Model-Based Reinforcement Learning (Day 1: Introduction)

Michael L. Littman
Rutgers University
Department of Computer Science
Rutgers Laboratory for Real-Life Reinforcement Learning

Plan

• Day 1: Introduction
 – RL
 – Q-learning
 – Convergence
 – Model-based RL
 – PAC-MDP
 – KWIK

• Day 2: Current Trends
 – Model-free RL & KWIK
 – Model/value approximation
 – Bayesian RL
 – UCT
 – Searchless planning
Start With Game...

- up
- down
- left
- right
- A
- B

Find The Ball: Elements of RL

In reinforcement learning:
- agent interacts with its environment
- perceptions (state), actions, rewards [repeat]
- task is to choose actions to maximize rewards
- complete background knowledge unavailable

Learn:
- which way to turn
- to minimize time
- to see goal (ball)
- from camera input
- given experience.
Problem To Solve

Three core issues in the dream RL system.

- **generalize experience**
 - use knowledge gained in similar situations
 - “learning”

- **sequential decisions**
 - deal properly with delayed gratification
 - “planning”

- **exploration/exploitation**
 - must strike a balance
 - unique to RL?

Markov Decision Processes

Model of sequential environments (Bellman 57)

- n states, k actions, discount $0 \leq \gamma \leq 1$
- step t, agent informed state is s_t, chooses a_t
- receives payoff r_t; expected value is $R(s_t, a_t)$
- probability that next state is s' is $T(s_t, a_t, s')$

$Q(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q(s', a')$

- Optimal behavior is $a_t = \arg\max_a Q(s_t, a)$
- R, T unknown; some experimentation needed
Find the Ball: MDP Version

• Actions: rotate left/right

• States: orientation

• Reward: +1 for facing ball, 0 otherwise

Families of RL Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Policy Search</th>
<th>Value-Function Based</th>
<th>Model Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(\Pi)</td>
<td>Q</td>
<td>T, R</td>
</tr>
<tr>
<td>a</td>
<td>(s, a)</td>
<td>v</td>
<td>s, r</td>
</tr>
</tbody>
</table>

More direct use, less direct learning

Search for action that maximizes value

Solve Bellman equations

More direct learning, less direct use
Q-learning

On experience \(<s_t,a_t,r_t,s_{t+1}>\):

\[
Q(s_t,a_t) \leftarrow Q(s_t,a_t) \\
+ \alpha_t \left(r_t + \gamma \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t) \right)
\]

If:

• All \(<s,a>\) visited infinitely often.
• \(\sum_t \alpha_t = \infty, \sum_t \alpha_t^2 < \infty\)

Then: \(Q(s,a) \rightarrow Q(s,a)\) (Watkins & Dayan 92).

Model-based MDP Learner

On experience \(<s_t,a_t,r_t,s_{t+1}>\):

1. \(R(s_t,a_t) \leftarrow R(s_t,a_t) + \alpha_t \left(r_t - R(s_t,a_t) \right)\)
2. \(T(s_t,a_t,s_{t+1}) \leftarrow T(s_t,a_t,s_{t+1}) + \alpha_t \left(1 - T(s_t,a_t,s_{t+1}) \right)\)
3. \(T(s_t,a_t,s') \leftarrow T(s_t,a_t,s') + \alpha_t \left(0 - T(s_t,a_t,s') \right)\)
4. \(Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(s',a')\)

If:

• All \(<s,a>\) visited infinitely often.
• \(\sum_t \alpha_t = \infty, \sum_t \alpha_t^2 < \infty\)

Then: \(Q(s,a) \rightarrow Q(s,a)\) (Littman 96).
PAC-MDP Reinforcement Learning

PAC: Probably approximately correct (Valiant 84)

Extended to RL (Fiechter 95, Kakade 03, etc.).

• Given $\epsilon>0$, $\delta>0$, k actions, n states, γ.
• We say a strategy makes a mistake each timestep t s.t. $Q(s_t,a_t) < \max_a Q(s_t,a)-\epsilon$.
• Let m be a bound on the number of mistakes that holds with probability $1-\delta$.
• Want m poly in k, n, $1/\epsilon$, $1/\delta$, $1/(1-\gamma)$.

Must balance exploration and exploitation!

Q-learning Not PAC-MDP

• Family: initialization, exploration, α_t decay
• Combination lock

• Initialize low, random exploration (ϵ-greedy)
 - 2^n to find near-optimal reward. Keeps resetting.
 - Needs more external direction.
Model-based Can Be PAC-MDP

• Behavior differs depending on assumption

<table>
<thead>
<tr>
<th>truth:</th>
<th>truth:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>? = low</td>
<td>? = high</td>
<td></td>
</tr>
<tr>
<td>assume:</td>
<td>ignore ?,</td>
<td>ignore ? suboptimal!</td>
</tr>
<tr>
<td>? = low</td>
<td>optimal</td>
<td></td>
</tr>
<tr>
<td>assume:</td>
<td>visit ?, explore</td>
<td>visit ?, optimal</td>
</tr>
<tr>
<td>? = high</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No PAC-MDP guarantee

PAC-MDP if not too much exploration

Optimism Under Uncertainty

• Idea of exploration bonus well known.
• Shown to provide PAC-MDP guarantee (Kearns & Singh 02, Brafman & Tenehnoltz 02).
• Key ideas:
 – Simulation lemma: Optimal for approximate model is near-optimal.
 – Explore or exploit lemma: If can’t reach unknown states quickly, can achieve near-optimal reward.
• Extend to factored dynamics (Kearns & Koller 99) and metric spaces (Kakade et al. 03).
Model-free PAC-MDP

• Although not directly relevant, this problem was solved (Strehl, Li, Wiewiora, Langford, Littman 06).
• Modifies Q-learning to build rough model from recent experience.
• Total mistakes in learning $\approx nk/((1-\gamma)^4\epsilon^4)$.
• Compare to model-based methods: mistakes in learning $\approx n^2k/((1-\gamma)^6\epsilon^3)$. (Better in states, worse in horizon.)
• Lower bound, also (Li 09).

Generalization in PAC-MDP

• Can we draw on classical ML theory?
• Model learning is a supervised problem.
 – Given examples of s,a pairs, predict s'.
• Not just for table lookup anymore!
• Extend results to functions that generalize by defining the right learning problem...
3 Models for Learning Models

- **PAC**: Inputs drawn from a fixed distribution. Observe labels for min inputs. For future inputs drawn from the distribution, new mistakes.

- **Mistake bound**: Inputs presented online. For each, predict output. If mistake, observe label. No more than \(m \) mistakes.

- **KWIK**: Inputs presented online. For each, can predict output or say “I don’t know” and observe label. No mistakes, but can say “I don’t know” \(m \) times.

KWIK Learning

- **“Knows What It Knows”**
 - Like PAC, no mistakes.
 - Like mistake bound, no distribution assumption.

- **Harder problem**
 - \(\text{PAC} \leq \text{mistake bound} \leq \text{KWIK} \)

- **Very well suited to model learning:**
 - experience distribution changes during learning
 - distribution varies with behavior, which should change!
 - exploration driven by known/unknown distinction
 - don’t want to be wrong and stop exploring too soon
KWIK Learn a Coin Probability

• Given m trials, x successes, $p = x/m$

• Hoeffding bound:
 – Probability of an empirical estimate of a random variable in the range $[a,b]$ based on m samples being more than ϵ away from the true value is bounded by
 $$\exp\left(-\frac{2me^2}{(b-a)^2}\right)$$

• So, can KWIK learn a transition probability:
 – say “I don’t know” until m is big enough so that p is ϵ-accurate with probability $1-\delta$.

Some Things to KWIK Learn

• coin probability
• an output vector, each component is KWIK learnable
 – multinomial probability (dice learning)
• a mapping from input partition to outputs where partition is known and mapping within each partition is KWIK learnable
 – That’s a standard transition function $(s,a \to \text{vector of coins})$ (Li, Littman, Walsh 08).
• Also, union of two KWIK learnable classes.
R\text{MAX} and KWIK Learning

- **R\text{MAX}** (Brafman & Tennenholtz 02)
 - KWIK learn model ($T(s,a,\cdot)$ unknown m times).
 - For unknown parts, assume max possible reward ($Q(s,a) = r_{\text{max}}/(1-\gamma)$).
 - Solve for Q and use resulting policy until something new becomes known.
- **Total mistakes in learning $\approx n^2k/((1-\gamma)^3\varepsilon^3)$**
 (Strehl, Li, Wiewiora, Langford, Littman 06; Li 09).

R\text{MAX} Speeds Learning

Task: Exit room using bird’s-eye state representation.

Details: Discretized 15x15 grid x 18 orientation (4050 states);
6 actions: forward, backward, turn L, turn R, slide L, slide R.
(Nouri)
Generalizing Transitions

• In MDPs, states are viewed as independent.
 – Transition knowledge doesn’t transfer.

• Real-life action outcomes generalize.
 – Learn in one state, apply to others.

• Needed:
 – MDP variants that capture transition regularities.
 • Continuous MDPs
 • RAM-MDPs
 • Factored-state MDPs
 • Object oriented MDPs

Continuous Transition Model

(Nouri)
Relocatable Action Models

Decompose MDP transitions into state-independent outcomes (Sherstov, Stone 05).

\[T'(s, a, s') = \sum_{o \text{ s.t. } \eta(s, o) = s'} t(\kappa(s), a, o) \]

- \(\kappa : S \rightarrow C \) is the type function. It maps each state to a type (or cluster or class) \(c \in C \).
- \(t : C \times A \rightarrow \Pr(O) \) is the relocatable action model. It captures the outcomes of different actions in a state-independent way by mapping a type and action to a probability distribution over possible outcomes.
- \(\eta : S \times O \rightarrow S \) is the next-state function. It takes a state and an outcome and provides the next state that results.

RAM Example

- \(\eta \): the geometry
- \(t \): actions effects
- \(\kappa \): the local walls

Example: .8 in intended direction, .1 at right angles, unless wall blocks motion.

Action “go N” in a state with a walls to the N&E will go W wp .1, not move wp .9 (.8 N + .1 E).

(Leffler, Edmunds, Littman 07)
Speeds Up Learning

- Cumulative reward is larger for RAM-R_{MAX} than R_{MAX} or Q-learning.
- KWIK bound depends on classes, not states.
- (It also has more background knowledge.)

Robotic Example

- **States:** position and orientation
- **Goal:** Reach box as quickly as possible
- **Types:** sand, wood
- **Actions:** L, R, F
Factored-state MDPs

- Generalizing MDP states via DBN factoring of transition function (Boutilier et al. 99).
- 2^n states, k actions
- Blends planning-type state representations with Bayes net probability distributions
- R, T unknown; some experimentation needed
- KWIK learnable: Just a different partition of the input space.
Factored-state MDP

State is a cross product.
- Example: Taxi (Dietterich 98).

Primitive actions:

Passenger is at R, Y, G, B.
Destination is R, Y, G, B.

Reward for successful delivery.
Approx. 500 states, but related.
- state = (taxi loc, pass. loc, dest)

Compact Model

- Abstraction: Use a factored (DBN) model.

 independence relations
 for “pickup”
 (further, can use context-specific
 independence, Boutilier et al. 95)

- Model generalizes because transitions for
 multiple states share structure/parameters.
- If graph known, KWIK learnable:
 composition of output vector and input
 partition.
World of Objects

- Objects in taxi:
 - taxi (location)
 - passenger (location/in taxi)
 - walls (location)
 - destination (location)

- Not states or state features, instead try objects and object attributes.

- Model: What happens when objects interact?
- More “human like” exploration.

Comparing Taxi Results

- North, not touchN(taxi, wall) → taxi.y++
- Drop, pass.in, touch(taxi, dest) → ¬pass.in
- KWIK bound: poly in types, exp in condition
- Taxi: How long until optimal behavior?

<table>
<thead>
<tr>
<th>Exploration style</th>
<th>Algorithm</th>
<th># of steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε greedy</td>
<td>Q-learning</td>
<td>47157</td>
</tr>
<tr>
<td>count on states</td>
<td>Flat Rmax</td>
<td>4151</td>
</tr>
<tr>
<td>count on features</td>
<td>Factored Rmax</td>
<td>1839</td>
</tr>
<tr>
<td>count on interaction</td>
<td>Objects</td>
<td>143</td>
</tr>
<tr>
<td>whatever people do</td>
<td>People</td>
<td>50</td>
</tr>
</tbody>
</table>
Pitfall!

A childhood dream fulfilled... (Diuk, Cohen)

Model-Based Reinforcement Learning
(Day 2: Other Stuff)

Michael L. Littman
Rutgers University
Department of Computer Science
Rutgers Laboratory for Real-Life Reinforcement Learning
Plan

• Day 1: Introduction
 - RL
 - Q-learning
 - Convergence
 - Model-based RL
 - PAC-MDP
 - KWIK

• Day 2: Current Trends
 - Bayesian RL
 - Model/value approximation
 - UCT
 - Searchless planning

Structure Learning in DBNs

• Unknown structure fundamentally different.
• How can you keep statistics if you don’t know what they depend on?
• Can be solved using a technique for a simpler “hidden bit” problem:
 - n-bit input, one bit (unknown) controls output
 - one output distribution if bit is on, another if off
 - Find DBN structure by same idea: one parent set controls output...
Hidden-Bit Problem

Assume the simpler deterministic setting.
Output is copy or flip of one input.
• 0110 → 0 1101 → 1 0000 → 1
• 1101 → 1 0011 → 0 1111 → 0
• 1000 → 1 1110 → 0 1100 → 1

Is it 0, 1, or “I don’t know”?

If noisy, can’t predict with each bit position separately, don’t know which to trust. Can learn about all 2^n bit patterns separately, but that’s too much.

Hidden-bit Problem via KWIK

• Can observe predictions to figure out which of k “adaptive meteorologists” to trust (Strehl, Diuk, Littman 07; Diuk et al. 09).

• Solvable with bound of $O\left(\frac{k}{\epsilon^2 \ln \frac{k}{\delta}} + \sum_{i=1}^{k} \Theta \left(\frac{\epsilon}{8}, \frac{\delta}{k+1}\right)\right)$

• By considering all k-size parent sets, get a structure-learning algorithm with a KWIK bound of

\[
\kappa = O\left(\frac{n^{D+3}AD}{\epsilon^2(1-\gamma)^6} \ln \frac{nA}{\delta} \ln \frac{1}{\epsilon(1-\gamma)}\right)
\]
Artificial Stock Example

Discovers the structure and exploits it much faster than \(R_{\text{MAX}} \) can learn the MDP.

- Factored-\(R_{\text{MAX}} \): Knows DBNs
- SLF-\(R_{\text{MAX}} \): Knows size of parent sets
- \(R_{\text{MAX}} \): It’s an MDP

Improved Bounds

- SLF-\(R_{\text{MAX}} \) runs in roughly \(k^2 \log k \)
- MET-\(R_{\text{MAX}} \) faster, like \(k \log k \)
- Bounds weak, but suggest a better algorithm!
- Also selected visual pattern for terrain learning.
Many Learnable Problems

Many hypothesis classes KWIK learnable:
• coin flip probability
• Dynamic Bayes net probabilities given graph
• k Dynamic Bayes net
• k Meteorologist problem
• k-CNF
• k-depth decision tree
• unions of KWIK-learnable classes
• k feature linear function

Grid World Demo (expt2)

• Unknown: What’s a wall?
• (Purpose: What doesn’t KWIK do?)
People Learn to Learn

• expt1: Always + (no mistakes)
• expt2: Always one shape (one mistake).
• expt3: Always some feature (two mistakes).

• Last maze is always +, but people perform differently depending on their experience.
• Transfer learning in RL (Taylor & Stone 07, e.g.).
• KWIK can learn any of these classes, but if all are possible, devolves to worst case.

Playing the Odds

• Standard PAC-MDP algorithms can’t say:
 – I know you told me all states independent,
 – but every wall I’ve seen has been painful.
 – Can I just walk around now, please?
• Rmax vs. RAM-Rmax
 – Rmax: states independent
 – RAM-Rmax: Types known
• What if states “cluster”?
 – new state likely to be familiar
Bayesian Perspective

• Start with a prior over models.
• Maintain a posterior across tasks.
• Now, we can talk about more/less likely models instead of just possible models.
• How can we use the Bayesian view in exploration?

Bayes Optimal Exploration

• With a Bayesian representation of models, we can plan in the space of posteriors.
 – Can use posterior to evaluate the likelihood of any possible outcome of an action.
 – Can model how that outcome will change the posterior.
 – Can choose actions that truly maximize expected reward: No artificial distinction between exploring and exploiting or learning and acting.
• Hideously intractable except in some special cases (bandits, short horizons).
Concrete Example

- MDP has one state, 3 actions (bandit)
 - X: [.7 .1 .8], Y: [.8 .6 .7], γ = 0.8
 - Prior: <.50,.50> (1/2 X, 1/2 Y)

 <.50,.50>

 (+.750)
Representing Posteriors

- $T: s, a \rightarrow \text{multinomial over states}$
- If independent for each s, a: Dirichlet!
- Keep counts for each observed outcome.
- Can recover uncertainty in overall estimate.
- Unlike example, distribution over an infinite set.

Bayes Optimal Plans

- Many attempts (Duff & Barto 97; Dearden et al. 99)
- State of the art, BEETLE (Poupart et al. 06)
 - Latest ideas from solving continuous POMDPs
 - α functions are multivariate polynomials + PBVI
 - Can exploit “parameter tying” prior
 - Near optimal plan in “combination lock”.
 - Less optimal in bigger problem.
Near Bayes Optimal Behavior

• Recall PAC-MDP, whp makes few mistakes.
• Near Bayesian: mistakes are actions taken with values far from Bayes optimal.
• Bayesian Exploration Bonus (Kolter & Ng 09) keeps mean of posterior and adds $1/n$ bonus to actions taken n times.
 – BEB is computationally simple.
 – BEB is Near Bayesian.
 – BEB is not PAC-MDP, though...

Bayes Optimal not PAC-MDP

• Examples where Bayes optimal does not find near optimal actions (Kolter & Ng 09; Li 09)
• Not clear which is “right”.
• Who gets near optimal reward?
 – PAC-MDP: Future self
 – Near Bayesian: Current self
• Human behavior somewhere in between?
 – Hyperbolic discounting
PAC-MDP with Bayesian Priors

- With a prior that all similar colored squares are the same, we can bound the chance generalization will lead to sub-optimality.
- **Idea:** Don’t worry about it if it’s small!

\[
X: \{.7, .1, .8\}, \ Y: \{.8, .6, .7\}
\]

\[
\epsilon = 0.0001, \ \delta = 0.05
\]

\[
<.99, .01>
\]

R is near optimal whp

BOSS: Algorithmic Approach

- Optimism under uncertainty, not Bayes optimal
 - Sample models from the posterior.
 - Stitch together into a meta-MDP.
 - Solve to find optimal behavior: best of sampled set
 - Act accordingly until something new learned.
- If set big, near optimality whp (Asmuth et al. 09)
- Several ideas appear to be viable here

\[
O\left(\frac{SAB}{\epsilon(1 - \gamma)^2} \ln\frac{1}{\delta} \ln\frac{1}{\epsilon(1 - \gamma)}\right)
\]
BOSS in Maze

- To learn in maze:
 - Chinese Restaurant Process prior
 - Finds (empirical) clusters
 - Outperforms Rmax, 1-cluster RAM-Rmax

- Fewer than states
- Fewer than types
- Some types grouped
- Rare states nonsense

Computation Matters

- Learning/exploration can be made efficient
 - model-based RL
 - PAC-MDP for studying efficient learning
 - KWIK for acquiring transition model

- Planning “just” a computational problem.
 - But, with powerful generalization, can quickly learn accurate yet intractible models!
 - Something needs to be done or the models are useless. (Not as focused on guarantees today.)
“Nesting” RL Approaches

policy search

value function

model-based

policy search inside model-based

value function inside model-based

Example: Autonomous Flight

• Outer approach: Model-based RL.
 – Experts parameterize model space
 – Parameters learned quickly from expert demonstration (no exploration needed)

• Resulting model very high dimensional (S,A)

• Inner approach: Policy-search RL.
 – Experts parameterize space of policies
 – Offline search finds excellent policy on model
 – Methodology robust to error in model

• Learns amazing stunts (Ng et al. 03).
Tricks and Treats

Linear Models

• Linear value function approaches: LSTD/LSPI
 (Boyan 99; Lagoudakis & Parr 03)

 • Give the same result!
 (Parr et al. 08)
Fitted Value Iteration

- Represent value function via anchor points and local smoothing \((\text{Gordon 95})\)
- Some guarantees if points densely sampled \((\text{Chow & Tsitsiklis 91})\)
- Combined with KWIK learning of model \((\text{Brunskill et al. 08})\)

UCT: Upper Conf. in Trees

- Narrow, deep game-tree search via bandits \((\text{Kocsis & Szepsvári 06})\)
- Huge success in Go \((\text{Gelly & Wang 06})\)
- Good fit w/ learned model.
 - Just needs to be able to simulate transitions
 - KWIK-like methods are also “query” based
- Not aware of work using it in RL setting.
Do Kids Explore?

• Statistics of play sensitive to confounding
• Show kid 2-lever toy (Schulz/Bonawitz 07).
 – Demonstrate both. Kid becomes interested in new toy.
 – Demonstrate them together. Kids stays interested in old toy.

• Experiment design intractable. KWIK-like heuristic?

Old Toy

New Toy

Do People Explore? (xkcd)
Wrap Up

• Introduction
 – Q-learning
 – MDPs
 – Model-based RL
 – PAC-MDP
 – KWIK

• Current topics
 – Bayesian RL
 – “Recursive” RL
 – Function approximation
 – Human exploration