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Abstract

A typical technical conference involves each
submission being reviewed by several review-
ers of different expertise, preference of tech-
nique, and attention to detail. Furthermore,
some reviewers have a tendency to give high
scores, some reviewers low. These are detri-
mental for the overall quality of the review-
ing. Can we estimate the reviewer bias scien-
tifically? Here we first review a method for
calibrating review scores used by NIPS (2006-
2012), and present a revised Bayesian model
that is used in NIPS 2013, 2014. We also in-
vestigate the potential of improving the cal-
ibration performance by incorporating extra
information like review confidence factors.

1 Reviewer Bias Modelling:
Platt-Burges Model

We introduce some notations first. Let us index papers
with i, and reviewers with j. rij is the score reviewer
j gave to paper i, gi is the unobserved true score for
paper i (call it the “goodness” of paper i), bj is the bias
of reviewer j. Furthermore, let Cij denotes reviewer j’s
confidence for her/his review of paper i, and Cij = 0
if reviewer j didn’t review paper i. Then the Platt-
Burges model can be written down as

rij = gi + bj + εij ,

εij ∼ N (0, σ).
(1)

To solve the above equation, we minimise the regu-
larised least-squares:

L =
1

2
ΣiΣj∈Ri

(rij − bj − gi)2 +
1

2
λΣjb

2
j (2)

where λ is the regularisation parameter, and Ri is the
set of reviewers for paper i.

The Platt-Burges model estimates the per-reviewer bi-
ases, and per-paper quality scores. It has been used in
several NIPS conferences to identify overly positive or
negative reviewers and to adjust decisions accordingly.
In the following section we first provide a Bayesian re-
formulation of the Platt-Burges model, and use it as a
starting point for deriving more sophisticated models.

2 A Bayesian Re-formulation of the
Platt-Burges Model

To begin, we place the following priors on gi and bj ,
with hyper-parameters of the prior motivated by the
data:

gi ∼ N(5, 2), (3)

bj ∼ N(0, c). (4)

Here the prior on bj has a regularisation effect, i.e.
a small variance c pulls biases towards zero, which is
similar with the effect of regularisation parameter 1/λ
in the Platt-Burges model. The probability (density)
distribution of review score rij is

rij ∼ N(gi + bj , 1/(dAij)),

d ∼ Gamma(ad, bd)
(5)

where Aij is a sparse matrix with 0’s and 1’s in-
dicating that reviewer i scored paper j. We refer
to this Bayesian re-formulation as the Bayes-Platt-
Burges model. Bayes-Platt-Burges is more general
than Platt-Burges due to the introduction of vari-
ance parameter d (this possible extension was noted
by Platt and Burges). 1. In the case of d = 1, Bayes-
Platt-Burges degenerates to Platt-Burges. In general,
we can re-parametrise d to incorporate extra factors
that has influence on review score. This is discussed
in more details in the coming section.

1To quote, ”Note that this formulation also permits the
use of the reviewer confidences: takes the form of a pre-
cision of a Gaussian. Instead of 1 for all papers, we can
set it to be the confidence that reviewer has in his review
of paper . This makes the innate goodness the weighted
average of the corrected reviews.”
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2.1 Modelling the Effect of Review
Confidence

In the NIPS review score data, each review is accom-
panied with a review confidence. This is a useful indi-
cator variable Cij reflecting reviewer j’s confidence/-
expertise on paper i. Will this information help in
calibrating the scores? To investigate this effect, we
propose and evaluate several variants of the Bayes-
Platt-Burges model that takes care of reviewer confi-
dence when calibrating scores.

2.1.1 Bayes-Platt-Burges+ Model

We obtain the first Bayes-Platt-Burges model variant
by replacing the term Aij with 1/dCij in Equation 5:

rij ∼ N(gi + bj , 1/(dCij)). (6)

Here Cij denotes the confidence of reviewer j for her/
his score of paper i.

2.1.2 Bayes-Platt-Burges++simple Model

The second model variant is obtained by replacing the
term Aij with Cj

rij ∼ N(gi + bj , 1/Cj), (7)

where Cj is reviewer specific, and Cj ∼ Gamma(a, b).

2.1.3 Bayes-Platt-Burges++ Model

The third model variant is obtained by replacing re-
placing the term Aij with 1/CjCij :

rij ∼ N(gi + bj , 1/(CjCij)), (8)

where Cj ∼ Gamma(a, b).

2.1.4 Bayes-Platt-Burges+e Model

The last model variant is

rij ∼ N(gi + bj , (e+ Cij)
α/d), (9)

where e ∼ Gamma(1, 1), and α ∼ Unif(−1, 1).
This model generalises Bayes-Platt-Burges and Bayes-
Platt-Burges+, and has the potential of selecting the
“right” model automatically from data:

(e+ Cij)
α

d
= (10)

1/d, if α = 0⇒ Bayes-Platt-Burges
1

dCij
, if α = −1, e = 0⇒ Bayes-Platt-Burges+

α > 0 ⇒ Confidence unreliable

In general, we can write all above models in the fol-
lowing form

rij = gi + bj + kij , (11)

where kij ∼ N(0, τij). Here the term gi is the unob-
served true “value” of paper i, bj is the overall bias
of reviewer j, kij is a noise term caused by reviewer
j’s confidence for her/his review of paper i. The more
confident a reviewer is about score rij , the smaller the
kij is.

3 Inference

During NIPS 2013, we used Gibbs sampling to per-
form inference in our models. More specifically, we
worked out the Gibbs-conditionals for each gi, bj and
per-reviewer confidence bias Cj (if exists, otherwise
slice sampling is used). In 2014, we re-implemented
the model using the STAN language, which provides
an excellent automated inference engine based on the
NUTS sampler.

4 Models Comparison

In order to empirically compare the proposed models
and the Platt-Burges model, we split the NIPS scores
into two data sets: train data set (about 90%), test
data set (about 10%). The test data Rtest = {rtij} is
selected randomly from the score matrix with the fol-
lowing criteria: 1) paper i must have at least 2 reviews;
2) reviewer j must at least scored 4 papers. We con-
sider two different metrics for accessing model’s power:
predictive log likelihood (PLL) and root mean squared
error (RMSE).

4.1 Predictive Log Likelihood

The predictive log likelihood is computed in the fol-
lowing way:

`pred =
1

|Rtest|
log

∏
rij∈Rtest

P (rij |Rtrain)

=
1

|Rtest|
log

∏
rij∈Rtest

∫
P (rij |g, b))P (g, b|Rtrain)dgdb

(12)

where |Rtest| denotes to the number of scores in the
test set, and

P (g, b|Rtrain) =
P (g)P (b)P (Rtrain|g, b)∫
P (g)P (b)P (Rtrain|g, b)dgdb

. (13)

The priors over g and b are given by Equation 3 and
4.
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4.2 Root Mean Squared Error

The RMSE can be computed in the follow way:

RMSE =

√√√√ 1

|Rtest|
∑

rij∈Rtest

(rij − ḡi − b̄j)2 (14)

where ḡi and b̄j are mean goodness of paper i and mean

bias of reviewer j, i.e., ḡi = 1
S

∑
s g

(s)
i , b̄j = 1

S

∑
s b

(s)
j ,

and s index samples from the posterior distribution
defined by Equation 13. Alternatively, RMSE can be
computed while MCMC is running, i.e.

RMSE∗ =

√√√√ 1

S × |Rtest|

S∑
s=1

∑
rij∈Rtest

(rij − g(s)i − b
(s)
i )2

(15)

where S is the total number of samples from the pos-
terior, and |Rtest| is the total number of scores in the
test set.

The difference between RMSE and RMSE∗ is subtle.
Technically, RMSE should be computed in the way de-
fined by Equation 15. However, if one want to make
any prediction for test data, an intuitive yet simple
way is to compute the sum of paper i’s mean good-
ness and reviewer j’s mean bias, i.e. rij = ḡi + b̄j .
This is exactly how prediction is computed in Equation
14. In practise, RMSE and RMSE∗ emit very similar
numbers. In this article, all results are reported using
RMSE.

4.3 Probability of Accepting a Paper

The probability that paper should be accepted is com-
puted in the following way:

Initialisation: P (all papers) = 0, S = total number of
samples after burin;
for each sample (indexed by s) do

Rank all paper according to g
(s)
i ;

if rank(i) in top 370 then
P (i) = P (i) + 1

end

end
return P/S;

5 Results

5.1 Predictive Performance

Table 1 shows the predictive performance of differ-
ent models, in terms of two evaluation metrics: neg-
ative predictive log likelihood (NPLL) and root mean
squared error (RMSE). Smaller numbers are better.
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Figure 1: Comparison of paper ranking using cali-
brated scores returned by different models. The x axis
index paper submissions, and the y axis shows ranking
differences between each proposed model and the base
line (average raw score): lower plots means smaller
ranking difference compared to the baseline.

In terms of RMSE, we can see all Bayesian models per-
forms much better compared with Platt-Burges. Mod-
els that take review confidences into account generally
performs worse that those that do not. We can also see
from the results Bayes-PlaBur+ beats all other mod-
els. This is a bit surprising because we would expect
a model with more flexibly (e.g. Bayes-PlaBur+s and
Bayes-PlaBur++ have an additional per-reviewer con-
fidence bias Cj parameter, see Equation 6) would win.
However this is not the case here due to the limitation
of our data: each reviewer only has 2–6 review confi-
dences. It turns out it performs better by pooling all
these confidence numbers together and learn a shared
confidence d (see Equation 5).

5.2 Paper Ranking using Calibrated Scores

Papers are ranked using calibrated score. Each cali-
bration model leads to a different ranking result. To
further analyse properties of different review calibra-
tion models, we compare the pair-wise distances of dif-
ferent rankings. More specifically, for each model, we
compute the ranking distance against a baseline model
(average raw review score) in the following way:

fab(k) =
∣∣{top k papers in the model a}

∖
{top k papers in model b}

∣∣, (16)

where A
∖
B denotes set difference2, and |C| denotes

the number of elements in set C.

2That is, A
∖
B = {x : x ∈ A and x /∈ B}.
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PlaBur B-PlaBur B-PlaBur+ B-PlaBur+s B-PlaBur++ B-PlaBur+e

NPLL-Train - 1.4581 1.5788 1.4131 1.4401 1.5769
NPLL-Test - 2.8280 1.9743 3.3083 3.3089 1.9735
RMSE-Train 0.9114 0.9573 1.0529 0.9865 0.9941 1.0497
RMSE-Test 1.8534 1.6493 1.6042 1.6329 1.6443 1.6008

Table 1: Root mean square error (RMSE) and negative predictive log likelihood (NPLL) for different models.
Smaller numbers are better. The testing data is about 10% entries randomly selected from NIPS scores.

As shown in Figure 1, paper ranking returned by
Bayes-PlattBurges+ is most close to that of raw aver-
age score. This surprisingly coincides with our previ-
ous observation: Bayes-Platt-Burges+ outperforms all
other models in terms of predictive performance. This
hints calibrated score from a good model is close to
the average raw score. This makes sense because if we
have many reviews for each paper, then law of large
numbers guarantees the mean is near the unobserved
tree score. We also observe that almost all Bayesian
models are closer to the average raw score compared
to Platt-Burges.

5.3 Calibrated Scores from Different Models
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Figure 2: Comparison of corrected scores returned by
different models. Bayesian models are plotted against
the baseline: Platt-Burges. Here all models are run
using all NIPS scores.

Figure 2 shows the calibrated score of different mod-
els. In summary, Bayesian models are slightly more
conservative: calibrated scores are shifted towards the
the mean score (i.e. 5) compared with Platt-Burges. If
we look at this plot together with other results (rank-
ing + predictive performance), we will see in general,
the more conservative a model is, the better predictive
performance it has, or the closer its ranking is to the
average raw score. This observation is also consistent
with paper ranking, that is, more conservative model

has smaller ranking distance compared to the average
raw score.
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A Stan implementation

data {
int<lower=1> I ; # number o f papers ;
int<lower=1> N; # t o t a l number o f rev i ews
int<lower=1> J ; # number o f r ev i ewer s
vector<lower=0> [N] s c o r e s ; # review score s v ec t o r
vector<lower=0> [N] con f id ence ; # review con f i dence s
i n t reviewerID [N ] ; # rev iewer ID fo r each rev iew
i n t paperID [N ] ; # paper ID fo r each rev iew

}
parameters {

vector [ I ] t r u e s c o r e ;
vector [ J ] r ev i ewb ia s ;
real<lower=0> c ;
real<lower=0> d ;

}

model{
c ˜ gamma( 1 , 1 ) ;
d ˜ gamma( 1 , 1 ) ;

t r u e s c o r e ˜ normal (5 , 2 ) ;
r ev i ewb ia s ˜ normal (0 , 1/ c ) ;
for ( i in 1 :N){

s c o r e s [ i ] ˜ normal ( t r u e s c o r e [ paperID [ i ] ]
+ rev i ewb ia s [ rev iewerID [ i ] ] , 1/d ) ;

}
}
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B Examples: Posterior Distribution of Paper Goodness and Review Bias

Posterior Distribution of Paper Goodness
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Figure 3: Posterior distribution from Bayes-Platt-Burges. Note full NIPS (2013) review data is used here.
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Posterior Distribution of Paper Goodness
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Figure 4: Posterior distribution from Bayes-Platt-Burges+. Note full NIPS (2013) review data is used here.


