A dependent partition-valued process for multitask clustering and evolving networks

Konstantina Palla, David A. Knowles, Zoubin Ghahramani

Amsterdam, 12th June 2013
Partition-valued processes

Related work

The dependent partition-valued process (DPVP)

Models

Experiments
Partition-valued Processes

<table>
<thead>
<tr>
<th>π_1</th>
<th>π_2</th>
<th>π_3</th>
<th>π_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Let:

- $[n]$ denote the natural numbers \(\{1, \ldots, n\} \).
- Each π_τ is a set of disjoint non-empty clusters indexed by a covariate (time/location) $\tau \in \mathcal{T}$

How do we induce dependency among the partitions?
Related Work

- **Dependent Dirichlet processes (DDP)**
 \[G^{(\tau)} = \sum_{k=1}^{\infty} w_k^{(\tau)} \delta_{\theta_k^{(\tau)}} \]
 e.g.: MacEachern [1999, 2000]

- **Dependent partitions**
 e.g Sudderth and Jordan [2008], Duan et al. [2007]

Another related line of work uses fragmentation-coagulation processes [Bertoin, 2006, Teh et al., 2011].
Basic Idea

How should we introduce dependency on τ among the partitions, π_τ?

- stick breaking to generate a partition π
- generating Bernoulli by thresholding Gaussians
- using Gaussian processes to model dependency on τ
STICK BREAKING TO GENERATE A PARTITION

\[
G = \sum_{k=1}^{\infty} w_k \delta_{\theta_k}
\]

\[
w_k = u_k \prod_{l=1}^{k-1} (1 - u_l) \quad \forall k \in \mathbb{Z}
\]

\[
u_k \sim Beta(1, \alpha) \quad \forall k \in \mathbb{Z}
\]

For each object \(n \in [N] \)

1. Set \(k := 1 \)
2. Sample branching variable \(a_{nk} \sim Bernoulli(u_k) \)
3. If \(a_{nk} \) then assign \(c_n := k \), else increment \(k \) and go to 2.
Bernoulli by thresholding a Gaussian

To generate, $a_{nk} \sim \text{Bern}(u_k)$ we can

$$f_{nk} \sim \mathcal{N}(0, \sigma^2)$$

$$a_{nk} = \mathbb{I}[f_{nk} < \phi^{-1}(u_k|0, \sigma^2)]$$

$\phi(.|\mu, \sigma^2)$: Gaussian cumulative distribution function
Gaussian Processes to Model Dependency on τ

Coupling Gaussians f_{nk} over τ:

- Extend f_{nk} to random functions
 $f_{nk}(\tau), \tau \in T$
- Gaussian prior on $f_{nk} \rightarrow$ Gaussian process
 $f_{nk}(\cdot) \sim_{iid} \text{GP}(0, \Sigma) \ \forall n \in [N], k \in \mathbb{Z}$
- The covariance function $\Sigma(\tau, \tau')$ captures dependence on T

Example of 3 samples from a GP. Each plot represents $f_{nk}(\cdot)$
• Given functions \(\{f_{nk}\} \) and stick lengths \(u_k \), decide branching variables

\[
\begin{align*}
 u_k &\sim_{\text{iid}} \text{Beta}(1, \alpha) \quad \forall k \in \mathbb{Z} \\
 f_{nk}(\cdot) &\sim_{\text{iid}} \text{GP}(0, \Sigma) \quad \forall n \in [N], k \in \mathbb{Z} \\
 a_{nk}(\tau) &= \mathbb{I}[f_{nk}(\tau) < \phi^{-1}(u_k|0, \Sigma(\tau, \tau))] \\
 &\quad \forall n \in [N], k \in \mathbb{Z}
\end{align*}
\]

• Set cluster assignments \(c_n(\tau) = \min\{k : a_{nk}(\tau) = 1\} \)

• Note that \(f_{nk}(\tau), f_{nk}(\tau') \) correlated with covariance \(\Sigma(\tau, \tau') \Rightarrow a_{nk}(\tau), a_{nk}(\tau') \) correlated too!
Dependent Partition Valued process (DPVP)

- $DPVP(\alpha, \tau, \Sigma)$, α is the concentration parameter, τ is the vector of covariate locations, Σ is the covariance function
- CRP marginals at each covariate value τ
- Global mixing proportions u_k
- Pitman-Yor marginals; $u_k \sim_{iid} Beta(1 - d, \alpha + kd)$, where $\alpha > 0$ and $0 \leq d < 1$
MODELS

- Clustering multiple data sources
- Evolving networks
Clustering Multiple Sources

- \(N \) objects, \(L \) data sources
- At each \(\tau \); \(\pi_\tau \) is the partitioning, \(Y^\tau \) is data with dimension \(N \times D^\tau \)
- The model is then

\[
\begin{align*}
c_{1:n}^\tau & \sim DPVP(\alpha, t, \Sigma) \\
\theta_k^\tau & \sim P^\tau \\
y_n^\tau | c_{1:n}^\tau, \theta_k^\tau & \sim F^\tau(\theta_{c_{1:n}^\tau}^\tau)
\end{align*}
\]

\(\theta_k^\tau \) are cluster parameters, \(P^\tau \) are priors on the cluster parameters, \(F^\tau \) are data likelihoods.
Evolving Community Structure Model

- N objects. At each τ; Y^τ is a $N \times N$ binary matrix denoting presence or absence of links
- Probability of a link between n and n' at time τ depends on the cluster assignments c_n^τ and $c_{n'}^\tau$ (see e.g. Infinite Relational Model of Kemp et al. [2006]).

\[
c_n^\tau \sim DPVP(\alpha, \tau, \Sigma)
\]
\[
\theta_{kk'}^\tau \sim \text{Beta}(\beta, \beta)
\]
\[
y_{nn'}^\tau | c^\tau, \theta^\tau \sim \text{Bernoulli}(\theta_{c_n^\tau c_{n'}^\tau})
\]

where $\theta_{kk'}^\tau$ is the link probability between clusters k and k' and $y_{nn'}^\tau$ denotes the presence of a link between objects n and n' at time τ
Choice of Kernel

- Kernel Σ determines the dependency among the data sources
- GP offers flexibility in choice; depends on the application at hand
- Choices:
 1. **Squared exponential**: When known covariate value e.g. time or spatial location.
 \[
 \Sigma(\tau, \tau') = \exp \left(-\frac{(\tau - \tau')^2}{2r^2} \right)
 \]
 where r is the lengthscale.
 2. **Similarity kernel**: When no or little prior knowledge about clustering similarity among the sources. We learn the kernel from data.
 \[
 \Sigma(\tau, \tau') \sim \text{Uniform}[-1, 1], \tau \neq \tau'
 \]
 3. **Tree structured dependency**. See next slide!

Note: In all cases $\Sigma(\tau, \tau) = 1$. DPVP invariant to scaling of the covariance matrix
Interpret the known tree over the data sources as a graphical model:

\[N(a|0, v_a) \]

\[N(b|a, v_{ab}) \]

\[N(f_1|b, v_{b1}) \]

\[N(f_2|b, v_{b2}) \]

\[N(f_3|a, v_{a3}) \]

Constrain the marginal variance to be one, so

\[v_{b1} = v_{b2} := 1 - v_a - v_{ab} \]

\[v_{a3} := 1 - v_a \]

Integrating out \(a \) and \(b \) we have

\[
\begin{bmatrix}
 f_1 \\
 f_2 \\
 f_3
\end{bmatrix}
\sim N
\begin{pmatrix}
 0 \\
 0 \\
 0
\end{pmatrix}
, \begin{pmatrix}
 1 & v_a + v_{ab} & v_a \\
 v_a + v_{ab} & 1 & v_a \\
 v_a & v_a & 1
\end{pmatrix}
\]
Cancer cell line encyclopedia [CCLE, Barretina et al., 2012]

- $N = 432$ cancer lines. $L = 4$ different data sources (measurements):
 Drug sensitivity (SENS, $D=24$), Gene expression (GE, $D=1000$), Copy number variation (CNV, $D=1000$), Oncogene mutations (ONCO, $D=1600$)
- Task: hold out 10% of SENS data, attempt imputation.
- Compare to:
 1. DP mixture (DPM) independently at each data source,
 2. DPM with common clustering to all data sources
Cancer cell line encyclopedia - Results

<table>
<thead>
<tr>
<th></th>
<th>Independent</th>
<th>Shared</th>
<th>DPVP model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.221 ± 0.552</td>
<td>-1.109 ± 0.069</td>
<td>-0.902 ± 0.097</td>
</tr>
</tbody>
</table>

Table: CCLE results: log predictive likelihood

Figure: Learnt correlation matrix
Experiments - Clustering Multiple Data Sources

Hapmap gene expression data

- $N = 1000$ genes from $D = 618$ individuals
- $L = 7$ different populations
- Each data source Y^τ is $N \times D^\tau$, where $D^\tau \subset D$, $\tau = 1, \cdots, L$
- Target: learn population specific clusterings of the genes

Prior Knowledge

Figure: Tree structure of human populations in HapMap.
Hapmap gene expression data - Results

<table>
<thead>
<tr>
<th></th>
<th>Independent</th>
<th>Shared</th>
<th>DPVP model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.357 ± 0.055</td>
<td>-1.134 ± 0.013</td>
<td>-1.277 ± 0.016</td>
</tr>
</tbody>
</table>

Table: HapMap results: log predictive likelihood
van de Bunt’s students [Van De Bunt et al., 1999]

- $N = 52$ university friends
- $L = 7$ time points
 - first 4 are 2 weeks apart
 - last 4 are 3 weeks apart
- At each time point τ: Y^τ is a $N \times N$ binary link matrix
- Target: learn evolution of clustering & predict heldout links
- Compare to:
 1. Independent IRM at each time point
 2. Shared clustering but independent cluster link probabilities across all time points
Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Independent</th>
<th>Shared</th>
<th>DPVP model</th>
</tr>
</thead>
<tbody>
<tr>
<td>van de Bunt</td>
<td>-0.530 ± 0.025</td>
<td>-0.502 ± 0.022</td>
<td>-0.095 ± 0.017</td>
</tr>
</tbody>
</table>

Table: van de Bunt’s dataset results: log predictive likelihood
CONCLUSION

- DPVP; a process that defines a distribution over partitions
- Two models;
 1. Clustering multiple datasources
 2. Evolving community structure model
- Encouraging results on real world datasets
Thank you!

APPENDIX

van de Bunt’s students

<table>
<thead>
<tr>
<th>Model</th>
<th>ind. IRM</th>
<th>Shared</th>
<th>ECS</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster assign.</td>
<td>$c_n^T \sim CRP(\alpha)$</td>
<td>$c_n \sim CRP(\alpha)$</td>
<td>$c_n^T \sim DPVP(\alpha, \tau, \Sigma)$</td>
</tr>
<tr>
<td>cluster link prob.</td>
<td></td>
<td>$\theta_{kk'} \sim Beta(\beta, \beta)$</td>
<td></td>
</tr>
<tr>
<td>Likelihood</td>
<td>$\prod_{\tau=1}^{L} \prod_{n=1}^{N} \prod_{n'=1}^{N} \theta_{c_n^\tau c_n'^\tau}^{y_{nn'}} (1 - \theta_{c_n^\tau c_n'^\tau})^{(1-y_{nn'})}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>