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Roadmap

• Similarity, kernels, feature spaces

• Positive definite kernels and their RKHS

• Kernel means, representer theorem

• Support Vector Machines
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Learning and Similarity: some Informal Thoughts

• input/output sets X,Y

• training set (x1, y1), . . . , (xm, ym) ∈ X × Y

• “generalization”: given a previously unseen x ∈ X, find a suit-
able y ∈ Y

• (x, y) should be “similar” to (x1, y1), . . . , (xm, ym)

• how to measure similarity?

– for outputs: loss function (e.g., for Y = {±1}, zero-one loss)

– for inputs: kernel
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Similarity of Inputs

• symmetric function

k : X × X → R
(x, x′) %→ k(x, x′)

• for example, if X = RN : canonical dot product

k(x, x′) =
∑N

i=1
[x]i[x

′]i

• if X is not a dot product space: assume that k has a represen-
tation as a dot product in a linear space H, i.e., there exists a
map Φ : X → H such that

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
.

• in that case, we can think of the patterns as Φ(x),Φ(x′), and
carry out geometric algorithms in the dot product space (“fea-
ture space”) H.



An Example of a Kernel Algorithm

Idea: classify points x := Φ(x) in feature space according to which
of the two class means is closer.

c+ :=
1

m+

∑

yi=1

Φ(xi), c− :=
1

m−

∑

yi=−1

Φ(xi)

+
o

o

o

o

+
+

c1

c2

x-c

w

x

c
.

Compute the sign of the dot product between w := c+ − c− and
x − c.
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An Example of a Kernel Algorithm, ctd. [32]

f (x) = sgn



 1

m+

∑

{i:yi=+1}
〈Φ(x),Φ(xi)〉−

1

m−

∑

{i:yi=−1}
〈Φ(x),Φ(xi)〉+b





= sgn



 1

m+

∑

{i:yi=+1}
k(x, xi) −

1

m−

∑

{i:yi=−1}
k(x, xi) + b





where

b =
1

2



 1

m2
−

∑

{(i,j):yi=yj=−1}

k(xi, xj) −
1

m2
+

∑

{(i,j):yi=yj=+1}

k(xi, xj)



 .

• provides a geometric interpretation of Parzen windows
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An Example of a Kernel Algorithm, ctd.

• Demo

• Exercise: derive the Parzen windows classifier by computing the
distance criterion directly
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Statistical Learning Theory

1. started by Vapnik and Chervonenkis in the Sixties

2. model: we observe data generated by an unknown stochastic
regularity

3. learning = extraction of the regularity from the data

4. the analysis of the learning problem leads to notions of capacity
of the function classes that a learning machine can implement.

5. support vector machines use a particular type of function class:
classifiers with large “margins” in a feature space induced by a
kernel.

[39, 40]
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Kernels and Feature Spaces

Preprocess the data with

Φ : X → H

x %→ Φ(x),

where H is a dot product space, and learn the mapping from Φ(x)
to y [6].

• usually, dim(X) ) dim(H)

• “Curse of Dimensionality”?

• crucial issue: capacity, not dimensionality
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Example: All Degree 2 Monomials

Φ : R2 → R3

(x1, x2) %→ (z1, z2, z3) := (x2
1,
√
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General Product Feature Space

How about patterns x ∈ RN and product features of order d?

Here, dim(H) grows like Nd.

E.g. N = 16 × 16, and d = 5 −→ dimension 1010
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The Kernel Trick, N = d = 2

〈
Φ(x),Φ(x′)

〉
= (x2

1,
√

2 x1x2, x
2
2)(x

′2
1,
√

2 x′1x
′
2, x

′2
2 )+

=
〈
x, x′

〉2

= : k(x, x′)

−→ the dot product in H can be computed in R2
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The Kernel Trick, II

More generally: x, x′ ∈ RN , d ∈ N:

〈
x, x′

〉d
=




N∑

j=1

xj · x′j




d

=
N∑

j1,...,jd=1

xj1 · · · · · xjd · x
′
j1
· · · · · x′jd =

〈
Φ(x),Φ(x′)

〉
,

where Φ maps into the space spanned by all ordered products of
d input directions
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Mercer’s Theorem

If k is a continuous kernel of a positive definite integral oper-
ator on L2(X) (where X is some compact space),

∫

X
k(x, x′)f (x)f (x′) dx dx′ ≥ 0,

it can be expanded as

k(x, x′) =
∞∑

i=1

λiψi(x)ψi(x
′)

using eigenfunctions ψi and eigenvalues λi ≥ 0 [26].
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The Mercer Feature Map

In that case

Φ(x) :=





√
λ1ψ1(x)√
λ2ψ2(x)

...





satisfies
〈
Φ(x),Φ(x′)

〉
= k(x, x′).

Proof:

〈
Φ(x),Φ(x′)

〉
=

〈



√
λ1ψ1(x)√
λ2ψ2(x)

...



 ,





√
λ1ψ1(x

′)√
λ2ψ2(x

′)
...




〉

=
∞∑

i=1

λiψi(x)ψi(x
′) = k(x, x′)
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The Kernel Trick — Summary

• any algorithm that only depends on dot products can benefit
from the kernel trick

• this way, we can apply linear methods to vectorial as well as
non-vectorial data

• think of the kernel as a nonlinear similarity measure

• examples of common kernels:

Polynomial k(x, x′) = (
〈
x, x′

〉
+ c)d

Sigmoid k(x, x′) = tanh(κ
〈
x, x′

〉
+ Θ)

Gaussian k(x, x′) = exp(−‖x − x′‖2/(2σ2))

• Kernels are also known as covariance functions [44, 41, 45, 25]
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Positive Definite Kernels

It can be shown that the admissible class of kernels coincides with
the one of positive definite (pd) kernels: kernels which are sym-
metric (i.e., k(x, x′) = k(x′, x)), and for

• any set of training points x1, . . . , xm ∈ X and

• any a1, . . . , am ∈ R
satisfy ∑

i,j

aiajKij ≥ 0, where Kij := k(xi, xj).

K is called the Gram matrix or kernel matrix.

If for pairwise distinct points,
∑

i,j aiajKij = 0 =⇒ a = 0, call
it strictly positive definite.
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Elementary Properties of PD Kernels

Kernels from Feature Maps.
If Φ maps X into a dot product space H, then

〈
Φ(x),Φ(x′)

〉
is a

pd kernel on X × X.

Positivity on the Diagonal.
k(x, x) ≥ 0 for all x ∈ X

Cauchy-Schwarz Inequality.
k(x, x′)2 ≤ k(x, x)k(x′, x′) (Hint: compute the determinant of
the Gram matrix)

Vanishing Diagonals.
k(x, x) = 0 for all x ∈ X =⇒ k(x, x′) = 0 for all x, x′ ∈ X
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The Feature Space for PD Kernels [5, 2, 29]

• define a feature map

Φ : X → RX

x %→ k(., x).

E.g., for the Gaussian kernel: !

. .
!(x) !(x')x x'

Next steps:

• turn Φ(X) into a linear space

• endow it with a dot product satisfying〈
Φ(x),Φ(x′)

〉
= k(x, x′), i.e.,

〈
k(., x), k(., x′)

〉
= k(x, x′)

• complete the space to get a reproducing kernel Hilbert space
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Turn it Into a Linear Space

Form linear combinations

f (.) =
m∑

i=1

αik(., xi),

g(.) =
m′∑

j=1

βjk(., x′j)

(m,m′ ∈ N, αi, βj ∈ R, xi, x
′
j ∈ X).
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Endow it With a Dot Product

〈f, g〉 :=
m∑

i=1

m′∑

j=1

αiβjk(xi, x
′
j)

=
m∑

i=1

αig(xi) =
m′∑

j=1

βjf (x′j)

• This is well-defined, symmetric, and bilinear (more later).

• So far, it also works for non-pd kernels
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The Reproducing Kernel Property

Two special cases:

• Assume
f (.) = k(., x).

In this case, we have

〈k(., x), g〉 = g(x).

• If moreover
g(.) = k(., x′),

we have
〈k(., x), k(., x′)〉 = k(x, x′).

k is called a reproducing kernel
(up to here, have not used positive definiteness)
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Endow it With a Dot Product, II

• It can be shown that 〈., .〉 is a p.d. kernel on the set of functions
{f (.) =

∑m
i=1αik(., xi)|αi ∈ R, xi ∈ X} :

∑

ij

γiγj
〈
fi, fj

〉
=

〈
∑

i

γifi,
∑

j

γjfj

〉
=: 〈f, f〉

=

〈
∑

i

αik(., xi),
∑

i

αik(., xi)

〉
=

∑

ij

αiαjk(xi, xj) ≥ 0

• furthermore, it is strictly positive definite:

f (x)2 = 〈f, k(., x)〉2 ≤ 〈f, f〉 〈k(., x), k(., x)〉 = 〈f, f〉 k(x, x)

hence 〈f, f〉 = 0 implies f = 0.

• Complete the space in the corresponding norm to get a Hilbert
space Hk.

B Schölkopf Cambridge 2009



Explicit Construction of the RKHS Map for Mercer
Kernels

Recall that the dot product has to satisfy

〈k(x, .), k(x′, .)〉 = k(x, x′).

For a Mercer kernel

k(x, x′) =

NF∑

j=1

λjψj(x)ψj(x
′)

(with λi > 0 for all i, NF ∈ N ∪ {∞}, and
〈
ψi, ψj

〉
L2(X) = δij),

this can be achieved by choosing 〈., .〉 such that

〈ψi, ψj〉 = δij/λi.
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ctd.

To see this, compute

〈k(x, .), k(x′, .)〉 =

〈
∑

i

λiψi(x)ψi,
∑

j

λjψj(x
′)ψj

〉

=
∑

i,j

λiλjψi(x)ψj(x
′)〈ψi, ψj〉

=
∑

i,j

λiλjψi(x)ψj(x
′)δij/λi

=
∑

i

λiψi(x)ψi(x
′)

= k(x, x′).
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Deriving the Kernel from the RKHS

An RKHS is a Hilbert space H of functions f where all point
evaluation functionals

px : H → R
f %→ px(f ) = f (x)

exist and are continuous.
Continuity means that whenever f and f ′ are close in H, then
f (x) and f ′(x) are close in R. This can be thought of as a topo-
logical prerequisite for generalization ability.
By Riesz’ representation theorem, there exists an element of H,
call it rx, such that 〈rx, f〉 = f (x),

in particular,
〈rx, rx′〉 = rx′(x).

Define k(x, x′) := rx(x′) = rx′(x).

(cf. Canu & Mary, 2002)



The Empirical Kernel Map

Recall the feature map

Φ : X → RX

x %→ k(., x).

• each point is represented by its similarity to all other points

• how about representing it by its similarity to a sample of points?

Consider

Φm : X → Rm

x %→ k(., x)|(x1,...,xm) = (k(x1, x), . . . , k(xm, x))+
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ctd.

• Φm(x1), . . . ,Φm(xm) contain all necessary information about
Φ(x1), . . . ,Φ(xm)

• the Gram matrix Gij :=
〈
Φm(xi),Φm(xj)

〉
satisfies G = K2

where Kij = k(xi, xj)

• modify Φm to

Φw
m : X → Rm

x %→ K−1
2(k(x1, x), . . . , k(xm, x))+

• this “whitened” map (“kernel PCA map”) satifies
〈
Φw

m(xi),Φ
w
m(xj)

〉
= k(xi, xj)

for all i, j = 1, . . . ,m.
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Some Properties of Kernels [32, 34]

If k1, k2, . . . are pd kernels, then so are

• αk1, provided α ≥ 0

• k1 + k2

• k1 · k2

• k(x, x′) := limn→∞ kn(x, x′), provided it exists

• k(A,B) :=
∑

x∈A,x′∈B k1(x, x′), where A,B are finite subsets
of X
(using the feature map Φ̃(A) :=

∑
x∈A Φ(x))

Further operations to construct kernels from kernels: tensor prod-
ucts, direct sums, convolutions [19].
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Properties of Kernel Matrices, I [30]

Suppose we are given distinct training patterns x1, . . . , xm, and a
positive definite m × m matrix K.

K can be diagonalized as K = SDS+, with an orthogonal matrix
S and a diagonal matrix D with nonnegative entries. Then

Kij = (SDS+)ij =
〈
Si,DSj

〉
=

〈√
DSi,

√
DSj

〉
,

where the Si are the rows of S.

We have thus constructed a map Φ into an m-dimensional feature
space H such that

Kij =
〈
Φ(xi),Φ(xj)

〉
.
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Properties, II: Functional Calculus [33]

•K symmetric m × m matrix with spectrum σ(K)

• f a continuous function on σ(K)

• Then there is a symmetric matrix f (K) with eigenvalues in
f (σ(K)).

• compute f (K) via Taylor series, or eigenvalue decomposition of
K: If K = S+DS (D diagonal and S unitary), then f (K) =
S+f (D)S, where f (D) is defined elementwise on the diagonal

• can treat functions of symmetric matrices like functions on R
(αf + g)(K) = αf (K) + g(K)

(fg)(K) = f (K)g(K) = g(K)f (K)

‖f‖∞,σ(K) = ‖f (K)‖
σ(f (K)) = f (σ(K))

(the C∗-algebra generated by K is isomorphic to the set of
continuous functions on σ(K))



An example of a kernel algorithm, revisited

µ(X )
w .

+

+

+

+

o

o
o

µ(Y )

X compact subset of a separable metric space, m,n ∈ N.

Positive class X := {x1, . . . , xm} ⊂ X
Negative class Y := {y1, . . . , yn} ⊂ X

RKHS means µ(X) = 1
m

∑m
i=1 k(xi, ·), µ(Y ) = 1

n
∑n

i=1 k(yi, ·).
Get a problem if µ(X) = µ(Y )!
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When do the means coincide?

k(x, x′) =
〈
x, x′

〉
: the means coincide

k(x, x′) = (
〈
x, x′

〉
+ 1)d: all empirical moments up to order d coincide

k strictly pd: X = Y .

The mean “remembers” each point that contributed to it.
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Proposition 1 Assume X,Y are defined as above, k is
strictly pd, and for all i, j, xi 4= xj, and yi 4= yj.
If for some αi, βj ∈ R − {0}, we have

m∑

i=1

αik(xi, .) =
n∑

j=1

βjk(yj, .), (1)

then X = Y .
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Proof (by contradiction)

W.l.o.g., assume that x1 4∈ Y . Subtract
∑n

j=1 βjk(yj, .) from (1),
and make it a sum over pairwise distinct points, to get

0 =
∑

i

γik(zi, .),

where z1 = x1, γ1 = α1 4= 0, and
z2, · · · ∈ X ∪ Y − {x1}, γ2, · · · ∈ R.
Take the RKHS dot product with

∑
j γjk(zj, .) to get

0 =
∑

ij

γiγjk(zi, zj),

with γ 4= 0, hence k cannot be strictly pd.

Exercise: generalize to the case of nonsingular kernel (i.e., leading
to nonsingular Gram matrices for pairwise distinct points).



Generalization

We will prove a more general statement, without assuming positive definiteness.

Definition 2 We call a kernel k : X2 → R nonsingular if for any n ∈ N and pairwise distinct x1, . . . , xn ∈ X, the Gram matrix
(k(xi, xj))ij is nonsingular.

Note that strictly positive definite kernels are nonsingular: if the matrix K is singular, then there exists a β 4= 0 such that
Kβ = 0, hence β!Kβ = 0, hence k is not strictly positive definite.

Proposition 3 Assume X, Y are defined as above, k is nonsingular, and for all i, j, xi 4= xj, and yi 4= yj.
If for some αi, βj ∈ R − {0}, we have

m∑

i=1

αik(xi, .) =
n∑

j=1

βjk(yj, .), (2)

then X = Y .

Proof (by contradiction) W.l.o.g., assume that x1 4∈ Y . Subtract
∑n

j=1 βjk(yj , .) from (2), and make it a sum over pairwise
distinct points, to get

0 =
∑

i

γik(zi, .),

where z1 = x1, γ1 = α1 4= 0, and z2, · · · ∈ X ∪ Y − {x1}, γ2, · · · ∈ R.
Similar to the pd case, k induces a linear space with a bilinear form satisfying the reproducing kernel property.
Take the bilinear form between

∑
j λjk(zj , .) and the above, to get

0 =
∑

ij

λjγik(zj, zi) = λ!Kγ,

where λ ∈ R is arbitrary. Hence Kγ = 0. However, γ 4= 0, hence K is singular.

Since the zi are pairwise distinct, k cannot be nonsingular.
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The mean map

µ : X = (x1, . . . , xm) %→ 1

m

m∑

i=1

k(xi, ·)

satisfies

〈µ(X), f〉 =

〈
1

m

m∑

i=1

k(xi, ·), f
〉

=
1

m

m∑

i=1

f (xi)

and

‖µ(X)−µ(Y )‖ = sup
‖f‖≤1

|〈µ(X) − µ(Y ), f〉| = sup
‖f‖≤1

∣∣∣∣∣
1

m

m∑

i=1

f(xi) −
1

n

n∑

i=1

f(yi)

∣∣∣∣∣ .

Note: distance in the RKHS = solution of a high-dimensional
optimization problem.
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Witness function

f = µ(X)−µ(Y )
‖µ(X)−µ(Y )‖, thus f (x) ∝ 〈µ(X) − µ(Y ), k(x, .)〉):

−6 −4 −2 0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Witness f for Gauss and Laplace data

X

Pr
ob

. d
en

si
ty

 a
nd

 f

 

 
f
Gauss
Laplace

This function is in the RKHS of a Gaussian kernel, but not in the
RKHS of the linear kernel.
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The mean map for measures

p, q Borel probability measures,

Ex,x′∼p[k(x, x′)], Ex,x′∼q[k(x, x′)] < ∞ (‖k(x, .)‖ ≤ M < ∞ is sufficient)

Define
µ : p %→ Ex∼p[k(x, ·)].

Note
〈µ(p), f〉 = Ex∼p[f (x)]

and

‖µ(p) − µ(q)‖ = sup
‖f‖≤1

∣∣Ex∼p[f (x)] − Ex∼q[f (x)]
∣∣ .

Recall that in the finite sample case, for strictly p.d. kernels, µ
was injective — how about now?
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Theorem 4 [13, 10]

p = q ⇐⇒ sup
f∈C(X)

∣∣Ex∼p(f (x)) − Ex∼q(f (x))
∣∣ = 0,

where C(X) is the space of continuous bounded functions on
X.

Replace C(X) by the unit ball in an RKHS that is dense in C(X)
— universal kernel [38], e.g., Gaussian.

Theorem 5 [16] If k is universal, then

p = q ⇐⇒ ‖µ(p) − µ(q)‖ = 0.
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• µ is invertible on its image
M = {µ(p) | p is a probability distribution}
(the “marginal polytope”, [42])

• generalization of the moment generating function of a RV x
with distribution p:

Mp(.) = Ex∼p

[
e〈x, · 〉

]
.
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Uniform convergence bounds

Let X be an i.i.d. m-sample from p. The discrepancy

‖µ(p) − µ(X)‖ = sup
‖f‖≤1

∣∣∣∣∣∣
Ex∼p[f (x)] − 1

m

m∑

i=1

f (xi)

∣∣∣∣∣∣

can be bounded using uniform convergence methods [37].
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Application 1: Two-sample problem [16]

X, Y i.i.d. m-samples from p, q, respectively.

‖µ(p) − µ(q)‖2 =Ex,x′∼p [k(x, x′)] − 2Ex∼p,y∼q [k(x, y)] + Ey,y′∼q [k(y, y′)]

=Ex,x′∼p,y,y′∼q [h((x, y), (x′, y′))]

with
h((x, y), (x′, y′)) := k(x, x′) − k(x, y′) − k(y, x′) + k(y, y′).

Define

D(p, q)2 := Ex,x′∼p,y,y′∼qh((x, y), (x′, y′))

D̂(X, Y )2 := 1
m(m−1)

∑

i 4=j

h((xi, yi), (xj, yj)).

D̂(X,Y )2 is an unbiased estimator of D(p, q)2.
It’s easy to compute, and works on structured data.
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Theorem 6 Assume k is bounded.
D̂(X, Y )2 converges to D(p, q)2 in probability with rate O(m−1

2).

This could be used as a basis for a test, but uniform convergence bounds are often loose..

Theorem 7 We assume E
(
h2

)
< ∞. When p 4= q, then

√
m(D̂(X, Y )2 − D(p, q)2)

converges in distribution to a zero mean Gaussian with variance

σ2
u = 4

(
Ez

[
(Ez′h(z, z′))2

]
−

[
Ez,z′(h(z, z′))

]2
)

.

When p = q, then m(D̂(X, Y )2 − D(p, q)2) = mD̂(X, Y )2 converges in distribution to
∞∑

l=1

λl

[
q2
l − 2

]
, (3)

where ql ∼ N(0, 2) i.i.d., λi are the solutions to the eigenvalue equation
∫

X

k̃(x, x′)ψi(x)dp(x) = λiψi(x
′),

and k̃(xi, xj) := k(xi, xj) − Exk(xi, x) − Exk(x, xj) + Ex,x′k(x, x′) is the centred RKHS
kernel.
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Application 2: Dependence Measures

Assume that (x, y) are drawn from pxy, with marginals px, py.

Want to know whether pxy factorizes.
[3, 14]: kernel generalized variance

[17, 18]: kernel constrained covariance, HSIC

Main idea [22, 28]:
x and y independent ⇐⇒ ∀ bounded continuous functions f, g,
we have Cov(f (x), g(y)) = 0.
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k kernel on X × Y.

µ(pxy) := E(x,y)∼pxy
[k((x, y), ·)]

µ(px × py) := Ex∼px,y∼py [k((x, y), ·)] .

Use ∆ :=
∥∥µ(pxy) − µ(px × py)

∥∥ as a measure of dependence.

For k((x, y), (x′, y′)) = kx(x, x′)ky(y, y′):
∆2 equals the Hilbert-Schmidt norm of the covariance opera-
tor between the two RKHSs (HSIC), with empirical estimate
m−2 tr HKxHKy, where H = I − 1/m [17, 37].
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Witness function of the equivalent optimisation problem:

X

Y

Dependence witness and sample
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Application: learning causal structures (Sun, Janzing, Schölkopf,

Fukumizu, ICML 2007; Fukumizu, Gretton, Sun, Schölkopf, NIPS 2007))
B. Schölkopf, Cambridge, 2009



Application 3: Covariate Shift Correction and Local
Learning

training set X = {(x1, y1), . . . , (xm, ym)} drawn from p,
test set X ′ =

{
(x′1, y

′
1), . . . , (x

′
n, y′n)

}
from p′ 4= p.

Assume py|x = p′y|x.

[35]: reweight training set
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Minimize∥∥∥∥∥∥

m∑

i=1

βik(xi, ·) − µ(X ′)

∥∥∥∥∥∥

2

+λ ‖β‖2
2 subject to βi ≥ 0,

∑

i

βi = 1.

Equivalent QP:

minimize
β

1

2
β+ (K + λ1) β − β+l

subject to βi ≥ 0 and
∑

i

βi = 1,

where Kij := k(xi, xj), li =
〈
k(xi, ·), µ(X ′)

〉
.

Experiments show that in underspecified situations (e.g., large ker-
nel widths), this helps [21].

X ′ =
{
x′

}
leads to a local sample weighting scheme.
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Application 4: Measure estimation and dataset
squashing [9, 4, 1, 37]

Given a sample X , minimize

‖µ(X) − µ(p)‖2

over a convex combination of measures pi,

p =
∑

i
αipi, αi ≥ 0,

∑
i
αi = 1.

This can be written as a convex QP with objective function

‖µ(X) − µ(p)‖2 = α+Qα+1+mK1m − 2α+L1m,

where

Lij :=Ex∼pi

[
k(x, xj)

]

Qij :=Ex∼pi,x′∼pj

[
k(x, x′)

]

Kij =k(xi, xj)

1m :=(1/m, . . . , 1/m)+ ∈ Rm.



In practice, use

α+[Q + λI ]α− 2α+L1m

Some cases where Q and L can be computed in closed form [37]:

• Gaussian pi and k (cf. [4, 43])

• X training set, Dirac measures pi = δxi: dataset squashing, [11]

• X test set, Dirac measures pi = δyi centered on the training points Y :
covariate shift correction [20]
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The Representer Theorem

Theorem 8 Given: a p.d. kernel k on X × X, a training set
(x1, y1), . . . , (xm, ym) ∈ X×R, a strictly monotonic increasing
real-valued function Ω on [0,∞[, and an arbitrary cost function
c : (X × R2)m → R ∪ {∞}
Any f ∈ H minimizing the regularized risk functional

c ((x1, y1, f (x1)), . . . , (xm, ym, f (xm))) + Ω (‖f‖) (4)

admits a representation of the form

f (.) =
∑m

i=1
αik(xi, .).
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Remarks

• significance: many learning algorithms have solutions that can
be expressed as expansions in terms of the training examples

• original form, with mean squared loss

c((x1, y1, f (x1)), . . . , (xm, ym, f (xm))) =
1

m

m∑

i=1

(yi − f (xi))
2,

and Ω(‖f‖) = λ‖f‖2 (λ > 0): [24]

• generalization to non-quadratic cost functions: [8]

• present form: [32]
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Proof

Decompose f ∈ H into a part in the span of the k(xi, .) and an
orthogonal one:

f =
∑

i

αik(xi, .) + f⊥,
where for all j

〈f⊥, k(xj, .)〉 = 0.

Application of f to an arbitrary training point xj yields

f (xj) =
〈
f, k(xj, .)

〉

=

〈
∑

i

αik(xi, .) + f⊥, k(xj, .)

〉

=
∑

i

αi〈k(xi, .), k(xj, .)〉,

independent of f⊥.
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Proof: second part of (4)

Since f⊥ is orthogonal to
∑

i αik(xi, .), and Ω is strictly mono-
tonic, we get

Ω(‖f‖) = Ω
(
‖
∑

i
αik(xi, .) + f⊥‖

)

= Ω

(√
‖
∑

i
αik(xi, .)‖2 + ‖f⊥‖2

)

≥ Ω
(
‖
∑

i
αik(xi, .)‖

)
, (5)

with equality occuring if and only if f⊥ = 0.
Hence, any minimizer must have f⊥ = 0. Consequently, any
solution takes the form

f =
∑

i
αik(xi, .).
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Application: Support Vector Classification

Here, yi ∈ {±1}. Use

c ((xi, yi, f (xi))i) =
1

λ

∑

i

max (0, 1 − yif (xi)) ,

and the regularizer Ω (‖f‖) = ‖f‖2.
λ → 0 leads to the hard margin SVM

B. Schölkopf, Cambridge, 2009



Further Applications

Bayesian MAP Estimates. Identify (4) with the negative log
posterior (cf. Kimeldorf & Wahba, 1970, Poggio & Girosi, 1990),
i.e.

• exp(−c((xi, yi, f (xi))i)) — likelihood of the data

• exp(−Ω(‖f‖)) — prior over the set of functions; e.g., Ω(‖f‖) =
λ‖f‖2 — Gaussian process prior [45] with covariance function
k

• minimizer of (4) = MAP estimate

Kernel PCA (see below) can be shown to correspond to the case
of

c((xi, yi, f (xi))i=1,...,m) =





0 if 1

m
∑

i

(
f (xi) − 1

m
∑

j f (xj)
)2

= 1

∞ otherwise

with g an arbitrary strictly monotonically increasing function.



The Pre-Image Problem

• due to the representer theorem, the solution of kernel algorithms
usually corresponds to a single vector in H

w =
m∑

i=1

αiΦ(xi).

However, there is usually no x ∈ X such that

Φ(x) = w,

i.e., Φ(X) is not closed under linear combinations — it is a
nonlinear manifold (cf. [7, 31]).
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Conclusion so far

• the kernel corresponds to

– a similarity measure for the data, or

– a (linear) representation of the data, or

– a hypothesis space for learning,

• kernels allow the formulation of a multitude of geometrical algo-
rithms (Parzen windows, 2-sample tests, SVMs, kernel PCA,...)
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Regularization Interpretation of Kernel Machines

The norm in H can be interpreted as a regularization term (Girosi
1998, Smola et al., 1998, Evgeniou et al., 2000): if P is a regular-
ization operator (mapping into a dot product space D) such that
k is Green’s function of P ∗P , then

‖w‖ = ‖Pf‖,
where

w =
∑m

i=1
αiΦ(xi)

and
f (x) =

∑
i
αik(xi, x).

Example: for the Gaussian kernel, P is a linear combination of
differential operators.

B. Schölkopf, Cambridge, 2009



‖w‖2 =
∑

i,j

αiαjk(xi, xj)

=
∑

i,j

αiαj

〈
k(xi, .), δxj(.)

〉

=
∑

i,j

αiαj
〈
k(xi, .), (P

∗Pk)(xj, .)
〉

=
∑

i,j

αiαj
〈
(Pk)(xi, .), (Pk)(xj, .)

〉
D

=

〈
(P

∑

i

αik)(xi, .), (P
∑

j

αjk)(xj, .)

〉

D

= ‖Pf‖2,

using f (x) =
∑

i αik(xi, x).
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