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Motivation

Many control problems require that the model of the dynamics be partially or
entirely derived from measurements.

Therefore, the dynamics model must be stochastic, to reflect the inevitable lack of
certainty in model predictions.

Flexible models are required to model a wide variety of dynamics.

We seek automatic model inference and training (fitting) algorithms.
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An inconvenient truth
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Gaussian processes (GP) are an extremely powerful framework for learning and
inference about non-linear functions.

Irritating fact: Although desirable, it is not easy to apply GPs to latent variable
time series.
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Non-linear transition model is enough
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It is the non-linearity in the transition model which is essential.

A non-linear observation model can be moved to the transition model without
loss of generality (but possibly at the cost of needing additional state coordinates).

Thus, in the remainder of the talk, we focus on non-linear transition models.
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Gaussian Process
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Gaussian processes (GP) are flexible stochastic models.

A GP specifies a conditional joint over (any number of) function values, given the
inputs (index set) p(f (x1), . . . , f (xn)|x1, . . . , xn).

A GP is a non-parametric model; the ’parameters’ of the model is the function
itself. This creates some interesting opportunities and some extra challenges.
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Generative Model

Gaussian Process State Space Model

f (x|θx) ∼ GP
(
m(x), k(x, x ′)

)
, (1)

xt|ft ∼ N(xt|ft, Q), Q diagonal, (2)

yt|xt ∼ N(yt|Cxt, R), (3)

with hyperparameters θ = (θx, Q, C, R).

The joint probability is the prior times the likelihood

p(y, x, f|θ) = p(x0)

T∏
t=1

p(ft|f1:t−1, x0:t−1, θx)p(xt|ft, Q)p(yt|xt, C, R). (4)

Note that the joint distribution of the f values isn’t even Gaussian! The marginal
likelihood is

p(y|θ) =

∫
p(y, x, f|θ)dfdx. (5)

That’s really awful! But we need it to train the model.
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Picture of part of generative process
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Let’s lower bound the marginal likelihood

log p(y|θ) >
∫

q(x, f) log
p(x0)

∏T
t=1 p(ft|f1:t−1, x0:t−1)p(xt|ft)p(yt|xt)

q(x, f)
dxdf

=

∫
q(x, f) log

p(y|θ)p(x, f|y, θ)
q(x, f)

dxdf

= log p(y|θ) −KL(q(x, f)||p(x, f|y, θ)).

(6)

for any distribution q(x, f), by Jensen’s inequality.

Let’s chose the q(x, f) distribution within some restricted family to maximize the
lower bound or equivalently minimize the KL divergence.

This is still nasty because of the annoying prior, unless we chose:

q(x, f) = q(x)
T∏

t=1

p(ft|f1:t−1, x0:t−1).

This choice makes the lower bound simple but terribly loose! Why? Because the
approximating distribution over the f’s doesn’t depend on the observations y.
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Augment GP with inducing variables

Augment the model with an additional set of input output pairs {zi, ui|i = 1, . . . M}

Joint distribution:

p(y, x, f, u|z) = p(x, f|u)p(u|z)
T∏

t=1

p(yt|xt). (7)

Consistency (or the marginalization property) of GPs ensures that it is straight
forward to augment with extra variables.

This step seemingly makes our problem worse, because we have more latent
variables.
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Lower bound revisited

Lower bound on marginal likelihood

log p(y|θ) >∫
q(x, f, u) log

p(u)p(x0)
∏T

t=1 p(ft|f1:t−1, x0:t−1, u)p(xt|ft)p(yt|xt)

q(x, f, u)
dxdfdu,

(8)

for any distribution q(x, f, u), by Jensen’s inequality.

Now chose

q(x, f, u) = q(u)q(x)
T∏

t=1

p(ft|f1:t−1, x0:t−1, u). (9)

This choice conveniently makes the troublesome p(ft|f1:t−1, x0:t−1, u) term cancel.
But the u values can be chosen (via q(u)) to reflect the observations, so the bound
may be tight(er).

The lower bound is L(y|q(x), q(u), q(f|x, u), θ).
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What do we get for all our troubles?

• For certain choices of covariance function, f can be integrated out

L(y|q(x), q(u), θ) =

∫
L(y|q(x), q(u), q(f|x, u), θ)df (10)

• The optimal q(u) is found by calculus is variations and turns out to be
Gaussian, and can be maxed out

L(y|q(x), θ) = max
q(u)

L(y|q(x), q(u), θ) (11)

• The optimal q(x) has Markovian structure; making a further Gaussian
assumption, the lower bound can be evaluated analytically, as a function of
its parameters µt, Σt,t and Σt−1,t.

Algorithm: optimize the lower bound L(y|q(x), θ) wrt the parameters of the
Gaussian q(x) and the remaining parameters θ (we need derivatives for the
optimisation).
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Sparse approximations are builtin

The computational cost is dominated by the GP. But, the effective ’training set
size’ for the GP is given by M the number of inducing variables.

Therefore, we can chose M to trade off accuracy and computational demand.

The computational cost is linear in the length of the time-series.
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Data from non-linear Dynamical System
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State space representation: f(t) as a function of f(t-1)
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With explicit transitions
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Data from non-linear Dynamical System
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Parameterisation

Let’s use the method on a sequence of length T, with D dimensional observations
and a D dimensional latent state, ie we have TD observations.

The lower bound is to be optimized wrt all the parameters

• the pairwise marginal Gaussian distribution q(x). This contains TD
parameters for the mean and 2TD2 for the covariances.

• the inducing inputs z. For each of the D GPs there are MD inducing inputs,
ie a total of MD2.

• parameters of the observation model C, there are D2 of these
• noise parameters, 2D.
• GP hyperparameters, ∼ D2.

for a grand total of roughly (2T + M)D2.

Example: cart and inverted pendulum, D = 4 and 10 timeseries each of length
100, so T = 1000 and M = 50. So we have 4000 observations and 36832 free
parameters. This large number of parameters may be inconvenient but it doesn’t
lead to overfitting!
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Implementation

Careful implementation is necessary

• q(x) is assumed Markovian. Thus the precision matrix is block tridiagonal.
The covariance is full, don’t write it out, it’s huge!

• q(x) has to be parameterised carefully to allow all pos def matrices, but
without writing out the covariances.

• initialization of parameters is important
• most of the free parameters are in the covariance of q(x). Initially train

with shared covariances across time.
• then continue training with free covariances.
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Conclusions

• Principled, approximate inference in flexible non-linear non-parametric
models for time series are possible and practical

• Allows to integrate over dynamics
• Automatically discover dimensionality of the hidden space – it is not the case

that more latent dimensions lead to higher marginal likelihood

Some other interesting properties include

• Handles missing variables
• Multivariate latent variables and observations straight forward
• flexible non-parametric dynamics model
• Occam’s Razor automatically at work, no overfitting
• Framework includes computational control by limiting M
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Marginalize, don’t optimize

Model with parameters θ
y = fθ(x) + ε

Training data set
D = {xn, yn}, n = 1, . . . , N

Make a prediction about the output y∗ given a new (test) input x∗:

p(y∗|x∗,D) =

∫
p(y∗,θ|x∗,D)dθ

=

∫
p(y∗|x∗,θ)p(θ|D)dθ,

where p(θ|D) is the posterior (proportional to the prior times the likelihood).

Notice, no optimization, ’estimation’ or ’fitting’ or ’tuning’ or ’adapting’, etc.
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• Bayesian inference is not generally equivalent to regularization.
• Maximising likelihood times prior is Penalized Maximum Likelihood
• problem: integrals are difficult.
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