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High level overview of our 3 lectures

@ 2. Directed and undirected graphical models (last Friday)

e 1. LP relaxations for MAP inference (Monday)

@ 3. Junction tree algorithm for exact inference, belief propagation,
variational methods for approximate inference (today)

Further reading / viewing:
o Murphy, Machine Learning: a Probabilistic Perspective
o Barber, Bayesian Reasoning and Machine Learning
@ Bishop, Pattern Recognition and Machine Learning
@ Koller and Friedman, Probabilistic Graphical Models
https://www.coursera.org/course/pgm

o Wainwright and Jordan, Graphical Models, Exponential Families,
and Variational Inference


https://www.coursera.org/course/pgm

Review: directed graphical models = Bayesian networks

o A Bayesian network is specified by a directed acyclic graph
DAG= (V, E) with:
O One node i € V for each random variable X;
@ One conditional probability distribution (CPD) per node,
p(xi | xpa(i)), specifying the variable’s probability conditioned on its
parents’ values
@ The DAG corresponds 1-1 with a particular factorization of the
joint distribution:

p(xa, ... x Hle|xPa
ieVv

Markov chain: @-—)@—@ Example binary events:

x = president says war

slomap=ploiplplelpisle)  ro oo

! _‘
@‘ @_@ plz yA::M:p:ry
e ¢l 2]y ( | ) p(-y_s) ( | )



Review: undirected graphical models = MRFs

@ As for directed models, we have one node for each random variable

@ Rather than CPDs, we specify (non-negative) potential functions over
sets of variables associated with (maximal) cliques C of the graph,

1
p(X17 s 7Xn) = ? H ¢C(XC)
ceC
Z is the partition function and normalizes the distribution:

Z=>" ] %)

X1,..,%, c€C

@ Like a CPD, ¢.(x.) can be represented as a table, but it is not
normalized

@ For both directed and undirected models, the joint probability is the
product of sub-functions of (small) subsets of variables



Directed and undirected models are different
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p(x,y,z) = p(x)p(z)p(y|x, 2)



Directed and undirected models are different

*Example: (w)
¢ ¢
@,

Directed can't do it!
Must be acyclic

Will have at least one
V structure and ball
goes through

e

mﬂy]{w,z} Iﬂy]{w}
w|_z|{:n,y} IXy]{w,z} ]
*Example: Undirected cant do i
T ﬂ z|y

z|y @ I
p(x,y,z) = p(x)p(2)p(y|x, z) =: dc(x,y,2), ¢ = {x,y,2}
p(Xla e aXn) = % Hcec ¢c(xc)



Directed and undirected models are different

*Example: (w)
¢ ¢
@,
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Directed can't do it!
Must be acyclic

Will have at least one
V structure and ball
goes through

With <3 edges,
Undirected can't do it!

;cﬂz[y

z | =z

p(x,y,2) = p(x)p(2)p(y|x; 2) =t ¢c(x,y,2), € = {x,y, 2}

p(X1, ...y Xn) = % [Tecc @c(xc)

What if we double ¢.7
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Undirected graphical models / factor graphs
Z= Z Hﬁﬁc(ic)

1
p(X17 .. ,X,-,) - ? H ¢C(XC)a
ceC R1ye.y%n cEC

Simple example (each edge potential function encourages its variables to take

C

the same value):
dacla,c)=0 1

B C
apla,b)= o | dpclbo)= 4
0| 10 1

e of 10 [ 1 of 10 | 1
(F—©) L

p(37 b7 C) = %¢A7B(av b) : ¢B,C(b7 C) : ¢A7C(aa C)) where

Z= > ¢as(3.h) d5.c(he) dac(se)=2-1000+6-10 = 2060
5,b,e€{0,1}3



Undirected graphical models / factor graphs

p(X1, ..., Xn) = % H dc(xc), Z= Z H be(Re)

ceC R1yeesXn c€C

Simple example (each edge potential function encourages its variables to take
the same value):

C C
bp,c(be)= ¢ 1 dacla,c)= 0 1

B

paplab)= ¢
G ol 10 | 1 of 10 | 1 0] 10| 1
O ORI 1 K B I ) R K

p(a.b,) = 3648(3, ) 66.c(b,)  dac(a,c), where

With the max clique convention, this graph does not imply pairwise
factorization: without further information, we must assume

p(a,b,c) = as,c(a, b, c)



When is inference (relatively) easy?
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Basic idea: marginal inference for a chain

@ Suppose we have a simple chain A— B — C — D, and we want
to compute p(D), a set of values, {p(D = d),d € Val(D)}

@ The joint distribution factorizes as
P(A,B,C,D) = p(A)p(B | A)p(C | B)p(D | C)
@ In order to compute p(D), we have to marginalize over A, B, C:

p(D)=> p(A=a,B=b,C=c,D)

a,b,c



How can we perform the sum efficiently?

Our goal is to compute

p(D)="> p(a,b,c,D) > p(a)p(b | a)p(c | b)p(D | c)

a,b,c a,b,c

= > > > p(Dc)p(c|b)p(b|a)p(a)
c b a

@ We can push the summations inside to obtain:

p(D) = Z;p(D | C)zbjp(c | b) z;p(b | a)p(a)

1(a,b)

71(b) ‘message about b’

Let's call 1)1 (A, B) = P(A)P(B|A). Then, 7(B) =>_,11i(a. B)
Similarly, let ¢» (B, C) = 7 (B)P(C|B). Then, 72(C) =", u1(b. C)

This procedure is dynamic programming: efficient ‘inside out’
computation instead of ‘outside in’



Marginal inference in a chain

@ Generalizing the previous example, suppose we have a chain
X1 — Xo — --- — X, where each variable has k states

@ For i =1 upto n—1, compute (and cache)

p(Xit1) = ZP(X:‘H | xi)p(xi)

@ Each update takes O(k?) time
@ The total running time is O(nk?)

@ In comparison, naively marginalizing over all latent variables has time
complexity O(k™)

@ Great! We performed marginal inference over the joint distribution
without ever explicitly constructing it

10/32



How far can we extend the chain approach?

Can we extend the chain idea to do something similar for:
@ More complex graphs with many branches?
@ Can we get marginals of all variables efficiently?

@ With cycles?

11/32



How far can we extend the chain approach?

Can we extend the chain idea to do something similar for:
@ More complex graphs with many branches?
@ Can we get marginals of all variables efficiently?

@ With cycles?

The junction tree algorithm does all these

@ But it's not magic: in the worst case, the problem is NP-hard
(even to approximate)

@ Junction tree achieves time linear in the number of bags =
maximal cliques, exponential in the treewidth < key point

11/32



Idea: a junction tree, treewidth

@ 8 nodes, all |[maximal clique| =3

@ Form a tree where each maximal
clique or bag becomes a ‘super-node’
@ Key properties:
e Each edge of the original graph is in
some bag
e Each node of the original graph
features in contiguous bags:
running intersection property
o Loosely, this will ensure that local
consistency = global consistency

@ This is called a tree decomposition
(graph theory) or junction tree (ML)

Figure from Wikipedia: Treewidth

@ It has treewidth = max | bag size | — 1
(so a tree has treewidth = 1)

How can we build a junction tree?

12/32



Recipe guaranteed to build a junction tree

© Moralize (if directed)
&)

@ Triangulate

© Identify maximal cliques

© Build a max weight spanning tree

Then we can propagate probabilities: junction tree algorithm

13/32



Moralize

eConverts directed graph into undirected graph
*By moralization, marrying the parents:
1) Connect nodes that have common children
2) Drop the arrow heads to get undlrected

S g
eﬂ 9“@ p(mi; 2
. N

) a)ole ) ol pfatnn) | - v
1L(J: r) (:E],IJ)ILJ(IQ,IJ)QI(IJ,.’ES)L)(IE,.IS,IH) 4 —1

*Note: moralization resolves coupling due to marginalizing

emoral graph is more general (loses some independencies)

e MBS o

o Each v is different based on its arguments, don't get confused
o Ok to put the p(x1) term into either ¥12(x1, x2) or 113(x1, Xx3)

14/32



Triangulate

@ We want to build a tree of maximal cliques = bags
@ Notation here: an oval is a maximal clique,
a rectangle is a separator

*Problem: imagine the following undirected graph

@ A

*Not a Tree!
¢To ensure Junction Tree is a tree (no loops, etc.)

before forming it must first Triangulate moral graph

before finding the cliques...
eTriangulating gives more general graph (like moralization)
*Adds links to get rid of cycles or loops
eTriangulation: Connect nodes in moral graph until

no chordless cycle of 4 or more nodes remains in the graph

Actually, often we enforce a tree, in which case triangulation and other

steps = running intersection property
15/32



Triangulate

® ® G’ﬂ‘@ ® © ®
@ ® ol v @®8e
7 ® O

«Cycle: A closed (simple) path, with no repeated vertices
other than the starting and ending vertices

»Chordless Cycle: a cycle where no two non-adjacent
vertices on the cycle are joined by an edge.
eTriangulated Graph: a graph that contains no chordless
cycle of four or more vertices (aka a Chordal Graph).

16 /32



Triangulation examples

17/32



|dentify maximal cliques, build a max weight spanning tree

o For edge weights, use |separator|
@ For max weight spanning tree, several algorithms e.g. Kruskal's

eStart with unconnected cliques (after triangulation)

CAep>  CBDED

-----------

ACD | BDE | CDF | DEH DFGH FGHI
ACD 2 1 2 1 1 0
BDE = 1 2 1 0
CDF - X 2 1
DEH 2 1
DFGH 3
FGHI =

18/32



We now have a valid junction tree!

We had p(xi,...,%n) = %HC Ye(xc)

Think of our junction tree as composed of maximal cliques ¢ =
bags with 1¢(x.) terms

And separators s with ¢,

(
Write p(x1,...,%5) = Il—[[

x.) terms, initialize all ¢oo(x;) = 1

e(xc)
®s(xs)

Now let the message passing begin!

At every step, we update some . (x.) and ¢.(x.) functions but
1 T ve(xe)

Z HS PL(xs)

@ This is called Hugin propagation, can interpret updates as
reparameterizations ‘'moving score around between functions’

(may be used as a theoretical proof technique)

we always preserve p(xi,...,Xp) =

19/32



Message passing for just 2 maximal cliques (Hugin)

*Send message from each clique to its separators of
what it thinks the submarginal on the separator is.
eNormalize each clique by incoming message
from its separators so it agrees with them

B CBOD v-{45} s-{s} w-{nc}

Ifagree: 5~ ) =0, = p(S) =b,=3 b, -.Donel
Else: Send message Send message Now they
From V to W... FromWto V... Agree...Done!
o.‘s‘ = ZI’ 5wl' O.‘: B Zu' s Ull‘ Zl" h‘wl' = Z\’ .‘{?L)\'
. w Gy O .
W, =—2qp Il_jz—slb = "'Z, W,
W N i * Ty * Vis TV
g by o8
vy =0, Py = Py =9, = Zw sV
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Message passing for a general junction tree

1. Collect 2. Distribute

/7
P o

Then done!
(may need to normalize)

21/32



A different idea: belief propagation (Pearl)

If the initial graph is a tree, inference is simple

If there are cycles, we can form a junction tree of maximal cliques
‘super-nodes’...

Or just pretend the graph is a tree! Pass messages until
convergence (we hope)

This is loopy belief propagation (LBP), an approximate method

Perhaps surprisingly, it is often very accurate (e.g. error correcting
codes, see McEliece, MacKay and Cheng, 1998, Turbo Decoding
as an Instance of Pearl’'s “Belief Propagation” Algorithm)

Prompted much work to try to understand why

First we need some background on variational inference
(you should know: almost all approximate marginal inference
approaches are either variational or sampling methods)
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Variational approach for marginal inference

@ We want to find the true distribution p but this is hard

@ Idea: Approximate p by g for which computation is easy, with g
‘close’ to p

@ How should we measure ‘closeness’ of probability distributions?

23/32



Variational approach for marginal inference

@ We want to find the true distribution p but this is hard

@ Idea: Approximate p by g for which computation is easy, with g
‘close’ to p

@ How should we measure ‘closeness’ of probability distributions?
@ A very common approach: Kullback-Leibler (KL) divergence

@ The ‘gp’ KL-divergence between two probability distributions ¢
and p is defined as

D(qllp) = q(x)log alx)

” p(x)

(measures the expected number of extra bits required to describe
samples from g(x) using a code based on p instead of q)

e D(q|lp) > 0 for all g,p, with equality iff g = p (a.e.)
o KlL-divergence is not symmetric

23 /32



Variational approach for marginal inference

@ Suppose that we have an arbitrary graphical model:
p(x;0) = H Ye(xc) = exp (Z Oc(xc) — log Z( ﬁ))

@ Rewrite the KL-divergence as follows:

D(alp) = 3 a(x) logzg;

= - Z x)log p(x) — > q(x)log ﬁ

X

_ Z (3 0el) — log Z(9)) — H(a(x)

ceC

_ Z Z 0c(xc) + Z q(x) log Z(0) — H(q(x))

ceC x

- _ Z Eq[0c(xc)] + log Z(8) — H(q(x))

cec entropy

expected score
24 /32



The log-partition function log Z

@ Since D(q||p) > 0, we have
=Y Eqlfe(xc)] + log Z(6) — H(q(x)) = 0,
ceC
which implies that

log Z(0) > > Eql0c(xc)] + H(q(x))

ceC

@ Thus, any approximating distribution g(x) gives a lower bound on
the log-partition function (for a Bayesian network, this is the
probability of the evidence)

@ Recall that D(ql||p) = 0 iff ¢ = p. Thus, if we optimize over all
distributions, we have:

log Z(0) = max D Eqlc(xe)] + H(q(x))
ceC
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Variational inference: Naive Mean Field

log Z(0) = E,l0 H H of global di
og Z(#) = max ; qlfc(xe)] + H(q(x)) = H of global distn

/

concave

@ The space of all valid marginals for g is the marginal polytope
@ The naive mean field approximation restricts g to a simple

factorized distribution:

a(x) = [ ai(x)
2%

@ Corresponds to optimizing over a non-convex inner bound on the

marginal polytope = global optimum hard to find

"'\ .
DR

a4

M©) Figure from Martin Wainwright

@ Hence, always attains a lower bound on log Z
26 /32



Background: the marginal polytope M (all valid marginals)

!

Marginal polytope

(Wainwright & Jordan, '03)

\ -

i

5 ()
2 K

valid marginal probabilities

O—O0O0—0000—000——0Oi—O

Entropy?

1 <— Assignment for X,

<— Assignment for X,

/

<— Assignment for X;

<— Edge assignment for
xlx3

<— Edge assignment for
XIXZ

<— Edge assignment for
X2X3

O—O0 000 —000O0—O0——00—

o] X,=0
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Variational inference: Tree-reweighted (TRW)

log Z(0) = max > Eqlbc(xo)] + H(q(x))
ceC

@ TRW makes 2 pairwise approximations:
o Relaxes marginal polytope M to local polytope L, convex outer
bound
o Uses a tree-reweighted upper bound Hr(q(x)) > H(q(x))
The exact entropy on any spanning tree is easily computed from
single and pairwise marginals, and yields an upper bound on the
true entropy, then Hy takes a convex combination

|0g ZT(Q) = Téiﬁ( Z Eq[ec(xc)] + HT(q(X))
ceC

~~
concave

@ Hence, always attains an upper bound on log Z

Iuyr < Z < Zt

2832



The local polytope I has extra fractional vertices

The local polytope is a convex outer bound on the marginal polytope

fractional vertex

marginal polytope
global consistency

integer vertex

local polytope
pairwise consistency

29/32



. . . [G
Variational inference: Bethe e:

l0g Z(#) = max > Eqlde(xe)] + H(a(x)
ceC

@ Bethe makes 2 pairwise approximations:
o Relaxes marginal polytope M to local polytope L.
o Uses the Bethe entropy approximation Hg(q(x)) = H(q(x))
The Bethe entropy is exact for a tree. Loosely, it calculates an
approximation pretending the model is a tree.

log Zs(0) = max 3 Eqlfe(x)] + Ha(q(x))
ceC

J/

vV
not concave in general

@ In general, is neither an upper nor a lower bound on log Z, though
is often very accurate (bounds are known for some cases)
@ There is a neat relationship between the approximate methods
Zyr < Zg <7271
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- . - [G
Variational inference: Bethe e:

log Z(9) = max > Eqlfe(xc)] + H(a(x))
ceC

@ Bethe makes 2 pairwise approximations:

o Relaxes marginal polytope M to local polytope L

o Uses the Bethe entropy approximation Hg(q(x)) = H(q(x))
The Bethe entropy is exact for a tree. Loosely, it calculates an
approximation pretending the model is a tree.

log Zs(0) = max 3 Eqlfe(xe)] + Ha(q(x))
ceC

J/

~
not concave in general

@ In general, is neither an upper nor a lower bound on log Z, though
is often very accurate (bounds are known for some cases)

@ Does this remind you of anything?
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Variational inference: Bethe a remarkable connection

log Z(0) = [yneal\ﬁ Z Eqlfc(xc)] + H(a(x))
ceC

@ Bethe makes 2 pairwise approximations:
o Relaxes marginal polytope M to local polytope L.
o Uses the Bethe entropy approximation Hg(q(x)) ~ H(q(x))
The Bethe entropy is exact for a tree. Loosely, it calculates an
approximation pretending the model is a tree.

Iog ZB(Q) = TS]I)A( Z Eq[ec(xc)] + HB(CI(X))

ceC

stationary points correspond
1-1 with fixed points of LBP!

@ Hence, LBP may be considered a heuristic to optimize the Bethe
approximation

@ This connection was revealed by Yedidia, Freeman and Weiss,
NIPS 2000, Generalized Belief Propagation
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Software packages

Q IlibDAI

e http://www.libdai.org
o Mean-field, loopy sum-product BP, tree-reweighted BP, double-loop
GBP

Q Infer.NET

e http://research.microsoft.com/en-us/um/cambridge/
projects/infernet/

o Mean-field, loopy sum-product BP

o Also handles continuous variables

32/32


http://www.libdai.org
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

Supplementary material

Extra slides for questions or further explanation
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ML learning in Bayesian networks

@ Maximum likelihood learning:  maxg £(6; D), where

06;D) =logp(D;0) = Z log p(x; 0)
xeD

Z Z Z log p(xi | Xpai))

i )’Epa(,-) XE'DA:
Xpa(i) =R pa(i)

@ In Bayesian networks, we have the closed form ML solution:

ML NX" »Xpa(i)

Xi|Xpa(iy R
P Z)?,- NXivxpa(i)

where Ny« is the number of times that the (partial) assignment
Xi, Xpa(i) 1S Observed in the training data

@ We can estimate each CPD independently because the objective
decomposes by variable and parent assignment
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Parameter learning in Markov networks

@ How do we learn the parameters of an Ising model?

1
p(x1, -+ xn) = — exp (Z W; jXiXj + ZH;X:‘)

i<j i
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Bad news for Markov networks

@ The global normalization constant Z(0) kills decomposability:

oML = argmax log H p(x; 0)
o xeD
= arg meaxz (Z log pc(xc; 0) — log Z(H))
xeD c
= argmax (Z Z log ¢C(xc;9)> — |D|log Z(0)
xeD ¢

@ The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

@ Solving for the parameters becomes much more complicated
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