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SUMMARY

Belief propagation may be viewed as a heuristic to optimize the Bethe free
energy FB, and often performs strikingly well. Here we focus on binary
pairwise MRFs, and generalize important results on the Bethe approximation
to the broad family of related pairwise entropy approximations with arbitrary
counting numbers. We make observations that shed light on the success of
the Bethe approximation.

KEY RESULTS, FOR ANY COUNTING NUMBERS

All extend earlier results that were specifically for the Bethe approximation:

•Given singleton marginals, we provide an analytic solution for optimum
pairwise pseudomarginals.

•Thus, the approximate free energy FA may be considered a function only of
singleton pseudomarginals {qi = q(Xi = 1)}.
•We provide upper and lower bounds on first derivatives ∂FA

∂qi
as a function of

qi , that hold for all values of other marginals {qj : j 6= i}, see Figure.

•We use these derivative bounds to construct an ε-sufficient mesh over
pseudomarginals such that the optimum of FA on the mesh is guaranteed
to have value within ε of the global optimum, see Figures.

•We derive all second derivatives of the approximate free energy ∂2FA

∂qi∂qj
.

•Using second derivatives, we show that for attractive models, the discrete
optimization problem is submodular, hence may be solved efficiently leading
to a FPTAS for the approximate log-partition function log ZA

(extends to balanced models).

BACKGROUND

We consider a binary pairwise model with variables V and edges E .

p(x) =
e−E (x)

Z
, E = −

∑
i∈V

θixi −
∑

(i ,j)∈E

Wijxixj, xi ∈ {0, 1}.

•Variational exact inference: − log Z = minµ∈MEµ(E )− S(µ),
S is the true entropy.

•Approximate inference: − log ZA = minµ∈L Eµ(E )− SA(µ)

•Approximate free energy: FA = Eµ(E )− SA(µ)

•Approximate entropy: SA =
∑

i∈V ciSi(µi)−
∑

(i ,j)∈E ρij Iij,
for arbitrary counting numbers {ci, ρij ∈ R}.
• Iij = Si(µi) + Sj(µj)− Sij(µij) ≥ 0 is the mutual information.

•For example, Bethe approximation: ci = 1 ∀i , ρij = 1 ∀(i , j).

•Tree-reweighted approximation TRW: ci = 1 ∀i , ρij ≤ 1 ∀(i , j).

UNDERSTANDING APPROXIMATION ERROR

We focus here on the Bethe and TRW approximations. TRW has a convex
free energy and leads to an upper bound on the true partition function.

1. Marginals Any non-convex free energy approximation (such as
Bethe) can lead to singleton marginals pulled towards 0 or 1 as edge weights
rise above a threshold. For example, a triangle with uniform edge weight W :
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θi ∼ U [0, 1]
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θi ∼ U [0, 3]

A polytope effect pushes the other way, towards 1
2, for frustrated cycles.

Hence, it may be helpful to have Bethe’s ‘balancing’ pull towards 0 or 1.

2. Partition function Consider the Bethe and TRW approximations.
Both are exact for acyclic models. If there is exactly one cycle, which is
balanced, it is known that 1

2Z ≤ ZB ≤ Z (so ZB is low but not by much); if
the cycle is frustrated then Z ≤ ZB using loop series methods, leading to
high error with no upper bound.

Since SB ≤ ST , ZB ≤ ZT and hence, for a frustrated cycle, Z ≤ ZB ≤ ZT .
This is one reason for caution when estimating partition functions with
approximations such as TRW.
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Theorem For any counting numbers, assuming optimum pairwise
pseudomarginals, first derivatives of FA are sandwiched in the range

−θi + ci log
qi

1− qi
−W +

i ≤
∂FA

∂qi
≤ −θi + ci log

qi
1− qi

+ W−
i ,

where W +
i =

∑
j∈N (i):Wij≥0 Wij (positive incident weights), W−

i =
∑

j∈N (i):Wij≤0−Wij .

MESH ALGORITHM TO APPROXIMATE LOG ZA TO ANY
ACCURACY FOR ANY COUNTING NUMBERS

Input: ε, model parameters {θi,Wij} and counting numbers {ci, ρij}
Output: Estimate of global optimum log ZA guaranteed in
[log ZA − ε, log ZA], with corresponding pseudomarginals

(1) For each Xi : Compute upper and lower bound curves for ∂FA

∂qi
, shrink

search space to region where ∂FA
∂qi

can be 0, see Figures.

(2) Construct an ε-sufficient mesh using
∣∣∂FA

∂qi

∣∣ ≤ W−
i + W +

i .

(3) Solve the resulting discrete optimization problem: if the model is
attractive (any counting numbers) then efficient since submodular.

Theorem For any counting numbers and any discretization, an attractive
model yields a submodular discrete optimization problem to estimate log ZA.

APPROXIMATE FREE ENERGY LANDSCAPE (STYLIZED)

We may ignore the red region and search only over the blue region with an
ε-sufficient mesh, see above. We return the green dot (discretized optimum).
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