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Motivation: undirected graphical models

Powerful way to represent relationships across variables

Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

In this talk, focus on binary pairwise (Ising) models

Example: Grid for computer vision (attractive)
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Motivation: undirected graphical models

Example: Part of epinions social network

Figure courtesy of N. Ruozzi
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Motivation: undirected graphical models

A fundamental problem is maximum a posteriori (MAP) inference

Find a global configuration with highest probability

(x1, . . . , xn)∗ ∈ argmax p(x1, x2, . . . , xn)

Example: image denoising image from NASA

−→ MAP inference

Exponential search space, NP-hard in general
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When is MAP inference (relatively) easy?

Tree Attractive model

STRUCTURE POTENTIALS

submodular costs
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When is MAP inference (relatively) easy?

Tree Attractive model

STRUCTURE POTENTIALS

Both can be solved exactly and efficiently with standard linear
programming relaxation (LP+LOC): integer solution (tight)

For models which are not attractive but are ‘close to
attractive’, LP+LOC is often not tight - but using an LP
relaxation with higher order clusters, empirically the result is
tight (Sontag et al., 2008)
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Example: Image foregound-background segmentation

(Domke, 2013)

Learning potentials from data, most edges are attractive but a
few are repulsive: the model is ‘close to attractive’

LP+LOC enforces pairwise consistency, often not tight

The LP relaxation over the triplet polytope TRI usually is tight

Why?
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Almost attractive and almost balanced models

Blue edges are attractive, dashed red edges are repulsive
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Main Results

LP+TRI is tight for any almost balanced model

We show a general result that submodels can be pasted
together in certain ways while preserving LP tightness

For LP+TRI

Can paste submodels on any one variable
Can paste on an edge provided it uses special variable s from
each submodel

s1

s2
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Main Results

LP+TRI is tight for any almost balanced model

We show a general result that submodels can be pasted
together in certain ways while preserving LP tightness

For LP+TRI

Can paste submodels on any one variable
Can paste on an edge provided it uses special variable s from
each submodel

s1

s2

not almost balanced
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Background: Binary pairwise models, LP relaxations

Binary variables X1, . . . ,Xn ∈ {0, 1}
p(x1, . . . , xn) ∝ exp[ score(x1, . . . , xn) ] ← maximize

score(x1, . . . , xn) =
∑

i∈V θixi +
∑

(i ,j)∈E Wijxixj

Singleton potentials: θi may take any value, often from data

Edge potentials: Wij > 0 attractive (supermodular potential,
submodular cost); Wij < 0 repulsive

Combine singleton and edge potentials in a vector θ

Write x for one ‘complete configuration’ of all variables,
θ · x for its score, contains singleton and edge terms

θ =



θ1
. . .
θi
. . .
. . .
Wij

. . .


x =



1[X1 = 1]
. . .

1[Xi = 1]
. . .
. . .

1[Xi = 1,Xj = 1]
. . .
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Background: Binary pairwise models, LP relaxations

θ · x is the score of a configuration x

For MAP inference, now have a LP: x∗ ∈ argmax θ · x

Want to optimize over {0, 1} coordinates of ‘complete
configuration space’ corresponding to all 2n possible settings

The convex hull of these defines the marginal polytope M, by
construction has exactly these integral settings as its vertices

Each point in M corresponds to a probability distribution over
the 2n configurations, giving a vector of marginals

But optimizing over M is intractable: relax the space to
pseudo-marginals q that enforce only local consistency,
introduces fractional vertices
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LOC and TRI polytopes

Recap

Maximize θ · q =
∑

i∈V θiqi +
∑

(i ,j)∈E Wijqij over singleton
{qi} and edge {qij} pseudo-marginals

Edge potentials: if Wij > 0 then the edge is attractive

LOC enforces pairwise consistency

Ensures that every pair of variables has a valid distribution, all
consistent with each other

This requires max(0, qi + qj − 1) ≤ qij ≤ min(qi , qj)
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LOC and TRI polytopes

Recap

Maximize θ · q =
∑

i∈V θiqi +
∑

(i ,j)∈E Wijqij over singleton
{qi} and edge {qij} pseudo-marginals

Edge potentials: if Wij > 0 then the edge is attractive

TRI enforces triplet consistency

Ensures that every triplet of variables has a valid distribution,
all consistent with each other

This requires four additional inequalities for every triplet
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Proof idea

Given an almost balanced model:

if any non-integral optimum vertex q̂ is proposed, we demonstrate
an explicit small perturbation p s.t. q̂ + p and q̂ − p remain in TRI,
while q̂ = 1

2 (q̂ − p) + 1
2 (q̂ + p) and hence q̂ cannot be a vertex

fractional vertex

of TRI

Marginal polytope

θ

integral vertex
perturbation

q̂
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Key steps in the proof

We may assume an almost attractive model: all edges are
attractive except for some incident to variable s

If s is held to a fixed marginal qs = y ∈ (0, 1), while all other
marginals are optimized, some edge marginals ‘behave as
attractive edges’ in LOC, i.e. qij = min(qi , qj)

We prove a structural result: any edge which is not ‘behaving
attractive’ must be in a binding triplet constraint together
with the special variable s
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Key steps in the proof

Given the structural result for fixed qs = y , we construct an
explicit perturbation up and down by p while remaining within
TRI, unless all marginals take a simple form in {0, y , 1− y , 1}
Hence at an optimum, all marginals must have this form

We use this to show a stronger result:
let F s(y) = maxq∈TRI:qs=y θ · q be the constrained optimum
score in TRI holding fixed qs = y , then F s(y) is linear

Hence, the maximum is achieved at one end: qs = 0 or qs = 1

Remaining model is attractive, hence global integer solution
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Conclusion

Previously known: LP+LOC is tight for attractive and
balanced models

Empirically LP relaxations using higher order cluster
constraints are tight for models which are close to attractive

We prove that LP+TRI is tight for almost attractive and
almost balanced models

We also provide a composition result

This gives a hybrid condition on structure and potentials

Connects to earlier work showing MAP inference is efficient for
almost balanced models using perfect graphs (Weller, 2015)

Thank you

http://mlg.eng.cam.ac.uk/adrian/
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