l 2]y ( | ) p(-y_s) ( | )



Bayesian networks are generative models

naive Bayes
Label

Features

@ Evidence is denoted by shading in a node

@ Can interpret Bayesian network as a generative process. For
example, to generate an e-mail, we

© Decide whether it is spam or not spam, by samping y ~ p(Y)
@ For each word i =1 to n, sample x; ~ p(X; | Y = y)
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Bayesian network structure = conditional independencies

@ Generalizing earlier example, can show that a variable is
independent from its non-descendants given its parents

s
e Common parent — fixing B decouples A and C > o

tail to tail
@ Cascade — knowing B decouples A and C
head to tail
4 > @ >
D5

@ V-structure — Knowing C couples A and B

o This important phenomona is called explaining away
p(A, B, C) = p(A)p(B)p(C | A, B) head to head
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D-separation ( “directed separation”) in Bayesian networks

@ Bayes Ball Algorithm to determine whether X L Z | Y by looking
at graph d-separation
@ Look to see if there is active path between X and Z when
variables Y are observed:
Y Y

VAN

)

(a) (b)
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D-separation ( “directed separation”) in Bayesian networks

@ Bayes Ball Algorithm to determine whether X L Z | Y by looking
at graph d-separation

@ Look to see if there is active path between X and Z when
variables Y are observed:

Q\”‘ Q%‘“
(a) (b)
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D-separation ( “directed separation”) in Bayesian networks

Bayes Ball Algorithm to determine whether X L Z | Y by looking
at graph d-separation

Look to see if there is active path between X and Z when
variables Y are observed:

X Y z X Y z
:H\.\%: O—0O—C
=
—_—

(a) (b)

If no such path, then X and Z are d-separated with respect to Y
d-separation reduces statistical independencies (hard) to
connectivity in graphs (easy)

Important because it allows us to quickly prune the Bayesian
network, finding just the relevant variables for answering a query
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D-separation example 1

X4
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D-separation example 2

X
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Example: hidden Markov model (HMM)
Y4 Y2 Y3 Yq s )J
X1 X2 X3 X4 X5 X6
@ Frequently used for speech recognition and part-of-speech tagging
@ Joint distribution factors as:

T

p(y,x) = p(y1)p(xa | y1) [] p(ve | ye-1)p(x: | ye)
t=2

o p(y1) is the initial distribution of the starting state
o p(¥: | yt—1) is the transition probability between hidden states
o p(x: | yt) is the emission probability

@ What are the conditional independencies here?
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@ Joint distribution factors as:

T

p(y,x) = p(y1)p(xa | y1) [] p(ve | ye-1)p(x: | ye)
t=2

o p(y1) is the initial distribution of the starting state
o p(¥: | yt—1) is the transition probability between hidden states
o p(x: | yt) is the emission probability

@ What are the conditional independencies here?
Many, e.g. Yl 1 {Y3, ceey Yﬁ} | Y2
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A Bayesian network specifies the global distribution by a DAG
and local conditional probability distributions (CPDs) for each
node

@ Can interpret as a generative model, where variables are sampled
in topological order

@ Examples: naive Bayes, hidden Markov models (HMMs), latent
Dirichlet allocation

o Conditional independence via d-separation

@ Compute the probability of any assignment by multiplying CPDs

@ Maximum likelihood learning of CPDs is easy (decomposes, can
estimate each CPD separately)

19/26



Undirected graphical models

@ An alternative representation for a joint distribution is an undirected
graphical model

@ As for directed models, we have one node for each random variable

@ Rather than CPDs, we specify (non-negative) potential functions over
sets of variables associated with cliques C of the graph,

1
P(Xl, cee 7Xn) = ? H ¢c(xc)
ceC
Z is the partition function and normalizes the distribution:

Z= %" [I¢x)

Ry, Rn c€C

@ Like a CPD, ¢.(xc) can be represented as a table, but it is not
normalized

@ Also known as Markov random fields (MRFs) or Markov networks
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Undirected graphical models

p(X1,. .., %Xn) = % H oc(xc), Z= Z H Pe(Re)

ceC X1,...,%0 c€C

Simple example (each edge potential function encourages its variables to take
the same value):

c c
opclbe)= (¢ |  dacla,c)=0 1

B
¢A.B(ﬂ»b):0 1

e 0| 10| 1 ol 10| 1 0 10 |1

of—o 0 e O

p(a7 b7 C) = %d)A,B(a? b) : d)B,C(b) C) : ¢A,C(a7 C)u
where

Z= Y ¢as(4b) ¢5.c(b,¢) pac(4 €)=2-1000+6-10 = 2060.
3,b,ec{0,1}3
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Markov network structure = conditional independencies

@ Let G be the undirected graph where we have one edge for every
pair of variables that appear together in a potential

e Conditional independence is given by graph separation

Xp

Xa
Xc

@ Xa L Xc | X if there is no path from a € A to ¢ € C after
removing all variables in B

22/26



Markov blanket

@ A set U is a Markov blanket of X if X ¢ U and if U is a minimal
set of nodes such that X L (¥ —{X} —-U)|U

@ In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

@ In other words, X is independent of the rest of the nodes in the
graph given its immediate neighbors

23 /26



Directed and undirected models are different

eExample: l

Directed can‘t do it!
Must be acyclic

Will have at least one
V structure and ball

%

goes through
o |y {us} JENC;
lzl{w,y} :r)_{y]{w,z}
*Example: Undirected can’t do it!
z ﬂ z|y
z| 2 (@ (&
z| 2

&
1> |
®
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Example: Ising model

@ Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem
to his student Ernst Ising

@ Mathematical model of ferromagnetism in statistical mechanics

@ The spin of an atom is influenced by the spins of atoms nearby on the
material:

magnetic moments

> > > > > > >

agnetic

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ If a spin at position i is +1, what is the probability that the spin at
position j is also +17

@ Are there phase transitions where spins go from “disorder” to “order”?

25 /26



Example: Ising model

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ The spin of an atom is influenced by the spins of atoms nearby on the
material:

plxt, -+ xp) = fexp (ZW,JX,XJ ZGX,)

i<j

@ When w;; > 0, adjacent atoms encouraged to have the same spin
(attractive or ferromagnetic); w; ; < 0 encourages X; # X;

@ Node potentials 8; encode the bias of the individual atoms
@ Varying the temperature T makes the distribution more or less spiky
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Supplementary material

Extra slides for questions or further explanation
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@ Suppose we have a simple chain A— B — C — D,
we want to compute p(D)

e p(D) is a set of values, {p(D = d),d € Val(D)}. Algorithm
computes sets of values at a time — an entire distribution

@ The joint distribution factors as
P(A, B, C,D) = p(A)p(B | A)p(C | B)p(D | C)

@ In order to compute p(D), we have to marginalize over A, B, C:

28 /26



How can we perform the sum efficiently?

Our goal is to compute

p(D) =) pla,b,c,D) = p(a)p(b|a)p(c|b)p(D | c)

a,b,c a,b,c

= ZZZ (D | ¢)p(c | b)p(b | a)p(a)

@ We can push the summations inside to obtain:

ZPD|C ZP(C\b Zpbl

(a b)

T1(b)
Let's call 91(A, B) = P(A)P(B|A). Then, (B) =>_,v1(a, B)
Similarly, let ¢»(B, C) = 1(B)P(C|B). Then, 72(C) = >, ¢1(b, C)

This procedure is dynamic programming: computation is inside out
instead of outside in
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Inference in a chain

Generalizing the previous example, suppose we have a chain
X1 — Xo — --- — X, where each variable has k states

For i =1 up to n— 1, compute (and cache)

p(Xiy1) = ZP(Xi-H | xi)p(x;)

Each update takes k2 time (why?)

The total running time is O(nk?)

In comparison, naively marginalizing over all latent variables has
complexity O(k")

@ We did inference over the joint without ever explicitly constructing it!
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ML learning in Bayesian networks

@ Maximum likelihood learning:  maxg £(6; D), where

06;D) =logp(D;0) = Z log p(x; 0)
xeD

Z Z Z log p(xi | Xpai))

i )’Epa(,-) XE'DA:
Xpa(i) =R pa(i)

@ In Bayesian networks, we have the closed form ML solution:

ML NX" »Xpa(i)

Xi|Xpa(iy R
P Z)?,- NXivxpa(i)

where Ny« is the number of times that the (partial) assignment
Xi, Xpa(i) 1S Observed in the training data

@ We can estimate each CPD independently because the objective
decomposes by variable and parent assignment
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Parameter learning in Markov networks

@ How do we learn the parameters of an Ising model?

1
p(x1, -+ xn) = — exp (Z W; jXiXj + ZH;X:‘)

i<j i
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Bad news for Markov networks

@ The global normalization constant Z(0) kills decomposability:

oML = argmax log H p(x; 0)
o xeD
= arg meaxz (Z log pc(xc; 0) — log Z(H))
xeD c
= argmax (Z Z log ¢C(xc;9)> — |D|log Z(0)
xeD ¢

@ The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

@ Solving for the parameters becomes much more complicated
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