Clamping Variables and Approximate Inference

Adrian Weller
University of Cambridge

MSR Cambridge
Mar 18, 2016

Work with Tony Jebara and Justin Domke

For more information, see
http://mlg.eng.cam.ac.uk/adrian/
Motivation: *undirected graphical models*

- Powerful way to represent relationships across variables
- Many applications including: computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on binary pairwise (Ising) models

Example: Grid for computer vision (attractive)
Motivation: *undirected graphical models*

Example: Part of epinions social network (mixed)

Figure courtesy of N. Ruozzi
Motivation: *undirected graphical models*

Example: Restricted Boltzmann machine (mixed)

A fundamental problem is *marginal inference*

- Estimate marginal probability distribution of one variable

\[p(x_1) = \sum_{x_2, \ldots, x_n} p(x_1, x_2, \ldots, x_n) \]

- Closely related to computing the *partition function*
- Computationally intractable, focus on approximate methods

- Our theme: combining approximate inference with *clamping*
 can be very fruitful as a *proof technique*, and in *practice*
Background: *Binary pairwise models*

- Binary variables $X_1, \ldots, X_n \in \{0, 1\}$
- Singleton and pairwise potentials θ
- Write $\theta \cdot x$ for the total score of a complete configuration
- Probability distribution given by
 \[
p(x) = \frac{1}{Z} \exp(\theta \cdot x)
 \]
- To ensure probabilities sum to 1, need normalizing constant
 \[
 Z = \sum_x \exp(\theta \cdot x)
 \]
- Z is the *partition function*, a fundamental quantity we’d like to compute or approximate
Background: *A variational approximation*

Recall \(p(x) = \frac{1}{Z} \exp(\theta \cdot x) \)

- Exact inference may be viewed as *optimization*,

\[
\log Z = \max_{\mu \in \mathcal{M}} [\theta \cdot \mu + S(\mu)]
\]

\(\mathcal{M} \) is the space of marginals that are *globally consistent*, \(S \) is the (Shannon) entropy

- Bethe makes two pairwise approximations,

\[
\log Z_B = \max_{q \in \mathcal{L}} [\theta \cdot q + S_B(q)]
\]

\(\mathcal{L} \) is the space of marginals that are *pairwise consistent*, \(S_B \) is the Bethe entropy approximation

- Loopy Belief Propagation finds stationary points of Bethe

- For models with no cycles (acyclic), Bethe is exact \(Z_B = Z \)
We know that Bethe is exact for acyclic models, $Z_B = Z$

When else does Bethe perform well? ‘Tree-like models’

- Models with long cycles
- Models with weak potentials

Also: attractive models (all edges attractive)

Sudderth, Wainwright and Willsky (NIPS 2007) used loop series to show that for a subclass of attractive binary pairwise models, $Z_B \leq Z$

Conjectured $Z_B \leq Z$ for all attractive binary pairwise models

Let’s look at some of their slides (courtesy of Erik Sudderth)
Loopy BP and Spatial Priors

Dense Stereo Reconstruction (Sun et. al. 2003)

Image Denoising (Felzenszwalb & Huttenlocher 2004)

Segmentation & Object Recognition (Verbeek & Triggs 2007)
What do these models share?

Dense Stereo

\[
\phi_{st}(x_s, x_t) = \begin{cases}
0 & x_s = x_t \\
\theta_{st} > 0 & \text{otherwise}
\end{cases}
\]

\[
\phi_{st}(x_s, x_t) = D\left(\frac{x_s - x_t}{\sigma_{st}}\right)
\]

pairwise energies are attractive to encourage spatial smoothness
Empirical Bounds: 10x10 Grid

All marginals have same bias, satisfying conditions of theorem

All marginals have same bias, satisfying conditions of theorem
Sudderth et al.’s conjecture remained open for several years:

\[Z_B \leq Z \] for attractive binary pairwise models

So far, no proof based on loop series

It was proved true by Nick Ruozzi (NIPS 2012) using graph covers

Here we provide a separate proof building from first principles, and also derive an upper bound for \(Z \) in terms of \(Z_B \)

We use the idea of clamping variables
Example model

To compute the partition function Z, can enumerate all states and sum

<table>
<thead>
<tr>
<th>$x_1x_2 \ldots x_{10}$</th>
<th>score</th>
<th>$\exp(score)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 \ldots 0</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>0 0 \ldots 1</td>
<td>2</td>
<td>7.4</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>0 1 \ldots 1</td>
<td>1.3</td>
<td>3.7</td>
</tr>
<tr>
<td>1 0 \ldots 0</td>
<td>-1</td>
<td>0.4</td>
</tr>
<tr>
<td>1 0 \ldots 1</td>
<td>0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>1 1 \ldots 1</td>
<td>1.8</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Total $Z = 47.1$
Background: *What is clamping?*

Can split Z in two: **clamp** variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

After we clamp a variable, it may be removed

<table>
<thead>
<tr>
<th>$x_1x_2 \ldots x_{10}$</th>
<th>score</th>
<th>$\exp(score)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 ... 0</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>0 0 ... 1</td>
<td>2</td>
<td>7.4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0 1 ... 1</td>
<td>1.3</td>
<td>3.7</td>
</tr>
<tr>
<td>1 0 ... 0</td>
<td>-1</td>
<td>0.4</td>
</tr>
<tr>
<td>1 0 ... 1</td>
<td>0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1 1 ... 1</td>
<td>1.8</td>
<td>6.0</td>
</tr>
</tbody>
</table>

$p(X_1 = 1) = \frac{Z|_{X_1=1}}{Z}$

Total $Z = 47.1$
Background: What is clamping?

Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

After we clamp a variable, it may be removed.

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees).
Background: **What is clamping?**

Can split Z in two: clamp variable X_1 to each of \{0, 1\}, then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

After we clamp a variable, it may be removed.

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees).

- If not,
 - Can repeat: clamp and remove variables until acyclic, or
 - Settle for approximate inference on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$
Background: What is clamping?

Can split Z in two: clamp variable X_1 to each of $\{0, 1\}$, then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

After we clamp a variable, it may be removed

- After removing the clamped variable, if the remaining sub-models are **acyclic** then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees)

- If not,
 - Can repeat: clamp and remove variables until acyclic, or
 - Settle for **approximate inference** on sub-models

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Will this lead to a better estimate than approximate inference on the original model? Always?
Background: What is clamping?

Can split Z in two: clamp variable X_1 to each of \{0, 1\}, then add the two sub-partition functions:

$$Z = Z|_{X_1=0} + Z|_{X_1=1}$$

After we clamp a variable, it may be removed.

- After removing the clamped variable, if the remaining sub-models are acyclic then can find sub-partition functions efficiently (BP, Bethe approximation is exact on trees).
- If not,
 - Can repeat: clamp and remove variables until acyclic, or
 - Settle for approximate inference on sub-models

$$Z^{(i)}_B := Z_B|_{X_i=0} + Z_B|_{X_i=1}$$

Will this lead to a better estimate than approximate inference on the original model? Always? Often but not always.
A variational perspective on clamping

- Bethe approximation

\[\log Z_B = \max_{q \in \mathbb{L}} \left[\theta \cdot q + S_B(q) \right] \]

- Observe that when \(X_i \) is clamped, we optimize over a subset

\[\log Z_B|_{X_i=0} = \max_{q \in \mathbb{L}: q_i=0} \left[\theta \cdot q + S_B(q) \right] \]

\[\Rightarrow Z_B|_{X_i=0} \leq Z_B, \text{ similarly } Z_B|_{X_i=1} \leq Z_B \]

Recap of Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z)</td>
<td>true partition function</td>
</tr>
<tr>
<td>(Z_B)</td>
<td>Bethe optimum partition function</td>
</tr>
<tr>
<td>(Z_B^{(i)})</td>
<td>approximation obtained when clamp and sum approximate sub-partition functions</td>
</tr>
</tbody>
</table>

\[Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \leq 2Z_B \]
Clamping variables: *an upper bound on* Z

- From before,

$$Z_B^{(i)} := Z_B|_{x_i=0} + Z_B|_{x_i=1} \leq 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact

- For example, if must delete 2 variables X_i, X_j, obtain

$$Z_B^{(ij)} := \sum_{a,b \in \{0,1\}} Z_B|_{x_i=a, x_j=b} \leq 2^2 Z_B$$

But sub-partition functions are exact, hence LHS = Z
Clamping variables: an upper bound on Z

$$Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \leq 2Z_B$$

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact

- Let $k(G)$ be the minimum size of a feedback vertex set

Theorem (result is tight in a sense)

$$Z \leq 2^k Z_B$$
Clamping variables: *an upper bound on* Z

\[
Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \leq 2Z_B
\]

- Repeat: clamp and remove variables, until remaining model is acyclic, where Bethe is exact

- Let $k(G)$ be the minimum size of a feedback vertex set

Theorem (result is tight in a sense)

\[
Z \leq 2^k Z_B
\]
Attractive models: a lower bound on Z

- An **attractive** model is one with all edges attractive
- Recall definition,

$$Z_B^{(i)} := Z_B|_{x_i=0} + Z_B|_{x_i=1}$$

Theorem (actually show a stronger result, ask if interested)

For an attractive binary pairwise model and any X_i, $Z_B \leq Z_B^{(i)}$

Repeat as before: $Z_B \leq Z_B^{(i)} \leq Z_B^{(ij)} \leq \cdots \leq Z$

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model, $Z_B \leq Z$
An attractive model is one with all edges attractive

Recall definition,

\[Z_B^{(i)} := Z_B|_{X_i=0} + Z_B|_{X_i=1} \]

Theorem (actually show a stronger result, ask if interested)

For an attractive binary pairwise model and any \(X_i \), \(Z_B \leq Z_B^{(i)} \)

Repeat as before: \(Z_B \leq Z_B^{(i)} \leq Z_B^{(ij)} \leq \cdots \leq Z \)

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model, \(Z_B \leq Z \)

\(\Rightarrow \) each clamp and sum can only improve \(Z_B \)
Recap of results so far

- We have used clamping as a proof technique
- Derived lower and upper bounds on Z for attractive models

\[Z_B \leq Z \leq 2^k Z_B \]

\[\text{attractive only} \quad \quad \text{attractive and mixed} \]

\[\Leftrightarrow \quad \frac{Z}{2^k} \leq Z_B \leq Z \]

\[\text{attractive only} \]

- We also proved that for attractive models, clamping and summing (optimum) Bethe sub-partition functions can only improve the estimate
- How about for mixed models?
Example: here clamping *any* variable *worsens* Z_B estimate

![Graph with nodes X1, X2, X3, X4 and edges]

Blue edges are attractive with edge weight $+2$
Red edges are repulsive with edge weight -2
No singleton potentials

performance is only slightly worse with clamping

- In practice, if we pick a good variable to clamp, then clamping is usually helpful
New work: what does clamping do for MF and TRW?

- Mean field (MF) approximation assumes independent variables, yields a lower bound, $Z_M \leq Z$
- Tree-reweighted (TRW) is a pairwise approximation similar to Bethe but allows a convex optimization and yields an upper bound, $Z \leq Z_T$
- Earlier, we showed that for Bethe, clamping always improves the approximation for attractive models; often but not always improves for mixed models
- How about for MF and TRW? $Z_M \leq Z_B \leq Z_T$
Mean field (MF) approximation assumes independent variables, yields a lower bound, $Z_M \leq Z$

Tree-reweighted (TRW) is a pairwise approximation similar to Bethe but allows a convex optimization and yields an upper bound, $Z \leq Z_T$ \hspace{1cm} $Z_M \leq Z \leq Z_T$

Earlier, we showed that for Bethe, clamping always improves the approximation for attractive models; often but not always improves for mixed models

How about for MF and TRW? $Z_M \leq Z_B \leq Z_T$

Theorem

For both MF and TRW, for attractive and mixed models, clamping and summing approximate sub-partition functions can only improve the respective approximation and bound (any number of labels).
Error in log Z vs number of clamps: grids

- Large (9x9)
- Small (5x5)
- Attractive grids [0, 6]
- Mixed grids [-6, 6]
Conclusions for practitioners

- Typically Bethe performs very well
- Clamping can be very helpful, more so for denser models with stronger edge weights, a setting where inference is often hard
- We provide fast methods to select a good variable to clamp
- MF and TRW provide useful bounds on Z and Z_B

Thank you

For more information, see
http://mlg.eng.cam.ac.uk/adrian/

Extra slides for questions or further explanation
For dense mixed models (many edges),

MF can be better than Bethe

What happens if we increase edge strength?
Error in log Z vs number of clamps: complete graphs

- With stronger edges, MF is much better than Bethe!
- But MF assumes variables are independent, what's going on?
Error in log Z vs number of clamps: complete graphs

- With stronger edges, MF is much better than Bethe!
- But MF assumes variables are independent, what’s going on?
 - Frustrated cycles cause Bethe to overestimate by a lot
 - TRW is even worse
 - MF behaves much better (in marginal polytope)
Mixed models, $W_{ij} \sim U[-6, 6]$

Time shown on a log scale

- Clamping can make the subsequent optimization problems easier, hence **sometimes total time with clamping is lower while also being more accurate**
Clamping variables: strongest result for *attractive* models

\[
\log Z_B = \max_{q \in \mathbb{L}} \left[\theta \cdot q + S_B(q) \right]
\]

- For any variable \(X_i \) and \(x \in [0, 1] \), let \(q_i = q(X_i = 1) \) and

\[
\log Z_{B_i}(x) = \max_{q \in \mathbb{L}: q_i = x} [\theta \cdot q + S_B(q)]
\]

- \(Z_{B_i}(x) \) is ‘Bethe partition function constrained to \(q_i = x \)’

Note: \(Z_{B_i}(0) = Z_B|_{X_i=0} \), \(Z_{B_i}(x^*) = Z_B \), \(Z_{B_i}(1) = Z_B|_{X_i=1} \)
Clamping variables: strongest result for attractive models

\[\log Z_B = \max_{q \in \mathbb{L}} \left[\theta \cdot q + S_B(q) \right] \]

For any variable \(X_i \) and \(x \in [0, 1] \), let \(q_i = q(X_i = 1) \) and

\[\log Z_{Bi}(x) = \max_{q \in \mathbb{L}:q_i=x} \left[\theta \cdot q + S_B(q) \right] \]

\(Z_{Bi}(x) \) is ‘Bethe partition function constrained to \(q_i = x \)’

Note: \(Z_{Bi}(0) = Z_B|_{X_i=0} \), \(Z_{Bi}(x^*) = Z_B \), \(Z_{Bi}(1) = Z_B|_{X_i=1} \)

Define new function,

\[A_i(x) := \log Z_{Bi}(x) - S_i(x) \]

Theorem (implies all other results for attractive models)

For an attractive binary pairwise model, \(A_i(x) \) is convex

Builds on derivatives of Bethe free energy from [WJ13]
Experiments: *Which variable to clamp?*

Compare error $|\log Z - \log Z_B^{(i)}|$ to original error $|\log Z - \log Z_B|$ for various ways to choose which variable X_i to clamp:

- **best Clamp** best improvement in error of Z in hindsight
- **worst Clamp** worst improvement in error of Z in hindsight
- **avg Clamp** average performance

- **maxW** max sum of incident edge weights $\sum_{j \in N(i)} |W_{ij}|$

- **Mpower** more sophisticated, based on powers of related matrix

![Diagram of graph with nodes X1 to X10 and edges connecting them]
Experiments: *attractive random graph* $n = 10, p = 0.5$

Unary $\theta_i \sim U[-2, 2]$, edge $W_{ij} \sim U[0, W_{\text{max}}]$

Error of estimate of $\log Z$

Observe
- Clamping any variable helps significantly
- Our selection methods perform well

Avg ℓ_1 error of singleton marginals

Using Frank-Wolfe to optimize Bethe free energy
Experiments: mixed random graph $n = 10, p = 0.5$

- unary $\theta_i \sim U[-2, 2]$
- edge $W_{ij} \sim U[-W_{\text{max}}, W_{\text{max}}]$

Error of estimate of log Z

Results remain promising for higher n

Avg ℓ_1 error of singleton marginals

Using Frank-Wolfe to optimize Bethe free energy
Experiments: *attractive complete graph n = 10, TRW*

- unary $\theta_i \sim U[-0.1, 0.1]$,
- edge $W_{ij} \sim U[-W_{\text{max}}, W_{\text{max}}]$

Error of estimate of $\log Z$

Note low unary potentials

Avg ℓ_1 error of singleton marginals

Clamping a variable ‘breaks symmetry’ and overcomes TRW advantage
Experiments: *mixed complete graph* \(n = 10, \ TRW \)

unary \(\theta_i \sim U[-2, 2] \),
edge \(W_{ij} \sim U[0, W_{\text{max}}] \)

Error of estimate of log \(Z \)

Note regular singleton potentials

Avg \(\ell_1 \) error of singleton marginals
Experiments: *attractive random graph* \(n = 50, \ p = 0.1 \)

Unary \(\theta_i \sim U[-2, 2] \),
edge \(W_{ij} \sim U[0, W_{\text{max}}] \)

Error of estimate of \(\log Z \)

‘worst Clamp’ performs worse
here due to suboptimal
solutions found by Frank-Wolfe

Avg \(\ell_1 \) error of singleton marginals
Experiments: *mixed random graph* \(n = 50, p = 0.1 \)

unary \(\theta_i \sim U[-2, 2] \),

eedge \(W_{ij} \sim U[-W_{\text{max}}, W_{\text{max}}] \)

Error of estimate of log \(Z \)

Performance still good for clamping just one variable

Avg \(\ell_1 \) error of singleton marginals
Experiments: attractive ‘lamp’ graph

- unary $\theta_i \sim U[-2, 2]$
- edge $W_{ij} \sim U[0, W_{\text{max}}]$

Error of estimate of log Z

Mpower performs well, significantly better than maxW

Avg ℓ_1 error of singleton marginals

![Graph Diagram]
Experiments: *mixed ‘lamp’ graph*

Unary $\theta_i \sim U[-2, 2]$,
Edge $W_{ij} \sim U[-W_{\text{max}}, W_{\text{max}}]$

Error of estimate of log Z

Mpower performs well,
significantly better than maxW

Avg ℓ_1 error of singleton marginals