
Inference strategies for solving semi-Markov decision processes

Matthew Hoffman and Nando de Freitas
Department of Computer Science

University of British Columbia, Canada

Abstract
Semi-Markov decision processes are used to formulate many control prob-
lems and also play a key role in hierarchical reinforcement learning. In this
chapter we show how to translate the decision making problem into a form
that can instead be solved by inference and learning techniques. In particu-
lar, we will establish a formal connection between planning in semi-Markov
decision processes and inference in probabilistic graphical models, then build
on this connection to develop an expectation maximization (EM) algorithm
for policy optimization in these models.

Introduction

Researchers in machine learning have long attempted to join the fields of inference
and learning with that of decision making. Influence diagrams, for example, explicitly
cast the decision making process as inference in a graphical model (see e.g. Cooper, 1988;
Shachter, 1988). However, while these methods are a straight-forward application of infer-
ence techniques they only apply to finite-horizon problems and only learn non-stationary
policies.

For goal-directed decision problems, more general techniques such as that of Attias
(2003) exist for finding the maximum a posteriori action sequence. (This technique was
later extended by Verma & Rao (2006) to compute the maximal probable explanation.) It
is crucial to note, however, that these approaches are not optimal in an expected reward
sense. Instead, they can be interpreted as maximizing the probability of reaching the goal.

While it is well known in the optimal control literature that there exists a fundamen-
tal duality between inference and control for the special case of linear-quadratic Gaussian
models (Kalman, 1960), this result does not hold in general. Extending these ideas to more
general models has been attempted by locally approximating the optimal solution (see e.g.
Toussaint, 2009; Todorov & Li, 2005).

A key step in realizing general inference-based approaches while still maintaining op-
timality with respect to expected rewards was originally addressed by Dayan & Hinton
(1997) for immediate reward decision problems. In particular this work proposes an ex-
pectation maximization (EM) approach to the problem which works by optimizing a lower
bound on the expected rewards. This technique was then greatly formalized by Toussaint
& Storkey (2006) who extend it to the infinite-horizon case (see also Toussaint et al., 2006).

INFERENCE STRATEGIES FOR SOLVING SMDPS 2

This line of research has since enjoyed substantial success in the field of robotics (Peters &
Schaal, 2007; Kober & Peters, 2008; Vijayakumar et al., 2009), where empirical evidence
has indicated that these methods can often outperform traditional stochastic planning and
control methods as well as more recent policy gradient schemes.

The focus of this chapter is two-fold: to act as an introduction to the “planning as
inference” methodology and to show how to extend these techniques to semi-Markov Deci-
sion Processes (SMDPs). SMDPs are an extension of the MDP formalism that generalize
the notion of time—in particular, by allowing the time-intervals between state transitions
to vary stochastically. This allows us to handle tradeoffs not only between actions based
on their expected rewards, but also based on the amount of time that each action takes to
perform.

SMDPs are interesting problems in their own right, with applications to call admis-
sion control and queueing systems (see e.g. Singh et al., 2007; Das et al., 1999). This
formalism also serves as a natural platform in robotics for building complex motions from
sequences of smaller motion “templates” as evidenced by Neumann et al. (2009). Finally,
SMDPs are a crucial building block for hierarchical reinforcement learning methods (see
e.g. Ghavamzadeh & Mahadevan, 2007; Sutton et al., 1998; Dietterich, 2000). While this
chapter serves as an introductory text to the paradigm of inference and learning, and its
application to SMDPs, we hope that future work in this area will leverage advances in
structured inference techniques for hierarchical tasks of this nature.

The first section of this work will describe the basic mixture of MDPs model that we
build on while the second section will show how to extend this to the SMDP formalism.
We then describe an EM algorithm for solving these problems. Finally, in the last section
we apply this approach to a small SMDP example.

A mixture of finite-time MDPs

Following the notation of Hoffman, de Freitas, et al. (2009) an MDP can be succinctly
described via the following components:

• an initial state model p(x0),
• a state transition model p(xn+1|xn, un),
• an immediate reward model r(xn, un),
• and finally a stochastic policy πθ(un|xn).

In this model, n = 1, 2, . . . is a discrete-time index, {xn} is the state process, and {un}
is the action process. The model further assumes a randomized policy, but one can also
easily adopt a deterministic policy πθ(u|x) = δφθ(x)(u), where δ denotes the Dirac function
and φ is a deterministic mapping from states to actions. (By this same reasoning we can
also encode knowledge of the initial state using a Dirac mass.) We will assume that the
policy-parameters are real-valued, i.e. θ ∈ Rd.

Having defined the model, our objective is to maximize the expected future reward
with respect to the parameters of the policy θ:

J(θ) = E
[∞∑
n=0

γn r(xn, un)
∣∣θ], (1)

INFERENCE STRATEGIES FOR SOLVING SMDPS 3

where 0 < γ < 1 is a discount factor. In order to ease notation later we will also note that
for a given θ this model induces a Markov chain over state/action pairs zn = (xn, un). The
transition probabilities for this “extended state space” can then be written as

pθ(z0) = p(x0)πθ(u0|x0) and
pθ(zn+1|zn) = p(xn+1|xn, un)πθ(un+1|xn+1),

where the joint distribution over any finite k-length sequence of state/action pairs is defined
as

pθ(z0:k|k) = pθ(z0)
k∏

n=1

pθ(zn|zn−1). (2)

Finally, we will also write the rewards as r(z) = r(x, u).
In order to transform the problem into one that is more amenable to inference methods

we will first note that any maximum of (1−γ)J(θ) is also a maximum of J(θ), as this extra
multiplicative term just rescales the expected reward. Now, by expanding (1) we can write
the (rescaled) expected reward as

(1− γ)J(θ) = (1− γ)
∫ [

pθ(z0)
∞∏
n=1

pθ(zn|zn−1)
][∞∑

k=0

γk r(zk)
]
dz0:∞

and by exchanging the order of integration and summation we arrive at

=
∫

(1− γ)γ0pθ(z0|k = 0) r(z0) dz0

+
∫

(1− γ)γ1pθ(z0:1|k = 1) r(z1) dz0:1 + . . .

=
∞∑
k=0

∫
(1− γ)γk︸ ︷︷ ︸
time prior

pθ(z0:k|k)︸ ︷︷ ︸
state/action

prior

r(zk) dz0:k.

It is for this reason that the additional factor of (1− γ) was introduced. Under this formu-
lation the discounting terms can be seen as a geometric distribution p(k) = (1− γ)γk and
the expected reward under this random time-horizon can be written as

(1− γ)J(θ) = Ek,z0:k
[
r(zk)|θ

]
, (3)

p(k, z0:k) = p(k) p(z0:k|k).

As originally noted by Toussaint & Storkey (2006), we can now view this problem as
an infinite mixture of finite horizon MDPs where rewards only occur at the end of a chain
whose length is given by the random variable k. A diagram of this interpretation is shown
in Figure 1. We must emphasize, however, that we have not changed the model nor the
form of the expected rewards, but are instead departing from the standard interpretation
of these types of decision problems. The classical approach to these problems is to take the
expectation of an infinite-length trajectory and sum over increasingly discounted rewards
(i.e. the rewards are worth less as time passes due to the discount factor). Instead we are

INFERENCE STRATEGIES FOR SOLVING SMDPS 4

x0 x0 x1 x0 x1 x2

u0

k = 0

r0

u0 u1

k = 1

r1

u0 u1 u2

k = 2

r2

Figure 1. Illustration of the mixture of finite horizon MDPs described in Section . Expected
rewards are computed by mixing over individual MDPs with probability p(k) and taking reward
rk = r(xk, uk).

taking the expectation with respect to a finite-length trajectory whose length is stochastic
with probability equal to the discounting associated with this length. We then evaluate the
expected reward only at the end of this chain, but by taking the expectation with respect
to k we are essentially summing over the rewards at all such trajectory lengths. Note in
particular that this is still an infinite-horizon problem!

This formulation is the basis for many inference and learning approaches to solving
MDPs. In the next sections we will show how to extend this formulation in the context of
SMDPs and will then describe an Expectation-Maximization (EM) algorithm for optimizing
the parameters θ. We will first note, however, that these techniques are quite general and
can be applied in both discrete1 and continuous state-spaces (Toussaint & Storkey, 2006;
Hoffman, de Freitas, et al., 2009). As we will briefly see later these methods can also be
applied to situations where the models themselves are unknown and can only be sampled
from (Kober & Peters, 2008; Vlassis & Toussaint, 2009). Finally, it is also possible to derive
Markov chain Monte Carlo (MCMC) methods to optimize via sampling in parameter space.
While we will omit discussion of these methods entirely we can point the interested reader
towards (Hoffman et al., 2007; Hoffman, Kück, et al., 2009) for an introduction. This further
enables the solution of planning problems using generic inference algorithms (see Goodman
et al., 2008).

An extension to semi-MDPs

Formally we can define an SMDP as a continuous-time controlled stochastic process
z(t) = (x(t), u(t)) consisting, respectively, of states and actions at every point in time t. In
particular we will assume that the system transitions at random arrival times tn and that
the process is stationary in between jumps, i.e. x(t) = xn and u(t) = un for all t ∈ [tn, tn+1).
Here each of the state/action pairs evolves according to models defined in Section for MDPs.
What makes this model a semi -MDP is the use of random transition times. In order to
handle this generalization we will introduce random sojourn times sn > 0 which represent
the amount of time spent in the nth state. We will then assume the following distribution:

• a time model p(sn|xn, un),
• where tn = tn−1 + sn and t0 = 0.

1For discrete models the integrals become sums (i.e. integration with respect to the counting measure).

INFERENCE STRATEGIES FOR SOLVING SMDPS 5

Figure 2. Relationship between arrival times tn, sojourn times sn, and the system state (xn, un).

Importantly, the conditional probability for sojourn times does not include the duration of
the previous interval. See Figure 2 for an illustration of this process. More generally, we
could also allow the sojourn times sn to depend on the next state xn+1. While the methods
we will describe are fully capable of handling this situation, we will ignore this dependency
for notational simplicity. Finally, we can write the joint probability over sequences of
states/action pairs and sojourn times as

pθ(z0:k, s0:k) = pθ(z0) p(s0|z0)
k∏

n=1

p(sn|zn) pθ(zn|zn−1) (4)

for any choice of horizon k.
Just as in the standard MDP formulation we must also specify a reward function

r(z) = r(x, u) over states and actions. However, unlike in an MDP our discounting behaves
differently in order to take into account the variable time in each state. In particular,
we will discount the reward continuously over our entire trajectory, which because of the
jump-Markov nature of our transitions will simplify to

J(θ) = E
[∫∞

0 βe−βt r(z(t)) dt
∣∣θ]

= E
[∑∞

n=0 e
−βtn(1− e−βsn) r(zn)

∣∣θ]. (5)

Here β > 0 is a discount rate which is analogous to the discount factor in an MDP. In
fact, when the sojourn times are deterministically given by sn = 1 we recover a standard
infinite-horizon, discounted MDP with a discount factor of γ = e−β. Those readers more
familiar with continuous-time control problems may note that in the first line of the expected
reward definition we have introduced an additional multiplicative term of β. We do this so
that later we can give the discount factors a more intuitive interpretation as a probability
distribution, and we point out that since this is a multiplicative constant it will not change
the optimal policy parameters of the system.

Based on the intuition developed earlier for MDPs we can interpret the discount
terms in (5) as a distribution over random time horizons k and write the following joint

INFERENCE STRATEGIES FOR SOLVING SMDPS 6

distribution over paths and path lengths:

pθ(k, z0:k, s0:k) = e−β(s0+···+sk−1)(1− e−βsk) pθ(z0:k, s0:k). (6)

This distribution is not, however, nearly as straightforward as that in the MDP case. Nor
is there the simple division between path-lengths and paths.

Proposition 1. The joint distribution introduced in (6) is properly defined and nor-
malized, i.e. it integrates to 1.

Proof. In theory we can integrate out each of the infinitely many trajectory and time
variables to see that for any k the marginal over path lengths is given by

pθ(k) = E[e−βs0] · · · E[e−βsk−1] (1− E[e−βsk]).

Given this marginal we can consider an infinite sequence of non-identical Bernoulli
trials, where pn = E[e−βsn] is the probability that the nth trial fails. Note, we need not
compute this quantity in practice.

Due to the restriction that sojourn times are greater than zero we know that
each such quantity lies in the range 0 < pn ≤ 1. With this in mind, we can then see
that pθ(k) is the probability that this sequence of trials has its first success after k − 1
failures. As a result the marginal distribution over K can be properly defined as a
conjunction of Bernoulli random variables and thus the full joint (i.e. not integrating
over the trajectory and time variables) must be similarly well defined and integrate to
1.

Finally, given the joint distribution pθ(k, z0:k, s0:k) we can rewrite our objective from
(5) as the expected final reward under this distribution, i.e.

J(θ) =
∫
pθ(z0:∞, s0:∞)

[∑∞
k=0 e

−βtk(1− e−βsk) r(zk)
]
ds0:∞ dz0:∞

=
∞∑
k=0

∫
pθ(z0:k, s0:k) e−βtk(1− e−βsk) r(zk) ds0:k dz0:k

=
∞∑
k=0

∫
pθ(k, z0:k, s0:k) r(zk) ds0:k dz0:k

= Ek,z0:k
[
r(zk)

∣∣θ]. (7)

Similar to the MDP case we have obtained this result by exchanging the order of integration
and summation and pulling the discount factor into the previously introduced distribution
from (6). In the next section we will take this one step further and treat the reward terms
r(zk) as the likelihood of some “imaginary event”. We can then use this to develop an EM
algorithm for finding the most likely policy parameters under this “data”.

Finally, as an aside, we should note how the formulations of this section simplify in
the MDP case, and more importantly why these simplifications do not hold for SMDPs.

INFERENCE STRATEGIES FOR SOLVING SMDPS 7

In particular, for an MDP it is not necessary to reason about times sn (since these are
deterministically set to 1) and the joint distribution (6) can be factorized as

pθ(k, z0:k) = p(k) pθ(z0:k|k).

Here the conditional distribution is given by (4) and the “time prior” p(k) is given by a
geometric distribution with success probability γ = e−β, i.e. the constant discount factor.
This factorization is what allowed Toussaint & Storkey (2006) to reformulate the infinite-
horizon MDP problem as a mixture of finite-time MDPs, where the random variable k acts
as an indicator variable. Unfortunately this interpretation does not hold in the case of more
general SMDPs. By looking at the discount factors in (6) we can see that the probability
of a specific trajectory length k is a function of all sojourn times s0:k, and as a result the
distribution over the random variable k depends on an infinite number of sojourn times.
However, while the SMDP formalism does not have as clean of a probabilistic interpretation
as MDPs, we can still apply this model by working directly with the joint distribution.

An EM algorithm for SMDPs

Expectation-Maximization (EM) is an algorithm formulation that is used to compute
maximum likelihood estimates in the presence of unobserved or hidden variables. In our
case, the unobserved variables consist of the trajectory length k along with the state/action
pairs and their corresponding sojourn times, z0:k and s0:k respectively. The observed vari-
ables for this model are then implicitly given by the reward function—i.e. we are assuming
some imaginary random variable was observed where the likelihood of this observation con-
ditioned on our hidden variables is given by r(zk). Note, treating the rewards as likelihoods
does place some restrictions on their allowable forms. While they need not sum to 1, they
must be positive. However, for finite models or models which are bounded below this is
easily obtainable by adding some constant term.

Given this interpretation we can introduce the following quantities which are necessary
for deriving the EM algorithm:

• The complete data likelihood is the likelihood of both our observed and unobserved
data; here given by r(zk) pθ(k, z0:k, s0:k).

• The incomplete data likelihood is the integral of the complete data likelihood with
respect to the hidden variables; here given by E[r(zk)|θ].

• Finally, the predictive distribution over the hidden variables is given by the “posterior”
that takes into account both the prior and likelihood, and is thus the ratio of complete
and incomplete likelihoods.

In particular, we will write the predictive distribution using the following notation:

p̃θ(k, z0:k, s0:k) =
r(zk) pθ(k, z0:k, s0:k)

E[r(zk)|θ]
. (8)

Given these quantities the EM algorithm is an iterative procedure which at iteration i
computes the expected complete data log-likelihood, parameterized by θ, under the previous

INFERENCE STRATEGIES FOR SOLVING SMDPS 8

iteration’s policy parameters θ(i−1). This quantity, which we will denote with Q(θ, θ(i−1)),
is then optimized with respect to the policy parameters in order to obtain θ(i). We can
summarize this procedure as:

Q(θ, θ(i−1)) = E
[

log{pθ(k, z0:k, s0:k) r(zk)}
∣∣θ(i−1)

]
, (E-step)

θi = arg max
θ
Q(θ, θ(i−1)). (M-step)

This EM procedure is known to locally maximize the incomplete data likelihood (see Demp-
ster et al., 1977; McLachlan & Krishnan, 1997) and hence will maximize our original objec-
tive J(θ).

Before deriving the E-step in more detail we will first take a brief look at the quantities
that are actually needed in order to perform the maximization in the M-step. We can first
let θ′ denote the previous iteration’s parameter estimate and rewrite the Q-function as

Q(θ, θ′) = E
[

log
{∏k

n=0 πθ(zn)
}∣∣∣θ′]+

E
[

log
{
r(zk) p(x0)

∏k
n=1 p(xn|zn−1)

}∣∣∣θ′]+
E
[

log
{∏k

n=0 p(sn|zn)
}∣∣∣θ′]

where we have expanded the complete data likelihood and separated those terms which do
and do not depend on θ. Since only the first of these three quantities depends on θ we can
drop the others and expand this expectation:

=
∞∑
k=0

∫ [k∑
n=0

log πθ(zn)
]
p̃θ′(k, z0:k) dz0:k + const.

=
∞∑
k=0

k∑
n=0

∫
log πθ(zn) p̃θ′(k, zn) dzn + const. (9)

Finally, in order to optimize the Q-function with respect to the policy parameters θ we will
also need to evaluate the gradient

∇θQ(θ, θ′) =
∞∑
k=0

k∑
n=0

∫
p̃θ′(k, zn)∇θ log πθ(zn) dzn. (10)

Ultimately, this expansion informs how we will derive the steps required for the EM al-
gorithm. In the E-step we need to construct the distribution p̃θ′(k, zn) and in the M-step
we will compute the expectation of the gradient ∇ log πθ(zn) under this distribution. We
should note that this is the same form of the marginal distribution that would be computed
in the E-step for a standard MDP. We will see shortly, however, that the computations
necessary to compute this distribution are different due the integration over sojourn-times.
In the next two subsections we will discuss these steps in more detail.

INFERENCE STRATEGIES FOR SOLVING SMDPS 9

The E-step

As noted in the previous section, we need to construct the marginals p̃θ(k, zn) in order
to compute the gradient of the expected complete log-likelihood. In this section, we will
derive an efficient method for recursively constructing this distribution. We start by writing
the marginal distribution as the integral of the predictive distribution with respect to all
those terms other than k and zn,

p̃θ(k, zn) =
∫
p̃θ(k, z0:k, s0:k) dz0:n−1 dzn+1:k ds0:k.

This integral can then be broken into those components that come before and after n
respectively, and we can then see that the marginal distribution is proportional to

p̃θ(k, zn) ∝
∫
e−β(s0+···+sn−1) pθ(z0:n, s0:n−1) dz0:n−1 ds0:n−1 × (11)∫
e−β(sn+···+sk−1)(1− e−βsk) r(zk) pθ(zn+1:k, sn:k|zn) dzn+1:k dsn:k.

We should emphasize the fact that we are not integrating over zn, which enables us to break
the original integral into two independent integrals. Here we have also omitted the constant
of proportionality, given by the expected reward E[r(zk)].

In an analogy to the forward-backward algorithm for hidden Markov models we will
call the two sets of integrals from (11) “forward” and “backward” messages, denoting them
as αθ(zn) and βθ(zn|τ = k − n) respectively2. Using these messages we can then write the
marginal distribution as

p̃θ(k, zn) =
1

E[r(zk)]
αθ(zn)βθ(zn|k − n). (12)

Intuitively the forward messages are integrating information forward in time from the initial-
state distribution where the nth such message is the state/action distribution at step n
weighted by the expected discounting up to step n− 1. Meanwhile, the backward messages
are integrating information backward from the rewards and can be seen as the expected
reward at step k given the state/action pair at step n (weighted by the expected discounting
between n and k). It is crucial to note, however, that these messages are not probability
distributions due to the way the discount factors have been split between the forward and
backward components, namely:

e−β(s0+···+sn−1)︸ ︷︷ ︸
forward

e−β(sn+···+sk−1)(1− e−βsk)︸ ︷︷ ︸
backward

.

This causes no technical (or conceptual) difficulties, though, because when combined in
(12) these messages form the desired probability distribution. This is similar in spirit to

2The notation here is slightly confusing in that we have a term β denoting the continuous discount factor
and βθ(·|τ) denoting the backward messages. This confusion, however, seems unavoidable as both of these
terms are unanimously used in their respective literatures. To somewhat alleviate this confusion we note
that the backward messages are always subscripted.

INFERENCE STRATEGIES FOR SOLVING SMDPS 10

techniques used to maintain numerical stability when working with hidden Markov models
(Bishop, 2006).

At this point, we can also more fully describe the use of the τ term in defining the
backward messages. The reason behind this notation stems from the fact that naively
computing these messages for each choice of k and n turns out to involve a great deal of
redundant computation. Under the predictive distribution defined in (8) the reward factors
only interact with the end of a finite-length trajectory. As a result the backward messages
depend only on the difference τ = k−n, i.e. how far in the future the rewards are obtained.
Because of this, we can instead define the backward messages purely in terms of the “time-
to-go”. This notation was originally presented by Toussaint & Storkey (2006), but here the
messages are generalized to account for the fact that in the semi-Markov setting the kth
reward introduces a factor over the state and action zn and duration sn at every epoch n
prior to k.

Finally, by integrating the components of the first integral in (11) successively we can
recursively define the forward messages as

αθ(z0) = µ(x0)πθ(u0|x0),

αθ(zn) =
∫
αθ(zn−1) pθ(zn|zn−1) dzn−1 ×

∫
e−βsn−1 pθ(sn−1|zn−1) dsn−1. (13)

Here we can see that we have the standard MDP forward message recursion multiplied by
an additional integral due to the sojourn times. Similarly, we can recursively define the
backwards messages as

βθ(zn|0) = r(zn)
∫

(1− e−βsn) pθ(sn|zn) dsn,

βθ(zn|τ) =
∫
βθ(zn+1|τ − 1) pθ(zn+1|zn) dzn+1 ×

∫
e−βsn pθ(sn|zn) dsn. (14)

Again we can see that these messages can be seen as two integrals, one corresponding to
the standard MDP message and a sojourn time message. Given the format of these two
messages we can further introduce what we call an “expected discount factor”

γ(z) =
∫
e−βs T (s|z) ds (15)

which corresponds to the integral over sojourn times noted above. We can consider this term
as a generalization of the MDP formalism wherein discount factors are no longer constant
and instead depend on the current state and the action taken from that state. Further, we
can see that for any exponential-family distribution this integral will exist in closed form.

The M-step

The M-step requires us to maximize the Q-function with respect to the policy param-
eters θ. If possible we can analytically maximize this function by solving for the fixed point
of ∇θQ(θ, θ′) = 0. If this is not possible we can still evaluate the gradient at the current
set of policy parameters ∇θQ(θ′, θ′) and follow the resulting ascent direction, resulting in a
generalized EM algorithm (GEM). When this procedure is iterated, both of these methods

INFERENCE STRATEGIES FOR SOLVING SMDPS 11

are known to locally maximize the incomplete data likelihood (again, for more details see
McLachlan & Krishnan, 1997).

While EM methods are, in general, only able to guarantee local convergence it can be
shown via its relation to policy iteration that these methods exhibit global convergence for
discrete models when using exact/analytic inference (see Toussaint et al. (2006) for more
details). In more general continuous settings no such guarantees can be made, however as
noted by Hoffman, de Freitas, et al. (2009) a sufficiently exploratory initial policy does seem
to have a tempering effect. This is especially true if the exact EM updates can be used,
as additional exploratory noise does not cause the dramatic increase in variance associated
with sample-based methods (such as policy gradients).

Monte Carlo EM

It is also possible to perform a Monte Carlo approximation during the E-step in
order to optimize these problems when either the necessary distributions are unknown
or the updates cannot be computed in closed form. As is derived for MDPs in (Kober &
Peters, 2008; Vlassis & Toussaint, 2009), we can sample from the initial-state and transition
distributions in order to approximate the Q-function. Given M trajectories {z(i)

0:k, s
(i)
0:k}i≤M

sampled from pθ′(z0:k, s0:k) we can approximate the joint distribution for any n < k with

p̃θ′(k, zn) ≈ 1
MA

M∑
i=1

[
e−βt

(i)
k
(
1− e−βs

(i)
k
)]
r(z(i)

k) δ
z
(i)
n

(zn),

where A is a proportionality constant, given by E[r(zk)] as noted earlier. If we assume some
maximum time-horizon Kmax we can approximate the Q-function as

Q(θ, θ′) ≈
M∑
i=1

Kmax∑
k=0

k∑
n=0

[
e−βt

(i)
k
(
1− e−βs

(i)
k
)]
r(z(i)

k) log πθ(z(i)
n)

=
M∑
i=1

Kmax∑
n=0

log πθ(z(i)
n)

Kmax∑
k=n

[
e−βt

(i)
k
(
1− e−βs

(i)
k
)]
r(z(i)

k).

This function can then be optimized using the same techniques as in the standard M-step.

Discrete models with Gamma-distributed time

The methods presented in previous sections, as with all EM-based procedures, provide
a “meta-algorithm” which depends upon the exact models in use. In this section we present
a simple model for the purposes of illustrating the procedure. Again, for a more advanced
treatment of these methods in the context of MDPs we refer the reader to (Hoffman, de
Freitas, et al., 2009; Toussaint et al., 2006; Toussaint, 2009; Kober & Peters, 2008).

We will now consider a model where the states and actions are discrete and sojourn
times are given by a Gamma distribution. While simple, this model nonetheless presents an
interesting scenario for planning and control domains because it can naturally be extended
to cases when we want to reason about more complex distributions over the time to complete

INFERENCE STRATEGIES FOR SOLVING SMDPS 12

an action. In our experiments, we define the discrete transition, initial-state, and reward
models according to

µx = p(x0 = x),
Pxux′ = p(xn+1 = x′|xn = x, un = u), and
Rxu = r(x, u)

where the sojourn times are Gamma-distributed according to

p(sn|xn = x, un = u) = Γ(sn; kxu, σxu).

Finally, we will assume a discrete policy where θxu = πθ(u|x).
Under this formulation the forward and backward messages will be representable as

matrices, and by dropping the θ index we will let αnxu and βτxu denote the n-step forward
message and τ -step backward messages respectively. By plugging initial state, transition,
and reward matrices into (13) and (14) we can explicitly write these messages as

αnxu = θxu
∑
x′,u′

αn−1
x′u′ Px′u′x γx′u′ , α0

xu = θxu µx; (16)

βτxu = γxu
∑
x′,u′

βτ−1
x′u′ Pxux′ θx′u′ , β0

xu = Rxu(1− γxu). (17)

To make notation easier we will also introduce a forward message defined only over states,
αx =

∑
u αxu. In this setting the expected discount factor noted earlier can be written as

the matrix

γxu =
∫

Γ(s; kxu, σxu) e−βs ds

=
∫
skxu−1 exp

(
− (β + σ−1

xu) s
)

Γ(kxu) σkxuxu

ds = (1 + βσxu)−kxu .

This particular form arises purely from the use of Gamma-distributed sojourn times, and in
fact we can imagine extending this to continuous spaces using functions k(x, u) and σ(x, u).

At every iteration, for a given set of parameters θ′, the E-step consists of calculating
the forward and backward messages given by Equations (16,17). By plugging these terms
into the Q-function defined in (9) we can write

Q(θ, θ′) =
1

E[r(zk)]

∞∑
k=0

k∑
n=0

∑
u,x

(log θxu) θ′xu α
n
x β

k−n
xu

=
1

E[r(zk)]

∑
u,x

(log θxu) θ′xu
[∞∑
n=0

αnx

][∞∑
τ=0

βτxu

]
,

where the second equality can be obtained by rearranging the sums over k and n. This
alternate formulation is particularly useful in discrete models where the sum over forward
and backward messages can expressed as finite quantities, i.e. a vector and a matrix re-
spectively. Further, given this formulation we can optimize the Q-function for each state x

INFERENCE STRATEGIES FOR SOLVING SMDPS 13

individually, which is possible because in discrete domains we can find the optimal action
to take for each state regardless of the probability of visiting that state. By taking the
gradient of the log-policy ∇ log πθ(u|x) = θ−1

xu and solving ∇Q(θ, θ′) = 0 for θ, subject to
the constraint that

∑
u θxu = 1 for each x, we arrive at the following solution methods:

θxu ∝ θ′xu
∞∑
τ=0

βτxu, (EM)

θxu = δm(x)(u) where m(x) = arg max
u′

∑∞
τ=0β

τ
xu′ . (greedy-EM)

Here the EM solution is performing exactly the optimization described above, while the
greedy-EM solution, however, myopically chooses for each state x the one action u that
maximizes the total future rewards when taken from that state. In particular, the greedy
solution can be seen as iterations which correspond to repeated M-steps which skip inter-
mediate E-steps as is shown by Toussaint et al. (2006), and in this sense this method is
equivalent (again only for discrete models) to policy iteration. In larger discrete models,
however, the EM approach has the advantage over policy iteration in that it is possible to
prune computation (by using the forward messages α) in a principled manner; see Toussaint
et al. (2006) for more details.

We first test these algorithms on a small, 16-state, 5-action domain with randomly
generated transition and sojourn parameters, as well as a randomly generated reward model.
The principal challenge of this domain, over other discrete domains, is to take advantage
of the structure in the sojourn time distribution. The top-left plot of Figure 3 displays
convergence properties of the described algorithms as well as a comparison to a standard
policy-gradient method (see e.g. Baxter & Bartlett, 2001). In particular we should note that
the resulting model was densely connected which allows for quick travel across the space,
and explains the very good performance of the stochastic policy gradient algorithm. Also
shown for policy gradients are error-bars corresponding to one standard deviation. The
other methods don’t need error bars because they are deterministic.

Building upon these results, the top-right plot shows the algorithms learning in a more
structured environment. In particular the model used has grid-structured transitions on a
small 4-by-4 grid. This model is especially interesting because we specify different Gamma-
distributions for the inner nodes than the outer nodes such that the inner nodes move much
more slowly. Also, we use a sparse reward model where most states have negligible reward
and one state has high reward. The most important thing to note from this sub-figure
is that the policy gradient method starts to break down under this sparse transition and
reward model, even though the size of the state and action spaces are the same as in the
previous example.

Lastly the bottom-left plot of this figure displays the progress of these algorithms on a
much larger 20-by-20 grid, i.e. one in which there are 2000 state/action pairs. Similar to the
previous example there is a single (relatively) large reward in the upper right corner of the
grid and inner nodes with much slower sojourn times. Here we see that the EM algorithms
vastly out-perform the policy gradient method and the learned policy successfully skirts
the outside edge of the state-space in order to most quickly get to the high reward. Here
the policy gradient method has relatively low-variance because it is not able to make any
progress (i.e. it is stuck exploring a plateau with very little gradient information).

INFERENCE STRATEGIES FOR SOLVING SMDPS 14

Figure 3. Results on various discrete models. The top-left plot shows convergence of the described
algorithms on a randomly generated, dense model; the top-right plot shows performance on a model
of the same size but with grid-like transitions and more structured transition times. The bottom-
left plot shows performance on a larger grid domain. The bottom-right shows the learned policy in
the larger domain. For both grid domains there is a single large reward (denoted with a dot) and
transitions taken outside of the edge states (denoted with grey) have a larger expected sojourn time.

INFERENCE STRATEGIES FOR SOLVING SMDPS 15

Conclusions

In this chapter, we have shown how it is possible to design effective planning algo-
rithms in continuous-time domains by framing the policy optimization problem in an SMDP
as one of inference in a related probabilistic graphical model. The connection between the
reinforcement learning and probabilistic inference domains allows us to exploit existing de-
velopments in exact and approximate inference, and will perhaps provide us with leverage
for tackling pressing problems in hierarchical reinforcement learning.

Of particular interest are inference approaches which attempt to exploit the structure
of the underlying models. Preliminary work on applying such techniques to control problems
includes the pruning steps of Toussaint et al. (2006). As evidenced by the small example
in this chapter as well as larger continuous models in Hoffman, de Freitas, et al. (2009) we
can see large performance gains by using exact inference methods. Another promising area
of research would be the combination of these ideas with sample-based methods such as
Kober & Peters (2008), perhaps via Rao-Blackwellization (de Freitas et al., 2004).

Acknowledgements

We would like to thank Peter Carbonetto and Arnaud Doucet for helpful contributions
to an earlier version of this report. We would also like to thank Peter for his help in
generating Figure 2. Finally, we would like to thank the editors and reviewers of this
chapter for their helpful comments.

References

Attias, H. (2003). Planning by probabilistic inference. In Proceedings of the international conference
on artificial intelligence and statistics.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial
Intelligence Research, 15 (4).

Bishop, C. (2006). Pattern recognition and machine learning. Springer-Verlag.

Cooper, G. (1988). A method for using belief networks as influence diagrams. In Proceedings of the
conference on uncertainty in artificial intelligence.

Das, T., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving semi-Markov decision
problems using average reward reinforcement learning. Management Science, 45 (4).

Dayan, P., & Hinton, G. (1997). Using expectation-maximization for reinforcement learning. Neural
Computation, 9 (2).

de Freitas, N., Dearden, R., Hutter, F., Morales-Menendez, R., Mutch, J., & Poole, D. (2004).
Diagnosis by a waiter and a Mars explorer. Proceedings of the IEEE, special issue on sequential
state estimation, 92 (3).

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 39 (1).

Dietterich, T. (2000). Hierarchical reinforcement learning with the MAXQ value function decom-
position. Journal of Artificial Intelligence Research, 13 (1).

INFERENCE STRATEGIES FOR SOLVING SMDPS 16

Ghavamzadeh, M., & Mahadevan, S. (2007). Hierarchical average reward reinforcement learning.
The Journal of Machine Learning Research, 8 .

Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., & Tenenbaum, J. (2008). Church: a language
for generative models. In Proceedings of the conference on uncertainty in artificial intelligence.

Hoffman, M., de Freitas, N., Doucet, A., & Peters, J. (2009). An expectation maximization algorithm
for continuous Markov decision processes with arbitrary reward. In Proceedings of the international
conference on artificial intelligence and statistics.

Hoffman, M., Doucet, A., de Freitas, N., & Jasra, A. (2007). Bayesian policy learning with trans-
dimensional MCMC. In Advances in neural information processing systems.

Hoffman, M., Kück, H., de Freitas, N., & Doucet, A. (2009). New inference strategies for solving
Markov decision processes using reversible jump MCMC. In Proceedings of the conference on
uncertainty in artificial intelligence.

Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic
Engineering , 82 (1).

Kober, J., & Peters, J. (2008). Policy search for motor primitives in robotics. In Advances in neural
information processing systems.

McLachlan, G., & Krishnan, T. (1997). The EM algorithm and extensions. Wiley New York.

Neumann, G., Maass, W., & Peters, J. (2009). Learning complex motions by sequencing simpler
motion templates. In Proceedings of the international conference on machine learning.

Peters, J., & Schaal, S. (2007). Reinforcement learning for operational space control. In Proceedings
of the ieee international conference on robotics and automation.

Shachter, R. (1988). Probabilistic inference and influence diagrams. Operations Research.

Singh, S., Tadic, V., & Doucet, A. (2007). A policy gradient method for semi-Markov decision
processes with application to call admission control. European Journal of Operational Research,
178 (3), 808–818.

Sutton, R., Precup, D., & Singh, S. (1998). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112 (1).

Todorov, E., & Li, W. (2005). A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In American control conference, 2005. pro-
ceedings of the 2005.

Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In Proceedings
of the international conference on machine learning.

Toussaint, M., Harmeling, S., & Storkey, A. (2006). Probabilistic inference for solving (PO)MDPs
(Tech. Rep. No. EDI-INF-RR-0934). University of Edinburgh, School of Informatics Research.

Toussaint, M., & Storkey, A. (2006). Probabilistic inference for solving discrete and continuous state
Markov decision processes. In Proceedings of the international conference on machine learning.

Verma, D., & Rao, R. (2006). Planning and acting in uncertain environments using probabilistic
inference. In Intelligent robots and systems.

INFERENCE STRATEGIES FOR SOLVING SMDPS 17

Vijayakumar, S., Toussaint, M., Petkos, G., & Howard, M. (2009). Planning and moving in dynamic
environments: A statistical machine learning approach. In Creating brain like intelligence: From
principles to complex intelligent systems. Springer-Verlag.

Vlassis, N., & Toussaint, M. (2009). Model-free reinforcement learning as mixture learning. In
Proceedings of the 26th international conference on machine learning.

