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Motivation: undirected graphical models (MRFs)

• Powerful way to represent relationships across variables

• Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

• In this talk, mostly focus on binary pairwise (Boolean binary
or Ising) models

Example: Grid for computer vision (attractive)
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Motivation: undirected graphical models

Example: epinions social network (attractive and repulsive edges)

Figure courtesy of N. Ruozzi
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Motivation: undirected graphical models

A fundamental problem is maximum a posteriori (MAP) inference

• Find a global mode configuration with highest probability

x∗ ∈ arg max
x=(x1,...,xn)

p(x1, x2, . . . , xn)

• In a graphical model,

p(x1, x2, . . . , xn) ∝ exp

(∑
c∈C

ψc(xc)

)

where each c is a subset of variables, xc is a configuration of
those variables, and ψc(xc) ∈ Q is a potential function.

• Each potential function assigns a score to each configuration
of variables in its scope, higher score for higher compatibility.
May be considered a ‘negative cost’ function.
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Motivation: undirected graphical models

A fundamental problem is maximum a posteriori (MAP) inference

• Find a global mode configuration with highest probability

x∗ ∈ arg max
x=(x1,...,xn)

∑
c∈C

ψc(xc), all ψc(xc) ∈ Q

• Equivalent to finding a minimum solution of a valued
constraint satisfaction problem (VCSP) without hard
constraints: x∗ ∈ arg minx=(x1,...,xn)

∑
c∈C −ψc(xc)

• We are interested in when is this efficient? i.e. solvable in
time polynomial in the number of variables
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Overview of the method (for models of any arity)

We explore the limits of an exciting recent method (Jebara, 2009):

• Reduce the problem to finding a maximum weight stable set
(MWSS) in a derived weighted graph called a nand Markov
random field (NMRF)

• Examine how to prune the NMRF (removes nodes, simplifies
the problem)

• Different reparameterizations lead to pruning different nodes

• This allows us to solve the original MAP inference problem
efficiently if some pruned NMRF is a perfect graph
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Background: NMRFs and reparameterizations

• In the constraint community, an NMRF is equivalent to the
complement of the microstructure of the dual representation
(Jégou, 1993; Larrosa and Dechter, 2000; Cooper and Živný,
2011; El Mouelhi et al., 2013)
• Reparameterizations here are equivalent to considering soft

arc consistency

A reparameterization is a transformation of potential functions
(shifts score between potentials)

{ψc} → {ψ′c} s.t. ∀x ,
∑
c∈C

ψc(xc) =
∑
c∈C

ψ′c(xc)

This clearly does not modify our MAP problem

x∗ ∈ arg max
x=(x1,...,xn)

∑
c∈C

ψc(xc) = arg max
x=(x1,...,xn)

∑
c∈C

ψ′c(xc)

but can be helpful to simplify the problem after pruning.
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Summary of results

Only a few cases were known always to admit efficient MAP
inference, including:

• Acyclic models (via dynamic programming) STRUCTURE

• Attractive models, i.e. all edges attractive/submodular (via
graph cuts or LP relaxation) LANGUAGE {ψc}
- generalizes to balanced models (no frustrated cycles)

These were previously shown to be solvable via a perfect pruned
NMRF. Here we establish the following limits, which characterize
precisely the power of the approach using a hybrid condition:

Theorem (main result)

A binary pairwise model maps efficiently to a perfect pruned
NMRF for any valid potentials iff each block of the model is
balanced or almost balanced.

8 / 21



Frustrated, balanced, almost balanced

Each edge of a binary pairwise model may be characterized as:
- attractive (pulls variables toward the same value, equivalent to
ψij being supermodular or the cost function being submodular); or
- repulsive (pushes variables apart to different values).

• A frustrated cycle contains an odd number of repulsive edges.
These are challenging for many methods of inference.

• A balanced model contains no frustrated cycle
⇔ its variables form two partitions with all intra-edges
attractive and all inter-edges repulsive.

• An almost balanced model contains a variable s.t. if it is
removed, the remaining model is balanced.

Note all balanced models (with ≥ 1 variable) are almost balanced.
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Examples: frustrated cycle, balanced, almost balanced

Signed graph topologies of binary pairwise models, solid blue edges
are attractive, dashed red edges are repulsive:

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

x7

frustrated cycle balanced almost balanced
(odd # repulsive edges) (no frustrated cycle (added x7)

so forms two partitions)

a balanced model may be rendered attractive by ‘flipping’ all variables in

one or other partition
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Block decomposition

Figure from Wikipedia

Each color
indicates a
different
block.

A graph may be repeatedly broken apart at cut vertices until what

remains are the blocks (maximal 2-connected subgraphs).
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Recap of result

Theorem (main result)

A binary pairwise model maps efficiently to a perfect pruned
NMRF for any valid potentials iff each block of the model is
almost balanced.

Note a model may have Ω(n) many blocks.

Next we discuss how to construct an NMRF and why the reduction
works.

• We need some concepts from graph theory:

. Stable sets, max weight stable sets (MWSS)

. Perfect graphs
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Stable sets, MWSS in weighted graphs

A set of (weighted) nodes is stable if there are no edges between
any of them

8

04

2 3 2 3

04

8

2 3

4

8

0

Stable set Max Weight Stable Set Maximal MWSS
(MWSS) (MMWSS)

• Finding a MWSS is NP-hard in general, but is known to be
efficient for perfect graphs.
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Perfect graphs

Perfect graphs were defined in 1960 by Claude Berge

• G is perfect iff χ(H) = ω(H) ∀ induced subgraphs H ≤ G

• Includes many important families of graphs such as bipartite
and chordal graphs

• Several problems that are NP-hard in general, are solvable in
polynomial time for perfect graphs: MWSS, graph coloring...

• We can use many known results, including:

. Strong Perfect Graph Theorem (Chudnovsky et al.,
2006): G is perfect iff it contains no odd hole or antihole
. Pasting any two perfect graphs on a common clique
yields another perfect graph
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Reduction to MWSS on an NMRF

Recall our theme: Given a model, we construct a weighted graph
NMRF. Claim: If we can solve MWSS on the NMRF, we recover a
MAP solution to the original model.
If the NMRF is perfect, MWSS runs in polynomial time.

Idea: A MAP configuration has
maxx

∑
c ψc(xc) =

∑
c maxxc ψc(xc) s.t. all the xc are consistent,

consistency will be enforced by requiring a stable set.

We construct a nand Markov random field (NMRF, Jebara, 2009;
equivalent to the complement of the microstructure of the dual) N:

• For each potential ψc , instantiate a node in N for every
possible configuration xc of the variables in its scope c

• Give each node a weight ψc(xc) then adjust

• Add edges between any nodes which have inconsistent settings
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Example: constructing an NMRF

Idea: A MAP configuration has maxx
∑

c ψc(xc) =
∑

c maxxc ψc(xc) s.t.
all xc are consistent, consistency will be enforced by requiring a stable set.

x1 x2 x3

x4

ψ12 ψ23

ψ24

v00
12

v01
12

v10
12

v11
12

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

v01
24 ψ24(x2 =0, x4 =1)

−minψ24(x2, x4)

Original model (factor graph) Derived NMRF
superscripts denote configuration xc

subscripts denote variable set c

16 / 21



Example: constructing an NMRF

Idea: A MAP configuration has maxx
∑

c ψc(xc) =
∑

c maxxc ψc(xc) s.t.
all xc are consistent, consistency will be enforced by requiring a stable set.

x1 x2 x3

x4

ψ12 ψ23

ψ24

v00
12

v01
12

v10
12

v11
12

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

v01
24 ψ24(x2 =0, x4 =1)

−minψ24(x2, x4)

Original model (factor graph) Derived NMRF
superscripts denote configuration xc

subscripts denote variable set c

16 / 21



Example: constructing an NMRF

Idea: A MAP configuration has maxx
∑

c ψc(xc) =
∑

c maxxc ψc(xc) s.t.
all xc are consistent, consistency will be enforced by requiring a stable set.

x1 x2 x3

x4

ψ12 ψ23

ψ24

v00
12

v01
12

v10
12

v11
12

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

v01
24 ψ24(x2 =0, x4 =1)

−minψ24(x2, x4)

Original model (factor graph) Derived NMRF
superscripts denote configuration xc

subscripts denote variable set c

16 / 21



Example: constructing an NMRF

Idea: A MAP configuration has maxx
∑

c ψc(xc) =
∑

c maxxc ψc(xc) s.t.
all xc are consistent, consistency will be enforced by requiring a stable set.

x1 x2 x3

x4

ψ12 ψ23

ψ24

v00
12

v01
12

v10
12

v11
12

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

v01
24 ψ24(x2 =0, x4 =1)
−minψ24(x2, x4)

Original model (factor graph) Derived NMRF
superscripts denote configuration xc

subscripts denote variable set c 16 / 21



Earlier results

Idea: A MAP configuration has
maxx

∑
c ψc(xc) =

∑
c maxxc ψc(xc) s.t. all the xc are consistent,

consistency will be enforced by requiring a stable set.

• A MMWSS of the NMRF returns a MAP configuration of the
original model.

• To find a MMWSS of the NMRF: zero-weight nodes may be
pruned (removed), a MWSS found, then zero-weight nodes
added back greedily.

• MAP inference is efficient if ∃ an efficiently identifiable
efficient reparameterization s.t. the model maps to a perfect
pruned NMRF.

• Decomposition: If each block of a model yields a perfect
NMRF, then so too will the whole model (Weller and Jebara,
2013).
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Reparameterizations and pruning

A binary edge potential can always be reparameterized (shifts score
between potentials s.t. the total is unchanged; equivalent to soft
arc consistency) so as to leave just one non-zero term, e.g.(

a b
c d

)
︸ ︷︷ ︸

original potential
ψij (xi ,xj )

=

(
a+ d − b − c 0

0 0

)
︸ ︷︷ ︸

modified edge potential
ψ′
ij (xi ,xj )

+

(
c − d 0
c − d 0

)
+

(
b − d b − d
0 0

)
︸ ︷︷ ︸

new unary potentials
ψ′
i (xi ) ψ′

j (xj )

+

(
d d
d d

)
︸ ︷︷ ︸

constant

• This can be very powerful, allows us after pruning to end up with
just one NMRF node per edge potential (instead of four);

• Though this may introduce new NMRF nodes for the unary terms.

• To show perfect, this seems very helpful and had been always used.

• In this work, we consider all reparameterizations: we show it can be
good instead for some edges to keep all edge nodes and ‘absorb’
incident unary nodes.
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Example: reparameterizing and pruning the earlier NMRF

v00
12

v01
12

v10
12

v11
12

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

v00
12

v00
23

v10
24

v1
1 v1

2
v0

3

v1
4

Initial NMRF After reparameterizing and pruning
reparameterized s.t. all edges get one node

introduces new unary/singleton nodes
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Example: application to a frustrated cycle

In the paper, we show constructively how MAP inference may be
performed efficiently for any model composed of (possibly many)
almost balanced blocks.

Blue edges are attractive, dashed red are

repulsive. Straight edges are

reparameterized s.t. they lead to one node

in the pruned NMRF, wiggly edges may

have all 4 possible nodes. Gray edges are

‘phantom edges’ introduced to absorb

nodes from unary/singleton potentials. The

special vertex s was chosen as x1, removing

this renders the remaining graph balanced

(in fact acyclic in this example). Marks are

shown next to their vertices for the two

partitions in the balanced portion of the

model. See paper for details.

x5

1

x4

1

x6

1

x3

0

x2

0

s =x1
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Conclusion

• MAP inference is equivalent here to (soft) VCSP.

• The NMRF approach is a useful tool, equivalent to the
complement of the microstructure of the dual of a VCSP.

• The method becomes more powerful by considering different
reparameterizations (soft arc consistency) and pruning.

• Here we consider all possible reparameterizations and precisely
characterize the limits of the approach for binary pairwise
models using a signed graph topology (attractive/repulsive),

• Yielding a simple and interesting characterization - each block
must be almost balanced - easy to check in polynomial time.

Thank you!

Contact: adrian.weller (at) eng.cam.ac.uk

Slides and related papers: http://mlg.eng.cam.ac.uk/adrian/
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Reduction to MWSS on an NMRF

Idea: A MAP configuration has
maxx

∑
c ψc(xc) =

∑
c maxxc ψc(xc) s.t. all the xc are consistent,

consistency will be enforced by requiring a stable set.

Given a model with potentials {ψc} over variable sets {c},
construct a nand Markov random field (NMRF, Jebara, 2009) N,
defined as follows:
• A weighted graph N(VN ,EN ,w) with vertices VN , edges EN and a

weight function w : VN → Q≥0.
• Each c of the original model maps to a clique in N. This contains

one node for each possible configuration xc , with all these nodes
pairwise adjacent in N.

• Nodes in N are adjacent iff they have inconsistent settings for any
variable Xi .

• Nonnegative weights of each node in N are set as
ψc(xc)−minxc ψc(xc), hence the minimum weight is zero which
facilitates pruning.

23 / 21



Perfect graphs

Berge defined perfect graphs in 1960: χ(H) = ω(H) ∀ induced
subgraphs H ≤ G . The Strong Perfect Graph Theorem
(Chudnovsky et al., 2006) yields an alternative definition:

• A graph is perfect iff it contains no odd hole or odd antihole.

• An odd hole is an induced subgraph which is a (chordless)
odd cycle of length ≥ 4. An antihole is the complement of a
hole (each edge of antihole is present iff not present in hole).

perfect not perfect perfect

There is a rich literature on perfect graphs, e.g. pasting any 2
perfect graphs on a common clique yields a larger perfect graph. 24 / 21


