An Introduction to
LP Relaxations for MAP Inference

Adrian Weller

Machine Learning Reading Group
Oct 22, 2015

With thanks to David Sontag (NYU)
for use of some of his slides and illustrations
Example of MAP inference: image denoising

Inference is combining prior beliefs with observed evidence to form a prediction.
Example of MAP inference: protein side-chain placement

- Find “minimum energy” configuration of amino acid side-chains along a fixed carbon backbone:

- Orientations of the side-chains are represented by discretized angles called rotamers

- Rotamer choices for nearby amino acids are energetically coupled (attractive and repulsive forces)
Outline of talk

- Background on undirected graphical models
- Basic LP relaxation
- Tighter relaxations
- Message passing and dual decomposition

We’ll comment on

- When is an LP relaxation tight
- Relationship to marginal inference
Background: *undirected graphical models*

- Powerful way to represent relationships across variables
- Many applications including: computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on **pairwise** models with **discrete** variables (sometimes *binary*)

Example: Grid for computer vision
Discrete variables X_1, \ldots, X_n with $X_i \in \{0, \ldots, k_i - 1\}$

Potential functions, will somehow write as vector θ

Write $x = (\ldots x_1, \ldots, x_n, \ldots)$ for one complete configuration of all variables, $\theta \cdot x$ for its total score

Probability distribution given by

$$p(x) = \frac{1}{Z} \exp(\theta \cdot x)$$

To ensure probabilities sum to 1, need normalizing constant or
particle function $Z = \sum_x \exp (\theta \cdot x)$

We are interested in maximum a posteriori (MAP) inference
i.e., find a global configuration with highest probability

$$x^* \in \arg \max p(x) = \arg \max \theta \cdot x$$
Background: *how do we write potentials as a vector θ?*

- Intuitively, $\theta \cdot x$ means the **total score of a configuration** x, where we sum over all potential functions.
- Abusing notation slightly, if we have potential functions θ_c over some subsets $c \in C$ of variables, then we want $\sum_{c \in C} \theta_c(x_c)$, where x_c means a configuration of variables just in the subset c.
- $\theta_c(x_c)$ provides a measure of **local compatibility**, a table of values.
Background: *how do we write potentials as a vector θ?*

- Intuitively, $\theta \cdot x$ means the total score of a configuration x, where we sum over all potential functions.
- Abusing notation slightly, if we have potential functions θ_c over some subsets $c \in C$ of variables, then we want $\sum_{c \in C} \theta_c(x_c)$, where x_c means a configuration of variables just in the subset c.
- $\theta_c(x_c)$ provides a measure of **local compatibility**, a table of values.
- If we only have some unary/singleton potentials θ_i and edge/pairwise potentials θ_{ij} then we can write the total score as:

$$
\sum_i \theta_i(x_i) + \sum_{(i,j)} \theta_{ij}(x_i, x_j)
$$

- Indices? Usually assume either no unary potentials (absorb them into edges) or **one for every variable**, leading to a graph topology (V, E) with total score:

$$
\sum_{i \in V = \{1, \ldots, n\}} \theta_i(x_i) + \sum_{(i,j) \in E} \theta_{ij}(x_i, x_j)
$$
The overcomplete representation conveniently allows us to write

$$\theta \cdot x = \sum_{i \in V} \theta_i(x_i) + \sum_{(i,j) \in E} \theta_{ij}(x_i, x_j)$$

- Have a sufficient statistic for each possible configuration of every potential

 $x = (\mathbf{1}[X_1 = 0], \mathbf{1}[X_1 = 1], \ldots, \mathbf{1}[X_n = 0], \mathbf{1}[X_n = 1], \ldots, $

 $\mathbf{1}[X_i = 0, X_j = 0], \mathbf{1}[X_i = 0, X_j = 1], \mathbf{1}[X_i = 1, X_j = 0], \mathbf{1}[X_i = 1, X_j = 1], \ldots$

 $\theta = (\theta_1(0), \theta_1(1), \ldots, \theta_n(0), \theta_n(1), \ldots, $

 $\theta_{ij}(0, 0), \theta_{ij}(0, 1), \theta_{ij}(1, 0), \theta_{ij}(1, 1), \ldots$

- There are many possible values of x how many?
Background: **overcomplete representation**

The **overcomplete representation** conveniently allows us to write

$$\theta \cdot x = \sum_{i \in V} \theta_i(x_i) + \sum_{(i,j) \in E} \theta_{ij}(x_i, x_j)$$

- Have a sufficient statistic for **each possible configuration** of every potential

 \[x = (\mathbb{1}[X_1 = 0], \mathbb{1}[X_1 = 1], \ldots, \mathbb{1}[X_n = 0], \mathbb{1}[X_n = 1], \ldots, \mathbb{1}[X_i = 0, X_j = 0], \mathbb{1}[X_i = 0, X_j = 1], \mathbb{1}[X_i = 1, X_j = 0], \mathbb{1}[X_i = 1, X_j = 1], \ldots) \]

 \[\theta = (\theta_1(0), \theta_1(1), \ldots, \theta_n(0), \theta_n(1), \ldots, \theta_{ij}(0, 0), \theta_{ij}(0, 1), \theta_{ij}(1, 0), \theta_{ij}(1, 1), \ldots) \]

- There are many possible values of \(x \) \(\prod_{i \in V} k_i \)

- Can consider a distribution over them
Background: the marginal polytope (all valid marginals)

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of an optimization over the marginal polytope. The marginal polytope is the set of realizable mean vectors μ that can arise from some joint distribution on the graphical model:

$$M(G) = \{ \mu \in \mathbb{R}^d \mid \exists \theta \in \mathbb{R}^d \text{ s.t. } \mu = \mathbb{E} \Pr(x; \theta) \phi(x) \}$$

Said another way, the marginal polytope is the convex hull of the $\phi(x)$ vectors, one for each assignment $x \in \chi^n$ to the variables of the Markov random field. The dimension d of $\phi(x)$ is a function of the particular graphical model. In pairwise MRFs where each variable has k states, each variable assignment contributes k coordinates to $\phi(x)$ and each edge assignment contributes k^2 coordinates to $\phi(x)$. Thus, $\phi(x)$ will be of dimension $k|V| + k^2|E|$.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random field on three nodes. In this case, $\phi(x)$ is of dimension $2 \cdot 3 + 2^2 \cdot 3 = 18$. The figure shows two vertices corresponding to the assignments $x = (1, 1, 0)$ and $x' = (0, 1, 0)$. The vector $\phi(x)$ is obtained by stacking the node indicator vectors for each of the three nodes, and then the edge indicator vectors for each of the three edges. $\phi(x')$ is analogous. There should be a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge marginals for some graphical model with the same sufficient statistics. By construction, the valid marginal probabilities are:

$$\frac{1}{2} (\mu' + \bar{\mu})$$
The overcomplete representation is highly redundant, e.g. $\mu_i(0) + \mu_i(1) = 1 \quad \forall i$

How many dimensions if n binary variables with m edges?
The overcomplete representation is highly redundant, e.g. \(\mu_i(0) + \mu_i(1) = 1 \forall i \)

How many dimensions if \(n \) binary variables with \(m \) edges? \(2n + 4m \)

Instead, we sometimes pick a minimal representation

What’s the minimum number of dimensions we need?
The overcomplete representation is highly redundant, e.g. \(\mu_i(0) + \mu_i(1) = 1 \ \forall i \)

How many dimensions if \(n \) binary variables with \(m \) edges? \(2n + 4m \)

Instead, we sometimes pick a minimal representation

What’s the minimum number of dimensions we need? \(n + m \)

For example, we could use \(q = (q_1, \ldots, q_n, \ldots, q_{ij}, \ldots) \) where \(q_i = \mu_i(1) \ \forall i, q_{ij} = \mu_{ij}(1, 1) \ \forall (i, j) \), then

\[
\mu_i = \begin{pmatrix} 1 - q_i \\ q_i \end{pmatrix}, \quad \mu_j = \begin{pmatrix} 1 - q_j \\ q_j \end{pmatrix}, \quad \mu_{ij} = \begin{pmatrix} 1 + q_{ij} - q_i - q_j & q_j - q_{ij} \\ q_i - q_{ij} & q_{ij} \end{pmatrix}
\]

Note many other possible minimal representations
MAP inference as a discrete optimization problem is to identify a configuration with maximum total score

\[x^* \in \arg \max_x \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j) \]

\[= \arg \max_x \theta \cdot x \]

\[= \arg \max_{\mu} \sum_{i \in V} \sum_{x_i} \theta_i(x_i) \mu_i(x_i) + \sum_{ij \in E} \sum_{x_i, x_j} \theta_{ij}(x_i, x_j) \mu_{ij}(x_i, x_j) \]

\[= \arg \max_{\mu} \theta \cdot \mu \quad \text{s.t.} \quad \mu \text{ is integral.} \]

Other constraints?
What are the constraints?

- Force every “cluster” of variables to choose a local assignment:

\[\mu_i(x_i) \in \{0, 1\} \quad \forall i \in V, x_i \]
\[\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V \]
\[\mu_{ij}(x_i, x_j) \in \{0, 1\} \quad \forall ij \in E, x_i, x_j \]
\[\sum_{x_i, x_j} \mu_{ij}(x_i, x_j) = 1 \quad \forall ij \in E \]

- Enforce that these assignments are consistent:

\[\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i \]
\[\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j \]
MAP as an integer linear program (ILP)

\[
\text{MAP}(\theta) = \max_{\mu} \sum_{i \in V} \sum_{x_i} \theta_i(x_i) \mu_i(x_i) + \sum_{ij \in E} \sum_{x_i, x_j} \theta_{ij}(x_i, x_j) \mu_{ij}(x_i, x_j)
\]

\[= \max_{\mu} \theta \cdot \mu \]

subject to:

\[\mu_i(x_i) \in \{0, 1\} \quad \forall i \in V, x_i \quad \text{(edge terms?)} \]

\[\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V \]

\[\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i \]

\[\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j \]

- Many good off-the-shelf solvers, such as CPLEX and Gurobi
Linear programming (LP) relaxation for MAP

Integer linear program was:

\[\text{MAP}(\theta) = \max_{\mu} \theta \cdot \mu \]

subject to

\[\mu_i(x_i) \in \{0, 1\} \quad \forall i \in V, x_i \]
\[\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V \]
\[\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i \]
\[\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j \]

Now relax integrality constraints, allow variables to be **between** 0 and 1:

\[\mu_i(x_i) \in [0, 1] \quad \forall i \in V, x_i \]
Basic LP relaxation for MAP

\[
\text{LP}(\theta) = \max_{\mu} \theta \cdot \mu
\]

s.t. \(\mu_i(x_i) \in [0, 1] \) \(\forall i \in V, x_i \)

\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]

\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]

\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]

- **Linear programs can be solved efficiently**: simplex, interior point, ellipsoid algorithm
- Since the LP relaxation maximizes over a larger set, its value can only be higher

\[
\text{MAP}(\theta) \leq \text{LP}(\theta)
\]
The *local polytope*

\[
\text{LP}(\theta) = \max_{\mu} \theta \cdot \mu
\]

\[
\text{s.t. } \mu_i(x_i) \in [0, 1] \quad \forall i \in V, x_i
\]

\[
\sum_{x_i} \mu_i(x_i) = 1 \quad \forall i \in V
\]

\[
\mu_i(x_i) = \sum_{x_j} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_i
\]

\[
\mu_j(x_j) = \sum_{x_i} \mu_{ij}(x_i, x_j) \quad \forall ij \in E, x_j
\]

- All these constraints are linear
- Hence define a polytope in the space of marginals
- Here we enforced only local (pairwise) consistency, which defines the *local polytope*
- If instead we had optimized over the marginal polytope, which enforces global consistency, then we would have $\text{MAP}(\theta) = \text{LP}(\theta)$, i.e. the LP is tight why? why don’t we do this?
Tighter relaxations of the marginal polytope

- Enforcing consistency of pairs of variables leads to the local polytope L_2.
- The marginal polytope enforces consistency over all variables $M = L_n$.
- Natural to consider the Sherali-Adams hierarchy of successively tighter relaxations L_r, $2 \leq r \leq n$ which enforce consistency over clusters of r variables.
- Just up from the local polytope is the triplet polytope $\text{TRI} = L_3$.
- Can be shown that for binary variables, $\text{TRI} = \text{CYC}$, the cycle polytope, which enforces consistency over all cycles. In general, $\text{TRI} \subseteq \text{CYC}$, open problem if $\text{TRI} = \text{CYC}$ [SonPhD §3]
Stylized illustration of polytopes

- **marginal polytope**: global consistency
- **cycle polytope**: cycle consistency
- **local polytope**: pair consistency

More accurate ⇔ Less accurate
More computationally intensive ⇔ Less computationally intensive
When is the LP tight?

- For a model without cycles, local polytope $\mathbb{L}_2 = \mathbb{M}$ marginal polytope, hence the basic LP (‘first order’) is always tight.
- More generally, if a model has treewidth r then LP+\mathbb{L}_{r+1} is tight [WJ04].
- Separately, if we allow any topology but restrict the class of potential functions, interesting results are known.
- For example, the basic LP is tight if all potentials are supermodular.
- See fascinating recent work [KolThaZiv15]: if we do not restrict topology, then for any given family of potentials, either the basic LP relaxation is tight or the problem class is NP-hard!
- Identifying hybrid conditions is an exciting current research area.
Cutting planes

Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b) Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the tighter LP relaxation. (d) Finally, we find the MAP assignment.
We want to add constraints that are both *valid* and *useful*

- **Valid**: does not cut off any integer points
- **Useful**: leads us to update to a better solution
Methods for solving general integer linear programs

- **Local search**
 - Start from an arbitrary assignment (e.g., random).
 - Choose a variable.

- **Branch-and-bound**
 - Exhaustive search over space of assignments, pruning branches that can be provably shown not to contain a MAP assignment.
 - Can use the LP relaxation or its dual to obtain upper bounds.
 - Lower bound obtained from value of any assignment found.

- **Branch-and-cut** (most powerful method; used by CPLEX & Gurobi)
 - Same as branch-and-bound; spend more time getting tighter bounds.
 - Adds cutting-planes to cut off fractional solutions of the LP relaxation, making the upper bound tighter.
Message passing

- Can be a computationally efficient way to obtain or approximate a MAP solution, takes advantage of the graph structure
- Classic example is ‘max-product’ belief propagation (BP)
- Sufficient conditions are known s.t. this will always converge to the solution of the basic LP, includes that the basic LP is tight [ParkShin-UAI15]
- In general, however, this may not converge to the LP solution (even for supermodular potentials)
- Other methods have been developed, many relate to dual decomposition...
Consider the MAP problem for pairwise Markov random fields:

\[
\text{MAP}(\theta) = \max_x \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j).
\]

If we push the maximizations \textit{inside} the sums, the value can only \textit{increase}:

\[
\text{MAP}(\theta) \leq \sum_{i \in V} \max_{x_i} \theta_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \theta_{ij}(x_i, x_j)
\]

Note that the right-hand side can be easily evaluated.

One can always \textbf{reparameterize} a distribution by operations like

\[
\begin{align*}
\theta_i^{\text{new}}(x_i) &= \theta_i^{\text{old}}(x_i) + f(x_i) \\
\theta_{ij}^{\text{new}}(x_i, x_j) &= \theta_{ij}^{\text{old}}(x_i, x_j) - f(x_i)
\end{align*}
\]

for \textbf{any} function \(f(x_i) \), without changing the distribution/energy.
Dual decomposition

8 Introduction to Dual Decomposition for Inference

\[\theta_f(x_1, x_2) - \delta_f(x_1) - \delta_f(x_2) \]

\[\theta_g(x_1, x_3) - \delta_g(x_3) - \delta_g(x_1) \]

\[\theta_h(x_2, x_4) - \delta_h(x_2) - \delta_h(x_4) \]

\[\theta_k(x_3, x_4) - \delta_k(x_3) - \delta_k(x_4) \]

Figure 1.2: Illustration of the dual decomposition objective. Left: The original pairwise model consisting of four factors. Right: The maximization problems corresponding to the objective. Each blue ellipse contains the factor to be maximized over. In all figures the singleton terms \(\sum_i x_i \) are set to zero for simplicity.

Pairwise model. We will introduce algorithms that minimize the approximate objective \(L(x) \) using local updates. Each iteration of the algorithms repeatedly finds a maximizing assignment for the subproblems individually, using these to update the dual variables that glue the subproblems together. We describe two classes of algorithms, one based on a subgradient method (see Section 1.4) and another based on block coordinate descent (see Section 1.5). These dual algorithms are simple and widely applicable to combinatorial problems in machine learning such as finding MAP assignments of graphical models.

1.3.1 Derivation of Dual

In what follows we show how the dual optimization in Eq. 1.2 is derived from the original MAP problem in Eq. 1.1. We first slightly reformulate the problem by duplicating the \(x_i \) variables, once for each factor, and then enforce that these are equal. Let \(x_{fi} \) denote the copy of \(x_i \) used by factor \(f \).

Also, denote by \(x_f = \{ x_{fi} \} \) the set of variables used by factor \(f \), and by \(x_F = \{ x_f \} \) the set of all variable copies. This is illustrated graphically in Fig. 1.3. Then, our reformulated – but equivalent – optimization problem is:

\[\min_{x_F} \sum_{f \in F} \left(\theta_f(x_f) - \delta_f(x_f) \right) \]

subject to \(x_f = x_g \) for all factors \(f \) and \(g \) with \(x_f \) and \(x_g \) sharing a variable.

We will discuss the dual algorithm in detail in Section 1.4.
Dual decomposition

- Define:
 \[
 \tilde{\theta}_i(x_i) = \theta_i(x_i) + \sum_{ij \in E} \delta_{j \rightarrow i}(x_i)
 \]
 \[
 \tilde{\theta}_{ij}(x_i, x_j) = \theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j)
 \]

- It is easy to verify that
 \[
 \sum_i \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j) = \sum_i \tilde{\theta}_i(x_i) + \sum_{ij \in E} \tilde{\theta}_{ij}(x_i, x_j) \quad \forall x
 \]

- Thus, we have that:
 \[
 \text{MAP}(\theta) = \text{MAP}(\tilde{\theta}) \leq \sum_{i \in V} \max_{x_i} \tilde{\theta}_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)
 \]

- Every value of δ gives a different upper bound on the value of the MAP

- The **tightest** upper bound can be obtained by minimizing the RHS with respect to δ
We obtain the following **dual** objective: \(L(\delta) = \)

\[
\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j) \right),
\]

\[
\text{DUAL-LP}(\theta) = \min_{\delta} L(\delta)
\]

This provides an upper bound on the MAP assignment

\[
\text{MAP}(\theta) \leq \text{DUAL-LP}(\theta) \leq L(\delta)
\]

How can find \(\delta \) which give tight bounds?
Solving the dual efficiently

- Many ways to solve the dual linear program, i.e. minimize with respect to δ:

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j\rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i,x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j\rightarrow i}(x_i) - \delta_{i\rightarrow j}(x_j) \right),$$

- One option is to use the subgradient method
- Can also solve using block coordinate-descent, which gives algorithms that look very much like max-sum belief propagation
Many ways to solve the dual linear program, i.e. minimize with respect to δ:

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \right),$$

One option is to use the subgradient method.

Can also solve using **block coordinate-descent**, which gives algorithms that look very much like max-sum belief propagation.
Solving the dual efficiently

- Many ways to solve the dual linear program, i.e. minimize with respect to δ:

$$\sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \right),$$

- One option is to use the subgradient method

- Can also solve using **block coordinate-descent**, which gives algorithms that look very much like max-sum belief propagation
Max-product linear programming (MPLP) algorithm

Input: A set of potentials $\theta_i(x_i), \theta_{ij}(x_i, x_j)$

Output: An assignment x_1, \ldots, x_n that approximates a MAP solution

Algorithm:

- Initialize $\delta_{i \rightarrow j}(x_j) = 0, \delta_{j \rightarrow i}(x_i) = 0, \forall ij \in E, x_i, x_j$
- Iterate until small enough change in $L(\delta)$:
 - For each edge $ij \in E$ (sequentially), perform the updates:

 $$\delta_{j \rightarrow i}(x_i) = -\frac{1}{2} \delta_{i \rightarrow j}(x_i) + \frac{1}{2} \max_{x_j} \left[\theta_{ij}(x_i, x_j) + \delta_{j \rightarrow i}(x_j) \right] \quad \forall x_i$$

 $$\delta_{i \rightarrow j}(x_j) = -\frac{1}{2} \delta_{j \rightarrow i}(x_j) + \frac{1}{2} \max_{x_i} \left[\theta_{ij}(x_i, x_j) + \delta_{i \rightarrow j}(x_i) \right] \quad \forall x_j$$

 where $\delta_{i \rightarrow j}^{-1}(x_i) = \theta_i(x_i) + \sum_{ik \in E, k \neq j} \delta_k \rightarrow i(x_i)$

- Return $x_i \in \arg \max_{\hat{x}_i} \tilde{\theta}_i^\delta(\hat{x}_i)$
Introduction to Dual Decomposition for Inference

Inputs:
- A set of factors $\theta_i(x_i), \theta_f(x_f)$.

Output:
- An assignment x_1, \ldots, x_n that approximates the MAP.

Algorithm:
- Initialize $\delta_{fi}(x_i) = 0$, $\forall f \in F, i \in f, x_i$.
- Iterate until small enough change in $L(\delta)$ (see Eq. 1.2):
 - For each $f \in F$, perform the updates
 \[
 \delta_{fi}(x_i) = -\delta_{i}^{-f}(x_i) + \frac{1}{|f|} \max_{x_f \setminus i} \left[\theta_f(x_f) + \sum_{\hat{i} \in f} \delta_{\hat{i}}^{-f}(x_{\hat{i}}) \right],
 \]
 simultaneously for all $i \in f$ and x_i. We define $\delta_{i}^{-f}(x_i) = \theta_i(x_i) + \sum_{\hat{f} \neq f} \delta_{\hat{f}i}(x_i)$.
- Return $x_i \in \arg \max_{\hat{x}_i} \bar{\theta}_{i}(\hat{x}_i)$ (see Eq. 1.6).
Experimental results

Performance on stereo vision inference task:

- Decoded assignment
- Dual obj.
- Iteration
- Objective
- Solved optimally
- Duality gap

![Graph showing performance over iterations]

- Decoded assignment
- Dual obj.
- Objective
- Iteration
- Solved optimally
- Duality gap

Graph showing performance over iterations.
Dual decomposition = basic LP relaxation

Recall we obtained the following dual linear program:

\[L(\delta) = \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{j \in E} \delta_{j \rightarrow i}(x_i) \right) + \sum_{ij \in E} \max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \rightarrow i}(x_i) - \delta_{i \rightarrow j}(x_j) \right), \]

\[\text{DUAL-LP}(\theta) = \min_{\delta} L(\delta) \]

We showed two ways of upper bounding the value of the MAP assignment:

\[\text{MAP}(\theta) \leq \text{Basic LP}(\theta) \quad (1) \]
\[\text{MAP}(\theta) \leq \text{DUAL-LP}(\theta) \leq L(\delta) \quad (2) \]

Although we derived these linear programs in seemingly very different ways, in turns out that:

\[\text{Basic LP}(\theta) = \text{DUAL-LP}(\theta) \]

The dual LP allows us to upper bound the value of the MAP assignment without solving an LP to optimality.
Linear programming duality

MAP assignment

(Dual) LP relaxation
(Primal) LP relaxation
Integer linear program

MAP(\(\theta\)) \leq \text{Basic LP}(\theta) = \text{DUAL-LP}(\theta) \leq L(\delta)
Relationship to marginal inference

- MAP inference: \(\mu^* \in \arg \max_{\mu \in \mathcal{M}} \theta \cdot \mu \)
- Marginal inference: \(\mu^* \in \arg \max_{\mu \in \mathcal{M}} [\theta \cdot \mu + H(\mu)] \)
- For marginal inference, both the polytope and the entropy are computationally challenging
- The entropy is often approximated, e.g. by Bethe or TRW entropy
- As before, the marginal polytope \(\mathcal{M} \) is typically relaxed to the local polytope \(\mathcal{L} \)
- Do results for approximate marginal inference improve if we tighten the polytope relaxation?
Experiments [WTSJ14]: General models $\theta_i \sim [-2, 2]$ (attractive and repulsive edges) K_{10} topology

- Log partition error
- Singleton marginals, average ℓ_1 error
- Pairwise marginals, average ℓ_1 error
LP relaxations yield a powerful approach for MAP inference
Naturally lead to
- considerations of polytope or cutting planes
- dual decomposition and message passing
Close relationship to methods for marginal inference
Help build our understanding as well as develop new algorithmic tools
Exciting current research

Thank you
References

