
Predictive Entropy Search for Efficient Global
Optimization of Black-box Functions

José Miguel Hernández-Lobato
jmh233@cam.ac.uk
University of Cambridge

Matthew W. Hoffman
mwh30@cam.ac.uk

University of Cambridge

Zoubin Ghahramani
zoubin@eng.cam.ac.uk

University of Cambridge

Abstract

We propose a novel information-theoretic approach for Bayesian optimization
called Predictive Entropy Search (PES). At each iteration, PES selects the next
evaluation point that maximizes the expected information gained with respect to
the global maximum. PES codifies this intractable acquisition function in terms
of the expected reduction in the differential entropy of the predictive distribu-
tion. This reformulation allows PES to obtain approximations that are both more
accurate and efficient than other alternatives such as Entropy Search (ES). Fur-
thermore, PES can easily perform a fully Bayesian treatment of the model hy-
perparameters while ES cannot. We evaluate PES in both synthetic and real-
world applications, including optimization problems in machine learning, finance,
biotechnology, and robotics. We show that the increased accuracy of PES leads to
significant gains in optimization performance.

1 Introduction

Bayesian optimization techniques form a successful approach for optimizing black-box functions
[5]. The goal of these methods is to find the global maximizer of a nonlinear and generally non-
convex function f whose derivatives are unavailable. Furthermore, the evaluations of f are usually
corrupted by noise and the process that queries f can be computationally or economically very
expensive. To address these challenges, Bayesian optimization devotes additional effort to model-
ing the unknown function f and its behavior. These additional computations aim to minimize the
number of evaluations that are needed to find the global optima.

Optimization problems are widespread in science and engineering and as a result so are Bayesian
approaches to this problem. Bayesian optimization has successfully been used in robotics to adjust
the parameters of a robot’s controller to maximize gait speed and smoothness [16] as well as param-
eter tuning for computer graphics [6]. Another example application in drug discovery is to find the
chemical derivative of a particular molecule that best treats a given disease [20]. Finally, Bayesian
optimization can also be used to find optimal hyper-parameter values for statistical [29] and machine
learning techniques [24].

As described above, we are interested in finding the global maximizer x? = arg maxx∈X f(x) of
a function f over some bounded domain, typically X ⊂ Rd. We assume that f(x) can only be
evaluated via queries to a black-box that provides noisy outputs of the form yi ∼ N (f(xi), σ

2).
We note, however, that our framework can be extended to other non-Gaussian likelihoods. In this
setting, we describe a sequential search algorithm that, after n iterations, proposes to evaluate f at
some location xn+1. To make this decision the algorithm conditions on all previous observations
Dn = {(x1, y1), . . . , (xn, yn)}. AfterN iterations the algorithm makes a final recommendation x̃N
for the global maximizer of the latent function f .

We take a Bayesian approach to the problem described above and use a probabilistic model for the
latent function f to guide the search and to select x̃N . In this work we use a zero-mean Gaussian

1

Algorithm 1 Generic Bayesian optimization
Input: a black-box with unknown mean f
1: for n = 1, . . . , N do
2: select xn = argmaxx∈X αn−1(x)
3: query the black-box at xn to obtain yn
4: augment data Dn = Dn−1 ∪ {(xn, yn)}
5: end for
6: return x̃N = argmaxx∈X µN (x)

Algorithm 2 PES acquisition function
Input: a candidate x; data Dn

1: sample M hyperparameter values {ψ(i)}
2: for i = 1, . . . ,M do
3: sample f (i) ∼ p(f |Dn,φ,ψ

(i))

4: set x(i)
? ← argmaxx∈X f

(i)(x)

5: compute m
(i)
0 , V(i)

0 and m̃(i), ṽ(i)

6: compute v(i)n (x) and v(i)n (x|x(i)
?)

7: end for
8: return αn(x) as in (10)

precom
puted

process (GP) prior for f [22]. This prior is specified by a positive-definite kernel function k(x,x′).
Given any finite collection of points {x1, . . . ,xn}, the values of f at these points are jointly zero-
mean Gaussian with covariance matrix Kn, where [Kn]ij = k(xi,xj). For the Gaussian likelihood
described above, the vector of concatenated observations yn is also jointly Gaussian with zero-mean.
Therefore, at any location x, the latent function f(x) conditioned on past observations Dn is then
Gaussian with marginal mean µn(x) and variance vn(x) given by

µn(x) = kn(x)T(Kn + σ2I)−1yn , vn(x) = k(x,x)− kn(x)T(Kn + σ2I)−1kn(x) , (1)

where kn(x) is a vector of cross-covariance terms between x and {x1, . . . ,xn}.
Bayesian optimization techniques use the above predictive distribution p(f(x)|Dn) to guide the
search for the global maximizer x?. In particular, p(f(x)|Dn) is used during the computation of an
acquisition function αn(x) that is optimized at each iteration to determine the next evaluation loca-
tion xn+1. This process is shown in Algorithm 1. Intuitively, the acquisition function αn(x) should
be high in areas where the maxima is most likely to lie given the current data. However, αn(x)
should also encourage exploration of the search space to guarantee that the recommendation x̃N is a
global optimum of f , not just a global optimum of the posterior mean. Several acquisition functions
have been proposed in the literature. Some examples are the probability of improvement (PI) [14],
the expected improvement (EI) [19, 13] or upper confidence bounds (UCB) [26]. Alternatively, one
can combine several of these acquisition functions [10].

The acquisition functions described above are based on probabilistic measures of improvement (PI
an EI) or on optimistic estimates of the latent function (UCB) which implicitly trade off between
exploiting the posterior mean and exploring based on the uncertainty. An alternate approach, in-
troduced by [28], proposes maximizing the expected posterior information gain about the global
maximizer x? evaluated over a grid in the input space. A similar strategy was later employed by [9]
which although it requires no such grid, instead relies on a difficult-to-evaluate approximation. In
Section 2 we derive a rearrangement of this information-based acquisition function which leads to a
more straightforward approximation that we call Predictive Entropy Search (PES). In Section 3 we
show empirically that our approximation is more accurate than that of [9]. We evaluate this claim on
both synthetic and real-world problems and further show that this leads to real gains in performance.

2 Predictive entropy search

We propose to follow the information-theoretic method for active data collection described in [17].
We are interested in maximizing information about the location x? of the global maximum, whose
posterior distribution is p(x?|Dn). Our current information about x? can be measured in terms
of the negative differential entropy of p(x?|Dn). Therefore, our strategy is to select xn+1 which
maximizes the expected reduction in this quantity. The corresponding acquisition function is

αn(x) = H[p(x?|Dn)]− Ep(y|Dn,x)[H[p(x?|Dn ∪ {(x, y)})]] , (2)

where H[p(x)] = −
∫
p(x) log p(x)dx represents the differential entropy of its argument and the

expectation above is taken with respect to the posterior predictive distribution of y given x. The
exact evaluation of (2) is infeasible in practice. The main difficulties are i) p(x?|Dn ∪ {(x, y)})
must be computed for many different values of x and y during the optimization of (2) and ii) the
entropy computations themselves are not analytical. In practice, a direct evaluation of (2) is only

2

possible after performing many approximations [9]. To avoid this, we follow the approach described
in [11] by noting that (2) can be equivalently written as the mutual information between x? and y
given Dn. Since the mutual information is a symmetric function, αn(x) can be rewritten as

αn(x) = H[p(y|Dn,x)]− Ep(x?|Dn)[H[p(y|Dn,x,x?)]] , (3)

where p(y|Dn,x,x?) is the posterior predictive distribution for y given the observed data Dn and
the location of the global maximizer of f . Intuitively, conditioning on the location x? pushes the
posterior predictions up in locations around x? and down in regions away from x?. Note that, unlike
the previous formulation, this objective is based on the entropies of predictive distributions, which
are analytic or can be easily approximated, rather than on the entropies of distributions on x? whose
approximation is more challenging.

The first term in (3) can be computed analytically using the posterior marginals for f(x) in (1), that
is, H[p(y|Dn,x)] = 0.5 log[2πe (vn(x) + σ2)], where we add σ2 to vn(x) because y is obtained
by adding Gaussian noise with variance σ2 to f(x). The second term, on the other hand, must be
approximated. We first approximate the expectation in (3) by averaging over samples x

(i)
? drawn

approximately from p(x?|Dn). For each of these samples, we then approximate the corresponding
entropy function H[p(y|Dn,x,x(i)

?)] using expectation propagation [18]. The code for all these
operations is publicly available at http://jmhl.org.

2.1 Sampling from the posterior over global maxima

In this section we show how to approximately sample from the conditional distribution of the global
maximizer x? given the observed data Dn, that is,

p(x?|Dn) = p
(
f(x?) = max

x∈X
f(x)

∣∣Dn) . (4)

If the domain X is restricted to some finite set of m points, the latent function f takes the form
of an m-dimensional vector f . The probability that the ith element of f is optimal can then be
written as

∫
p(f |Dn)

∏
j≤m I[fi ≥ fj] df . This suggests the following generative process: i) draw

a sample from the posterior distribution p(f |Dn) and ii) return the index of the maximum element
in the sampled vector. This process is known as Thompson sampling or probability matching when
used as an arm-selection strategy in multi-armed bandits [8]. This same approach could be used for
sampling the maximizer over a continuous domainX . At first glance this would require constructing
an infinite-dimensional object representing the function f . To avoid this, one could sequentially
construct f while it is being optimized. However, evaluating such an f would ultimately have cost
O(m3) where m is the number of function evaluations necessary to find the optimum. Instead,
we propose to sample and optimize an analytic approximation to f . We will briefly derive this
approximation below, but more detail is given in Appendix A.

Given a shift-invariant kernel k, Bochner’s theorem [4] asserts the existence of its Fourier dual s(w),
which is equal to the spectral density of k. Letting p(w) = s(w)/α be the associated normalized
density, we can write the kernel as the expectation

k(x,x′) = αEp(w)[e
−iwT(x−x′)] = 2αEp(w,b)[cos(wTx + b) cos(wTx′ + b)] , (5)

where b ∼ U [0, 2π]. Let φ(x) =
√

2α/m cos(Wx+b) denote an m-dimensional feature mapping
where W and b consist of m stacked samples from p(w, b). The kernel k can then be approximated
by the inner product of these features, k(x,x′) ≈ φ(x)Tφ(x′). This approach was used by [21]
as an approximation method in the context of kernel methods. The feature mapping φ(x) allows
us to approximate the Gaussian process prior for f with a linear model f(x) = φ(x)Tθ where
θ ∼ N (0, I) is a standard Gaussian. By conditioning on Dn, the posterior for θ is also multivariate
Gaussian, θ|Dn ∼ N (A−1ΦTyn, σ

2A−1) where A = ΦTΦ + σ2I and ΦT = [φ(x1) . . .φ(xn)].

Let φ(i) and θ(i) be a random set of features and the corresponding posterior weights sampled both
according to the generative process given above. They can then be used to construct the function
f (i)(x) = φ(i)(x)Tθ(i), which is an approximate posterior sample of f—albeit one with a finite
parameterization. We can then maximize this function to obtain x

(i)
? = arg maxx∈X f

(i)(x), which
is approximately distributed according to p(x?|Dn). Note that for early iterations when n < m, we
can efficiently sample θ(i) with cost O(n2m) using the method described in Appendix B.2 of [23].
This allows us to use a large number of features in φ(i)(x).

3

http://jmhl.org

2.2 Approximating the predictive entropy

We now show how to approximate H[p(y|Dn,x,x?)] in (3). Note that we can write the argument to
H in this expression as p(y|Dn,x,x?) =

∫
p(y|f(x))p(f(x)|Dn,x?) df(x). Here p(f(x)|Dn,x?)

is the posterior distribution on f(x) given Dn and the location x? of the global maximizer of f .
When the likelihood p(y|f(x)) is Gaussian, we have that p(f(x)|Dn) is analytically tractable since it
is the predictive distribution of a Gaussian process. However, by further conditioning on the location
x? of the global maximizer we are introducing additional constraints, namely that f(z) ≤ f(x?)
for all z ∈ X . These constraints make p(f(x)|Dn,x?) intractable. To circumvent this difficulty, we
instead use the following simplified constraints:

C1. x? is a local maximum. This is achieved by letting ∇f(x?) = 0 and ensuring that
∇2f(x?) is negative definite. We further assume that the non-diagonal elements of
∇2f(x?), denoted by upper[∇2f(x?)], are known, for example they could all be zero.
This simplifies the negative-definite constraint. We denote by C1.1 the constraint given by
∇f(x?) = 0 and upper[∇2f(x?)] = 0. We denote by C1.2 the constraint that forces the
elements of diag[∇2f(x?)] to be negative.

C2. f(x?) is larger than past observations. We also assume that f(x?) ≥ f(xi) for all
i ≤ n. However, we only observe f(xi) noisily via yi. To avoid making inference on these
latent function values, we approximate the above hard constraints with the soft constraint
f(x?) > ymax + ε, where ε ∼ N (0, σ2) and ymax is the largest yi seen so far.

C3. f(x) is smaller than f(x?). This simplified constraint only conditions on the given x
rather than requiring f(x?) ≤ f(z) for all z ∈ X .

We incorporate these simplified constraints into p(f(x)|Dn) to approximate p(f(x)|Dn,x?). This
is achieved by multiplying p(f(x)|Dn) with specific factors that encode the above constraints. In
what follows we briefly show how to construct these factors; more detail is given in Appendix B.

Consider the latent variable z = [f(x?); diag[∇2f(x?)]]. To incorporate constraint C1.1 we
can condition on the data and on the “observations” given by the constraints ∇f(x?) = 0 and
upper[∇2f(x?)] = 0. Since f is distributed according to a GP, the joint distribution between z and
these observations is multivariate Gaussian. The covariance between the noisy observations yn and
the extra noise-free derivative observations can be easily computed [25]. The resulting conditional
distribution is also multivariate Gaussian with mean m0 and covariance V0. These computations
are similar to those performed in (1). Constraints C1.2 and C2 can then be incorporated by writing

p(z|Dn,C1,C2) ∝ Φσ2(f(x?)− ymax)
[∏d

i=1 I
(
[∇2f(x?)]ii ≤ 0

)]
N (z|m0,V0) , (6)

where Φσ2 is the cdf of a zero-mean Gaussian distribution with variance σ2. The first new factor in
this expression guarantees that f(x?) > ymax + ε, where we have marginalized ε out, and the second
set of factors guarantees that the entries in diag[∇2f(x?)] are negative.

Later integrals that make use of p(z|Dn,C1,C2), however, will not admit a closed-form expres-
sion. As a result we compute a Gaussian approximation q(z) to this distribution using Expectation
Propagation (EP) [18]. The resulting algorithm is similar to the implementation of EP for binary
classification with Gaussian processes [22]. EP approximates each non-Gaussian factor in (6) with
a Gaussian factor whose mean and variance are m̃i and ṽi, respectively. The EP approximation can
then be written as q(z) ∝ [

∏d+1
i=1 N (zi|m̃i, ṽi)]N (z|m0,V0). Note that these computations have so

far not depended on x, so we can compute {m0,V0, m̃, ṽ} once and store them for later use, where
m̃ = (m̃1, . . . , m̃d+1) and ṽ = (ṽ1, . . . , ṽd+1).

We will now describe how to compute the predictive variance of some latent function value f(x)
given these constraints. Let f = [f(x); f(x?)] be a vector given by the concatenation of the values
of the latent function at x and x?. The joint distribution between f , z, the evaluations yn collected
so far and the derivative “observations” ∇f(x?) = 0 and upper[∇2f(x?)] = 0 is multivariate
Gaussian. Using q(z), we then obtain the following approximation:

p(f |Dn,C1,C2) ≈
∫
p(f |z,Dn,C1.1) q(z) dz = N (f |mf ,Vf) . (7)

Implicitly we are assuming above that f depends on our observations and constraint C1.1, but is
independent of C1.2 and C2 given z. The computations necessary to obtain mf and Vf are similar

4

to those used above and in (1). The required quantities are similar to the ones used by EP to make
predictions in the Gaussian process binary classifier [22]. We can then incorporate C3 by multiplying
N (f |mf ,Vf) with a factor that guarantees f(x) < f(x?). The predictive distribution for f(x) given
Dn and all the constraints can be approximated as

p(f(x)|Dn,C1,C2,C3) ≈ Z−1
∫
I(f1 < f2)N (f |mf ,Vf) df2 , (8)

where Z is a normalization constant. The variance of the right hand size of (8) is given by
vn(x|x?) = [Vf]1,1 − v−1β(β + α){[Vf]1,1 − [Vf]1,2}2 , (9)

where v = [−1, 1]TVf [−1, 1], α = m/
√
v, m = [−1, 1]Tmf , β = φ(α)/Φ(α), and φ(·) and

Φ(·) are the standard Gaussian density function and cdf, respectively. By further approximat-
ing (8) by a Gaussian distribution with the same mean and variance we can write the entropy as
H[p(y|Dn,x,x?)] ≈ 0.5 log[2πe(vn(x|x?) + σ2)].

The computation of (9) can be numerically unstable when s is very close to zero. This occurs when
[Vf]1,1 is very similar to [Vf]1,2. To avoid these numerical problems, we multiply [Vf]1,2 by the
largest 0 ≤ κ ≤ 1 that guarantees that s > 10−10. This can be understood as slightly reducing
the amount of dependence between f(x) and f(x?) when x is very close to x?. Finally, fixing
upper[∇2f(x?)] to be zero can also produce poor predictions when the actual f does not satisfy
this constraint. To avoid this, we instead fix this quantity to upper[∇2f (i)(x?)], where f (i) is the
ith sample function optimized in Section 2.1 to sample x

(i)
? .

2.3 Hyperparameter learning and the PES acquisition function

We now show how the previous approximations are integrated to compute the acquisition function
used by predictive entropy search (PES). This acquisition function performs a formal treatment of the
hyperparameters. Let ψ denote a vector of hyperparameters which includes any kernel parameters
as well as the noise variance σ2. Let p(ψ|Dn) ∝ p(ψ) p(Dn|ψ) denote the posterior distribution
over these parameters where p(ψ) is a hyperprior and p(Dn|ψ) is the GP marginal likelihood. For a
fully Bayesian treatment of ψ we must marginalize the acquisition function (3) with respect to this
posterior. The corresponding integral has no analytic expression and must be approximated using
Monte Carlo. This approach is also taken in [24].

We draw M samples {ψ(i)} from p(ψ|Dn) using slice sampling [27]. Let x
(i)
? denote a sampled

global maximizer drawn from p(x?|Dn,ψ(i)) as described in Section 2.1. Furthermore, let v(i)n (x)

and v
(i)
n (x|x(i)

?) denote the predictive variances computed as described in Section 2.2 when the
model hyperparameters are fixed to ψ(i). We then write the marginalized acquisition function as

αn(x) = 1
M

∑M
i=1

{
0.5 log[v

(i)
n (x) + σ2]− 0.5 log[v

(i)
n (x|x(i)

?) + σ2]
}
. (10)

Note that PES is effectively marginalizing the original acquisition function (2) over p(ψ|Dn). This
is a significant advantage with respect to other methods that optimize the same information-theoretic
acquisition function but do not marginalize over the hyper-parameters. For example, the approach
of [9] approximates (2) only for fixed ψ. The resulting approximation is computationally very ex-
pensive and recomputing it to average over multiple samples from p(ψ|Dn) is infeasible in practice.

Algorithm 2 shows pseudo-code for computing the PES acquisition function. Note that most of the
computations necessary for evaluating (10) can be done independently of the input x, as noted in the
pseudo-code. This initial cost is dominated by a matrix inversion necessary to pre-compute V for
each hyperparameter sample. The resulting complexity isO[M(n+d+d(d−1)/2)3]. This cost can
be reduced to O[M(n + d)3] by ignoring the derivative observations imposed on upper[∇2f(x?)]
by constraint C1.1. Nevertheless, in the problems that we consider d is very small (less than 20).
After these precomputations are done, the evaluation of (10) is O[M(n+ d+ d(d− 1)/2)].

3 Experiments

In our experiments, we use Gaussian process priors for f with squared-exponential kernels
k(x,x′) = γ2 exp{−0.5

∑
i(xi−x′i)2/`2i }. The corresponding spectral density is zero-mean Gaus-

sian with covariance given by diag([`−2i]) and normalizing constant α = γ2. The model hyperpa-
rameters are {γ, `1, . . . , `d, σ2}. We use broad, uninformative Gamma hyperpriors.

5

0.20

0.25

0.30

0.35

x
x

x

x

x

x

x

x

x

x0.2

0.
2

0.2

0.
25

0.25

0.25

0.
25

0.25

0.25

0.3

0.35

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x
x

x

x

x

x

x

x

x

x

0

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.
02

0.03

0.03

0.03

0.03

0.03

0.03

0.
04

0.

04

0.04

0.04

0.05

0.05

0.06

0.06

0.06

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x
x

x

x

x

x

x

x

x

x

0.05

0.05

0.05

0.05

0.
05

0.
1

0.1

0.
1

0.15

0.2

0.2

0.25

0.25

Figure 1: Comparison of different estimates of the objective function αn(x) given by (2). Left, ground truth
obtained by the rejection sampling method RS. Middle, approximation produced by the ES method. Right,
approximation produced by the proposed PES method. These plots show that the PES objective is much more
similar to the RS ground truth than the ES objective.

First, we analyze the accuracy of PES in the task of approximating the differential entropy (2).
We compare the PES approximation (10), with the approximation used by the entropy search (ES)
method [9]. We also compare with the ground truth for (2) obtained using a rejection sampling (RS)
algorithm based on (3). For this experiment we generate the data Dn using an objective function f
sampled from the Gaussian process prior as in [9]. The domain X of f is fixed to be [0, 1]2 and data
are generated using γ2 = 1, σ2 = 10−6, and `2i = 0.1. To compute (10) we avoid sampling the
hyperparameters and use the known values directly. We further fix M = 200 and m = 1000.

The ground truth rejection sampling scheme works as follows. First,X is discretized using a uniform
grid. The expectation with respect to p(x?|Dn) in (3) is then approximated using sampling. For this,
we sample x? by evaluating a random sample from p(f |Dn) on each grid cell and then selecting the
cell with highest value. Given x?, we then approximate H[p(y|Dn,x,x?)] by rejection sampling.
We draw samples from p(f |Dn) and reject those whose corresponding grid cell with highest value is
not x?. Finally, we approximate H[p(y|Dn,x,x?)] by first, adding zero-mean Gaussian noise with
variance σ2 to the the evaluations at x of the functions not rejected during the previous step and
second, we estimate the differential entropy of the resulting samples using kernels [1].

Figure 1 shows the objective functions produced by RS, ES and PES for a particular Dn with 10
measurements whose locations are selected uniformly at random in [0, 1]2. The locations of the
collected measurements are displayed with an “x” in the plots. The particular objective function
used to generate the measurements in Dn is displayed in the left part of Figure 2. The plots in
Figure 1 show that the PES approximation to (2) is more similar to the ground truth given by RS
than the approximation produced by ES. In this figure we also see a discrepancy between RS and
PES at locations near x = (0.572, 0.687). This difference is an artifact of the discretization used in
RS. By zooming in and drawing many more samples we would see the same behavior in both plots.

We now evaluate the performance of PES in the task of finding the optimum of synthetic black-box
objective functions. For this, we reproduce the within-model comparison experiment described in
[9]. In this experiment we optimize objective functions defined in the 2-dimensional unit domain
X = [0, 1]2. Each objective function is generated by first sampling 1024 function values from the
GP prior assumed by PES, using the same γ2, `i and σ2 as in the previous experiment. The objective
function is then given by the resulting GP posterior mean. We generated a total of 1000 objective
functions by following this procedure. The left plot in Figure 2 shows an example function.

In these experiments we compared the performance of PES with that of ES [9] and expected im-
provement (EI) [13], a widely used acquisition function in the Bayesian optimization literature. We
again assume that the optimal hyper-parameter values are known to all methods. Predictive perfor-
mance is then measured in terms of the immediate regret (IR) |f(x̃n) − f(x?)|, where x? is the
known location of the global maximum and x̃n is the recommendation of each algorithm had we
stopped at step n—for all methods this is given by the maximizer of the posterior mean. The right
plot in Figure 2 shows the decimal logarithm of the median of the IR obtained by each method
across the 1000 different objective functions. Confidence bands equal to one standard deviation are
obtained using the bootstrap method. Note that while averaging these results is also interesting,
corresponding to the expected performance averaged over the prior, here we report the median IR

6

−2

−1

0

1

2

x
x

x

x

x

x

x

x

x

x

−2

−1.5

−1.5
−1

−1

−1

−1

−
1

−0.5

−0.5

−0.5

−0.5

−0.5

−0.5

−0.5

0

0

0

0

0 0

0

0

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

1

1

1

1

1

1

1.
5

1.
5

1.5

2

● ●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

● ● ●
● ● ● ● ●

● ● ● ●

●
●

●
●

●
●

● ● ● ● ● ●
● ●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

−5.5

−4.5

−3.5

−2.5

−1.5

−0.5

0 10 20 30 40 50
Number of Function Evaluations

L
o
g
10

 M
ed

ia
n
 IR

Methods

●

●

●

EI

ES

PES

Results on Synthetic Cost Functions

Figure 2: Left, example of objective functions f . Right, median of the immediate regret (IR) for the methods
PES, ES and EI in the experiments with synthetic objective functions.

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

● ● ●

●

●
● ● ●

●

●

●

●

●

●
●

●
●

●

●

● ●
● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

● ●
● ● ● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

● ●
●

●
●

−3.9

−2.9

−1.9

−0.9

0 10 20 30

Number of Function Evaluations

L
o

g
10

 M
ed

ia
n

 IR

Methods

●

●

●

●

EI

ES

PES

PES−NB

Results on Branin Cost Function

● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ● ●
● ●

●

●

●

●

●
●

● ●
●

● ●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ● ●
●

●
●

● ●

−4.6

−3.6

−2.6

−1.6

−0.6

0 10 20 30

Number of Function Evaluations

Results on Cosines Cost Function
● ● ●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

● ● ●

●
● ●

●
● ●

●
● ● ● ●

●
●

●
● ●

● ● ●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

● ● ●

●
● ●

● ●
●

●
● ●

● ●
● ●

● ● ●
● ● ● ●

● ● ●

●
●

●
● ● ●

●
●

●

● ●
●

●
●

●
● ●

●

● ●
● ●

●
● ●

●
●

●
●

●

●
● ● ● ●

●
● ●

● ● ● ● ●

● ● ●
●

● ● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●−2.7

−1.7

−0.7

0 10 20 30 40 50

Number of Function Evaluations

Results on Hartmann Cost Function

Figure 3: Median of the immediate regret (IR) for the methods EI, ES, PES and PES-NB in the experiments
with well-known synthetic benchmark functions.

because the empirical distribution of IR values is very heavy-tailed. In this case, the median is more
representative of the exact location of the bulk of the data. These results indicate that the best method
in this setting is PES, which significantly outperforms ES and EI. The plot also shows that in this
case ES is significantly better than EI.

We perform another series of experiments in which we optimize well-known synthetic benchmark
functions including a mixture of cosines [2] and Branin-Hoo (both functions defined in [0, 1]2) as
well as the Hartmann-6 (defined in [0, 1]6) [15]. In all instances, we fix the measurement noise
to σ2 = 10−3. For both PES and EI we marginalize the hyperparameters ψ using the approach
described in Section 2.3. ES, by contrast, cannot average its approximation of (2) over the posterior
on ψ. Instead, ES works by fixing ψ to an estimate of its posterior mean (obtained using slice
sampling) [27]. To evaluate the gains produced by the fully Bayesian treatment ofψ in PES, we also
compare with a version of PES (PES-NB) which performs the same non-Bayesian (NB) treatment
of ψ as ES. In PES-NB we use a single fixed hyperparameter as in previous sections with value
given by the posterior mean of ψ. All the methods are initialized with three random measurements
collected using latin hypercube sampling [5].

The plots in Figure 3 show the median IR obtained by each method on each function across 250
random initializations. Overall, PES is better than PES-NB and ES. Furthermore, PES-NB is also
significantly better than ES in most of the cases. These results show that the fully Bayesian treatment
of ψ in PES is advantageous and that PES can produce better approximations than ES. Note that
PES performs better than EI in the Branin and cosines functions, while EI is significantly better on
the Hartmann problem. This appears to be due to the fact that entropy-based strategies explore more
aggressively which in higher-dimensional spaces takes more iterations. The Hartmann problem,
however, is a relatively simple problem and as a result the comparatively more greedy behavior of
EI does not result in significant adverse consequences. Note that the synthetic functions optimized
in the previous experiment were much more multimodal that the ones considered here.

3.1 Experiments with real-world functions

We finally optimize different real-world cost functions. The first one (NNet) returns the predictive
accuracy of a neural network on a random train/test partition of the Boston Housing dataset [3].

7

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

●
● ● ●

● ●

● ●
●

●
● ● ● ● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
● ●

● ●

●

●
● ●

●

●

● ● ●
● ● ●

●
●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

● ● ●

●
●

●

●
●

●

●

● ● ●

●
●

●
●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

●
●

●
●

●

●
●

● ●
● ●

● ●
●

● ●

● ●
● ●

● ●
●

●
●

● ●
●

−1.4

−0.4

0.6

0 10 20 30 40

Function Evaluations

L
o

g
10

 M
ed

ia
n

 IR

Methods

●

●

●

●

EI

ES

PES

PES−NB

NNet Cost

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

● ●

●
●

●
● ●

●

● ●
●

● ● ●
●

●
● ● ●

●
●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
● ● ●

●
● ●

●

● ●

●

● ●
● ● ●

●
● ●

● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

● ●

●
●

● ●
●

●

● ●

●

● ●
●

● ● ● ● ● ●

●
●

●

●

● ●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

● ●
● ●

● ● ● ●
●

●
● ●

● ● ● ● ●
● ● ●

−0.1
0 10 20 30 40

Function Evaluations

Hydrogen

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

● ●
●

●
● ●

● ●
● ●

● ●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●
●

●

●
●

● ●

●
●

● ●
●

●
●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

● ● ●

●

●
●

●

● ● ●

●
●

● ●

● ●
●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●
●

● ●

● ●
● ● ● ● ●

●
●

● ●
●

●
●

● ●
●

−1.9

−0.9

0 10 20 30 40

Function Evaluations

Portfolio

● ● ●

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.9

−0.9

0 10 20 30

Function Evaluations

Walker A

−0.3

● ●

●

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●
●

● ● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●
● ● ● ●

●
●

●

0 10 20 30

Function Evaluations

Walker B

Figure 4: Median of the immediate regret (IR) for the methods PES, PES-NB, ES and EI in the experiments
with non-analytic real-world cost functions.

The variables to optimize are the weight-decay parameter and the number of training iterations for
the neural network. The second function (Hydrogen) returns the amount of hydrogen production of
a particular bacteria in terms of the PH and Nitrogen levels of the growth medium [7]. The third
one (Portfolio) returns the ratio of the mean and the standard deviation (the Sharpe ratio) of the
1-year ahead returns generated by simulations from a multivariate time-series model that is adjusted
to the daily returns of stocks AXP, BA and HD. The time-series model is formed by univariate
GARCH models connected with a Student’s t copula [12]. These three functions (NNet, Hydrogen
and Portfolio) have as domain [0, 1]2. Furthermore, in these examples, the ground truth function
that we want to optimize is unknown and is only available through noisy measurements. To obtain
a ground truth, we approximate each cost function as the predictive distribution of a GP that is
adjusted to data sampled from the original function (1000 uniform samples for NNet and Portfolio
and all the available data for Hydrogen [7]). Finally, we also consider another real-world function
that returns the walking speed of a bipedal robot [30]. This function is defined in [0, 1]8 and its
inputs are the parameters of the robot’s controller. In this case the ground truth function is noiseless
and can be exactly evaluated through expensive numerical simulation. We consider two versions of
this problem (Walker A) with zero-mean, additive noise of σ = 0.01 and (Walker B) with σ = 0.1.

Figure 4 shows the median IR values obtained by each method on each function across 250 random
initializations, except in Hydrogen where we used 500 due to its higher level of noise. Overall, PES,
ES and PES-NB perform similarly in NNet, Hydrogen and Portfolio. EI performs rather poorly in
these first three functions. This method seems to make excessively greedy decisions and fails to
explore the search space enough. This strategy seems to be advantageous in Walker A, where EI
obtains the best results. By contrast, PES, ES and PES-NB tend to explore more in this latter dataset.
This leads to worse results than those of EI. Nevertheless, PES is significantly better than PES-NB
and ES in both Walker datasets and better than EI in the noisier Walker B. In this case, the fully
Bayesian treatment of hyper-parameters performed by PES produces improvements in performance.

4 Conclusions

We have proposed a novel information-theoretic approach for Bayesian optimization. Our method,
predictive entropy search (PES), greedily maximizes the amount of one-step information on the loca-
tion x? of the global maximum using its posterior differential entropy. Since this objective function
is intractable, PES approximates the original objective using a reparameterization that measures
entropy in the posterior predictive distribution of the function evaluations. PES produces more ac-
curate approximations than Entropy Search (ES), a method based on the original, non-transformed
acquisition function. Furthermore, PES can easily marginalize its approximation with respect to
the posterior distribution of its hyper-parameters, while ES cannot. Experiments with synthetic and
real-world functions show that PES often outperforms ES in terms of immediate regret. In these ex-
periments, we also observe that PES often produces better results than expected improvement (EI),
a popular heuristic for Bayesian optimization. EI often seems to make excessively greedy deci-
sions, while PES tends to explore more. As a result, EI seems to perform better for simple objective
functions while often getting stuck with noisier objectives or for functions with many modes.

Acknowledgements J.M.H.L acknowledges support from the Rafael del Pino Foundation.

8

References
[1] I. Ahmad and P.-E. Lin. A nonparametric estimation of the entropy for absolutely continuous distributions.

IEEE Transactions on Information Theory, 22(3):372–375, 1976.
[2] B. S. Anderson, A. W. Moore, and D. Cohn. A nonparametric approach to noisy and costly optimization.

In ICML, pages 17–24, 2000.
[3] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[4] S. Bochner. Lectures on Fourier integrals. Princeton University Press, 1959.
[5] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions,

with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC
TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science, University of British Columbia, 2009.

[6] E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with discrete choice data. In NIPS,
pages 409–416, 2007.

[7] E. H. Burrows, W.-K. Wong, X. Fern, F. W. R. Chaplen, and R. L. Ely. Optimization of ph and nitrogen
for enhanced hydrogen production by synechocystis sp. pcc 6803 via statistical and machine learning
methods. Biotechnology Progress, 25(4):1009–1017, 2009.

[8] O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In NIPS, pages 2249–2257, 2011.
[9] P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization. Journal of

Machine Learning Research, 13, 2012.
[10] M. W. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI,

pages 327–336, 2011.
[11] N. Houlsby, J. M. Hernández-Lobato, F. Huszar, and Z. Ghahramani. Collaborative Gaussian processes

for preference learning. In NIPS, pages 2096–2104, 2012.
[12] E. Jondeau and M. Rockinger. The copula-GARCH model of conditional dependencies: An international

stock market application. Journal of international money and finance, 25(5):827–853, 2006.
[13] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box func-

tions. Journal of Global optimization, 13(4):455–492, 1998.
[14] H. Kushner. A new method of locating the maximum of an arbitrary multipeak curve in the presence of

noise. Journal of Basic Engineering, 86, 1964.
[15] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University of Alberta, Canada, 2008.
[16] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with Gaussian process

regression. In IJCAI, pages 944–949, 2007.
[17] D. J. MacKay. Information-based objective functions for active data selection. Neural Computation,

4(4):590–604, 1992.
[18] T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts

Institute of Technology, 2001.
[19] J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum.

In L. Dixon and G. Szego, editors, Toward Global Optimization, volume 2. Elsevier, 1978.
[20] D. M. Negoescu, P. I. Frazier, and W. B. Powell. The knowledge-gradient algorithm for sequencing

experiments in drug discovery. INFORMS Journal on Computing, 23(3):346–363, 2011.
[21] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177–1184,

2007.
[22] C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning. The MIT Press, 2006.
[23] M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine

Learning Research, 9:759–813, 2008.
[24] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algo-

rithms. In NIPS, pages 2960–2968, 2012.
[25] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. Derivative observations in

Gaussian process models of dynamic systems. In NIPS, pages 1057–1064, 2003.
[26] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting:

No regret and experimental design. In ICML, pages 1015–1022, 2010.
[27] J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. Bayesian modeling

with Gaussian processes using the matlab toolbox GPstuff (v3.3). CoRR, abs/1206.5754, 2012.
[28] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of

expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509–534, 2009.
[29] Z. Wang, S. Mohamed, and N. de Freitas. Adaptive Hamiltonian and Riemann Monte Carlo samplers. In

ICML, 2013.
[30] E. Westervelt and J. Grizzle. Feedback Control of Dynamic Bipedal Robot Locomotion. Control and

Automation Series. CRC PressINC, 2007.

9

Supplementary material for: Predictive Entropy Search
for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato, Matthew W. Hoffman and Zoubin Ghahramani

A Details on approximating GP sample paths

In this section we give further details about the approach used in Section 2.1 to approximate a GP
using random features. These random features can be used to approximate sample paths from the
GP posterior. By optimizing these sample paths we obtain posterior samples over the global maxima
x?. We derive in more detail the kernel approximation from (5). Formally, the theorem of [4] states
Theorem 1 (Bochner’s theorem). A continuous, shift-invariant kernel is positive definite if and only
if it is the Fourier transform of a non-negative, finite measure.

As a result given some kernel k(x,x′) = k(x− x′,0) there must exist an associated density s(w),
known as its spectral density, which is the Fourier dual of k. This can be written as

k(x,x′) =

∫
e−iw

T(x−x′)s(w) dw,

s(w) =
1

(2π)d

∫
eiw

Tτk(τ ,0) dτ .

Further, we can treat this measure as a probability density p(w) = s(w)/α where α =
∫
s(w) dw

is the normalizing constant. Consequently, the kernel can be written as

k(x,x′) = αEp(w)[e
−iwT(x−x′)]

and due to the symmetry of p(w) [see 22] we can write the expectation as

= αEp(w)[
1
2 (e−iw

T(x−x′) + eiw
T(x−x′))]

= αEp(w)[cos(wTx−wTx′)] .

We can then note that
∫ 2π

0
cos(a + 2b) db = 0 for any constant offset a ∈ R. As a result, for b

uniformly distributed between 0 and 2π we can write

= αEp(w)[cos(wTx−wTx′) + Ep(b)[cos(wTx + wTx′ + 2b)]]

= αEp(w,b)[cos(wTx + b−wTx′ − b) + cos(wTx + b+ wTx′ + b)]

= 2αEp(w,b)[cos(wTx + b) cos(wTx′ + b)] .

The last equality can be derived from the sum of angles formula, which leads to the identity:
2 cos(x) cos(y) = cos(x− y) + cos(x+ y). Finally, we can average over m weights and phases

=
2α

m
Ep(W,b)[cos(Wx + b)T cos(Wx′ + b)] ,

where [W]i ∼ p(w) and [b]i ∼ p(b) are stacked versions of the original random variables. The
resulting quantity has the same expectation but results in a lower variance estimator. If we let
φ(x) =

√
2α/m cos(Wx + b) denote a random m-dimensional feature generated by this model

we can also write the kernel as k(x,x′) = Ep(φ)[φ(x)Tφ(x′)].

We now briefly show the equivalence between a Bayesian linear model using random features φ and
a GP with kernel k. Consider now a linear model f(x) = φ(x)Tθ where θ ∼ N (0, I) has a standard
Gaussian distribution and observations Dn = {(xi, yi)}i≤n of the form yi ∼ N (f(xi), σ

2). The
posterior of θ given (Dn,φ) is also normal N (m,V) where

m = (ΦTΦ + σ2I)−1ΦTy,

V = (ΦTΦ + σ2I)−1σ2,

10

and where [Φ]i = φ(xi) and [y]i = yi consist of the stacked features and observations respectively.
We can also easily write the predictive distribution over f evaluated at a test point x, which is
Gaussian distributed with mean and variance given by

µn(x) = φ(x)T(ΦTΦ + σ2I)−1ΦTy,

vn(x) = φ(x)T(ΦTΦ + σ2I)−1φ(x)σ2.

By a simple application of the matrix-inversion lemma these quantities can be rewritten in terms
which only make use of the inner products between features,

µn(x) = φ(x)TΦT(ΦΦT + σ2I)−1y1:t ,

vn(x) = φ(x)Tφ(x)− φ(x)TΦT(ΦΦT + σ2I)−1Φφ(x) ,

the expectations of which are equivalent to the kernel k and we obtain the same expressions as that
in (1).

B Details on approximating the predictive variance

We now provide further details on approximating the predictive variance vn(x|x?) of inputs x given
the position of the global optimizer x?. In particular we include all steps omitted in the presentation
of Section 2.2.

B.1 Incorporating the analytic latent constraints (C1.1)

We first turn to the random variables

z = [f(x?); diag[∇2f(x?)]],

c = [yn;∇f(x?); upper[∇2f(x?)]] = [yn; 0; 0].

Here c contains the random variables that we will condition on in order to enforce constraint C1.1.
Given the input locations x and x? we can construct a kernel matrix K containing the covariance
evaluated on the stacked vector [z; c]. We again refer to [25] in constructing this matrix which
includes derivative observations, the computations of which are tedious but not overly complicated.
Note also that the portions of K which correspond to yi will have an additional σ2 due to the
observation noise. Next let Kz, Kc, and Kzc denote the corresponding diagonal and off-diagonal
blocks of the kernel matrix. We can now condition on the observed values of c to write

p(z|Dn,C1.1) = p(z|c) = N (z|m0,V0)

where m0 = KzcK
−1
c c and V0 = Kz −KzcK

−1
c KT

zc.

B.2 Incorporating the non-analytic latent constraints (C1.2 and C2)

The additional constraints C1.2 and C2 can be introduced explicitly as in (6), which takes the form
of a single Gaussian factor and d+ 1 non-Gaussian factors

p(z|Dn,C1,C2) ∝ N (z|m0,V0)
[d+1∏
i=1

ti(zi)
]
.

We approximate this distribution using a single multivariate Gaussian q(z) where each non-Gaussian
factor is replaced by a Gaussian approximation t̃i(zi) = N (zi; m̃i, ṽi) such that

q(z) = N (z|m,V) ∝ N (z|m0,V0)
[d+1∏
i=1

N (zi; m̃i, ṽi)
]

where this approximation is parameterized by m = V[Ṽ−1m̃ + V−10 m0] and V = (Ṽ−1 +
V−10)−1. The parameters of the approximate factors are combined to form the vector [m̃]i = m̃i

and the diagonal matrix [Ṽ]ii = ṽi.

11

To compute the approximate factors we use expectation propagation (EP). EP is a procedure that
starts from some initial values for the approximate factors (m̃i, ṽi) and iteratively refines these
quantities; here we initialize m̃i = 0 and ṽi =∞ which corresponds to m = m0 and V = V0. At
each iteration, for every factor i, we remove the contribution of the ith approximate factor to form
the cavity distribution q\i(z) ∝ q(z)/t̃i(zi). Given the independent factors we consider here we can
focus on each individual component q\i(zi) separately with mean and variance

m̄i = v̄i(mi/vii − m̃i/ṽi),

v̄i = (v−1ii − ṽ
−1
i)−1.

Let q̂(zi) ∝ q\i(zi)ti(zi) denote the tilted distribution where the ith approximate factor has been
replaced by the corresponding real factor. EP proceeds by finding the approximation qi that mini-
mizes the KL-divergence D[q̂i||qi] where qi is restricted to be Gaussian. This amounts to matching
the first two moments. Finally, by removing the influence of the cavity distribution and setting
t̃i(zi) ∝ qi(zi)/q\i(zi) we can update the approximate factors. This can be performed using the
same procedure which forms the cavity distribution.

For both sets of constraints used in this work the moments can easily be obtained by computing the
log normalizing constant Z̄i = log

∫
N (zi|m̄i, v̄i) ti(zi) dzi and using the following identities:

Eq̂[zi] = m̄i + v̄i
∂Z̄i
∂m̄i

, Varq̂[zi] = v̄i − v̄2i

([
∂Z̄i
∂m̄i

]2
− 2

∂Z̄i
∂v̄i

)
. (11)

We first show the updates for the parameters (m̃i, ṽi) of the factors corresponding to constraints on
the diagonal Hessian, i.e. where ti(zi) = I[zi < 0]. Given the moments of the tilted distribution in
(11) , we can remove the contribution of the cavity distribution as above and write

m̃i ← m̄i + κ−1, where α = − m̄i√
v̄i
,

ṽi ← β−1 − v̄i, β =
φ(α)

Φ(α)

[
φ(α)

Φ(α)
+ α

]
1

v̄i
,

κ = −
[
φ(α)

Φ(α)
+ α

]
1√
v̄i
,

where φ and Φ are the standard Gaussian density and cumulative distribution functions, respectively.
For the final soft-maximum constraint, Φ

(
(zi−ymax)/σ

)
, the moments can be calculated in a similar

fashion. Using the same procedure as above we arrive at very similar updates:

m̃i ← m̄i + κ−1, where α =
m̄i − ymax√
v̄i + σ2

,

ṽi ← β−1 − v̄i, β =
φ(α)

Φ(α)

[
φ(α)

Φ(α)
+ α

]
1

v̄i + σ2
,

κ =

[
φ(α)

Φ(α)
+ α

]
1√

v̄i + σ2
.

B.3 Incorporating the prediction constraint (C3)

Given some test input x we now turn to the problem of making predictions about f(x). We again
note that both the “prior” terms m0, V0 and the EP factors, m̃ and Ṽ, are independent of x and can
be precomputed once for later use at prediction time.

Let f = [f(x); f(x?)] be a vector given by the concatenation of the latent function at x and x?. The
distribution for f given the first two constraints can be written as

p(f |Dn,C1,C2) ≈
∫
p(f |z, c) q(z) dz = N (f |mf ,Vf) . (12)

By writing p(f |z, c) above we are assuming that f is independent of C1.2 and C2 given z and as
a result the above is simply an integral over the product of two Gaussians. Let K† be the cross-
covariance matrix evaluated between f and [z; c] and Kf the covariance matrix associated with f .

12

The posterior above will then be Gaussian with mean and variance

mf = K†[K + W̃]−1[c; m̃]

Vf = Kf −K†[K + W̃]−1KT
† ,

where W̃ is a block-diagonal matrix where the first block is zero and the second is Ṽ (note this
matrix is also diagonal since Ṽ is diagonal).

The constraint that f(x) < f(x?) can be incorporated by introducing an additional factor ensuring
that cTf is positive for c = [−1; 1]. The resulting density has a log normalizing constant given by

Z = log

∫
N (f |mf ,Vf) I[cTf > 0] df

= log

∫
N (a|m, v) I[a > 0] da = log Φ(m/

√
v).

where m = cTmf and v = cTVfc. The derivatives of Z with respect to mf and Vf can then be
taken and a multivariate form of (11) can be used to obtain the first two moments [18]. In particular,
the second moment is given by

Var[f] = Vf − v−1β(α+ β)(VfccTVf),

where α = m/
√
v and β = φ(α)/Φ(α). Finally, the first diagonal component of the resulting

matrix corresponds to the marginal variance of f(x), which can be simplified as in (9). This marginal
variance can be used as the variance parameter in a Gaussian approximation to p(f(x)|Dn,x?). For
the PES acquisition function we only need this variance parameter since the entropy of a Gaussian
does not depend on its first moment.

13

