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Abstract. Beamforming is one of the most commonly used methods
for estimating the active neural sources from the MEG or EEG sensor
readings. The basic assumption in beamforming is that the sources are
uncorrelated, which allows for estimating each source independent of the
others. In this paper, we incorporate the independence assumption of the
standard beamformer in a linear dynamical system, thereby introducing
the dynamic beamformer. Using empirical data, we show that the dy-
namic beamformer outperforms the standard beamformer in predicting
the condition of interest which strongly suggests that it also outperforms
the standard method in localizing the active neural generators.

1 Introduction

As the number of possible neural sources is much higher than the number of MEG
or EEG sensor readings, the inverse problem of estimating source amplitudes from
sensor readings has many solutions. A common approach to tackle this problem
is to assume that all sources are independent from each other. This approach is
widely used in the neuroscience community and is known as beamforming [6–9].

Since the source amplitude is likely to change smoothly over time, we ex-
pect to improve the source localization by taking the temporal dynamics into
account. Smoothness constraints have been combined with source localization
in a Bayesian framework [12, 16, 19]. Furthermore, source localization with a
multivariate autoregressive source model has been presented in [10], where the
sources are assumed to be independent and identically distributed in time and
the components are subject to non-Gaussian distributions. The Kalman filter
and particle filter have also been introduced in the context of EEG and MEG
source localization based on dipole-fitting approaches [1, 2]. The model intro-
duced in [1,2] relies on the integration of many dynamic dipolar neural models.
In this paper, in contrast to the previous methods, we start from the standard

� Corresponding author. The authors gratefully acknowledge the support of the Brain-
Gain Smart Mix Programme of the Netherlands Ministry of Economic Affairs and
the Netherlands Ministry of Education, Culture and Science.

G. Langs et al. (Eds.): MLINI 2011, LNAI 7263, pp. 148–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Dynamic Beamformer 149

beamforming solution and we show that we can incorporate the independence as-
sumption of the standard beamformer in a linear dynamical system. We demon-
strate that by using the leadfield matrix as the observation model and setting
the covariance of the observation noise proportional to the covariance of the
observation, we arrive at the dynamic beamformer.

2 Method

2.1 Beamforming

Let m, n, and T denote the number of sources, sensors, and samples, respec-
tively. The goal of source localization is to estimate active sources S ∈ R

m×T

from sensor readings X ∈ R
n×T . In the source localization problem, sources are

assumed to project linearly to the sensors via a leadfield matrix L ∈ R
n×m.

In other words, X = LS, where L and X are given and S is to be estimated.
If we further assume that the solution to the source localization problem can
be written as a linear mapping from sensors to sources, the problem of source
localization reduces to estimating the linear projection matrix W ∈ R

n×m that
projects the sensors to the sources; in other words: S = W ′X .

Beamforming derives from the assumption that the sources are uncorrelated.
Defining si ≡ Si·, �i ≡ L·i, and wi ≡ W·i , for each source si ≡ (si,1, . . . , si,T ), we
can write: si = w′

iX = w′
i�isi, which implies that w′

i�i = 1 for all i ∈ 1, . . . ,m.
A standard approach is to minimize the variance of the sources and find the
wi which minimizes sis

′
i = w′

iΣwi subject to w′
i�i = 1, where Σ ≡ XX ′. The

solution is shown to be [18]:

si = (�′iΣ
−1�i)

−1�′iΣ
−1X (1)

for all i ∈ 1, . . . ,m.

2.2 Linear Gaussian Model

The beamformer can be interpreted as a specific kind of linear probabilistic
model. Assume that we have a linear Gaussian model, as shown in Fig. 1a,
in which xt ≡ X·t is the observation at time t where 1 ≤ t ≤ T , and �i is
given. Sensor observations linearly depend on source activations through xt =
�isi,t + ui,t, where ui,t ∼ N (0, R). Now we try to find si which maximizes the
likelihood of the parameters given the observations and R. Ignoring the constant
terms, the negative log-likelihood can be written as 1

2 (X − �isi)
′R−1(X − �isi) ,

which is minimized by

si =
(
�′iR

−1�i
)−1

�′iR
−1X . (2)

Comparing Eqs. 1 and 2, we see that with R proportional to Σ, the model
depicted in Fig. 1a is equivalent to the standard beamformer. In other words, a
linear Gaussian model is a beamformer if we assume that the covariance of the
observation noise is proportional to the covariance of the observations and use
the leadfield matrix as the observation model.
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Fig. 1. (a) Graphical representation of a linear Gaussian model. (b) Graphical repre-
sentation of the dynamic beamformer.

2.3 Dynamic Beamforming

The correspondence between the beamformer and the linear Gaussian model
suggests that a similar correspondence can be exploited using a linear dynamical
system. We introduce the dynamic beamformer, which can be obtained by just
using the leadfield matrix as the observation model of a linear dynamical system
and setting the covariance of the observation noise to be proportional to the
covariance of the observation. The graphical model of the dynamic beamformer
is shown in Fig. 1b. For each source si ≡ (si,1, . . . , si,T ), dynamic beamforming
can be mathematically expressed as

xt = �isi,t + ui,t (3)

si,t = aisi,t−1 + vi,t (4)

where ui,t ∼ N (0, αiΣ) and vi,t ∼ N (0, qi) independently for i ∈ 1, . . . ,m and
1 ≤ t ≤ T . Note that si,t, ai, qi, and αi are scalar values. Note further that each
si should be predictive for the full observation X , so there is no i in the left side
of Eq. 3. Following the equations reported in [17], we can find ai, qi, αi, and si
by means of an expectation maximization algorithm. We use both filtering and
smoothing (forward and backward) equations to have a better estimate of the
sources.

2.4 Empirical Data

We evaluated our method using MEG data of the best performing subject re-
ported in [3]. The subject’s task was to maintain central fixation while covertly
attending to a target which followed a circular trajectory. The condition was
given by the sine and cosine of the angles between the target and the positive
x-axis over time. To construct the leadfield matrix, we used a structural MRI
and the head model developed in [13]. Then we discretized the brain volume
into a grid with 1 × 1 × 1 cm3 resolution. For each grid point the leadfield was
calculated. Preprocessing and leadfield generation was done using FieldTrip [14].

The complexity of the dynamic beamformer increases with the number of
time points. As shown in [3], task-specific information for this data shows up
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as modulations of occipital alpha power (8-12 Hz) in the frequency domain.
Applying the dynamic beamformer on the frequency domain results in a much
lower processing time. In this study we used a linear trick for power extraction
in order not to violate the linearity of the beamformer. Imagine that we have
a reference signal which has the same frequency and the same phase as the
signal that we want to decode. We take the Fourier transform of the data, which
is a linear operation, only focusing on the desired frequency, and subtract the
phase of the reference signal. Then, the real part of the Fourier transform would
represent the amplitude of the signal which, averaged over a time window, results
in an estimate of the power of the signal over that frequency [15]. As the reference
signal we chose the average signal over eight channels which showed the highest
average alpha power. For the Fourier transform, we used a 500 ms time window.
To include all variations of the alpha band in predicting the conditions, there
was a 400 ms overlap between the consecutive trials.

2.5 Validation

Brain source localization is difficult to validate as mostly there is no certain
knowledge about the exact location of the active sources. In this paper, we
validated our method by decoding the experimental design from the source es-
timates. We used 25 minutes of data for training and 5 minutes for testing our
algorithm. To optimize parameters based on the training set, we used a two-fold
cross-validation approach, i.e., the first half (12.5 minutes) for training and the
second half for testing and vice versa. After optimizing parameters, we computed
the performance on the test set. We used the correlation between the actual and
predicted sine and cosine of the angle as the performance measure.

We validated our beamformer results using two different approaches: a sta-
tionary and a dynamic approach. The stationary validation approach uses two

Fig. 2. (a) Graphical representation of the linear regression model used to predict the
direction of attention from the reconstructed sources. R stand for the regression coef-
ficients. (b) Graphical representation of the linear dynamical system used to predict
the direction of attention from the reconstructed sources. B and C stand for the state
transition matrix and the observation model in the linear dynamical system, respec-
tively.
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L2 regularized linear regressors to predict sine and cosine of the direction of
attention from the alpha sources. Showing sine and cosine of the direction of
attention with Θ ∈ R

2×T , we obtain the graphical representation of our linear
regression model as shown in Fig. 2a.

From the experimental design reported in [3], we know that the direction
of attention changes smoothly over time. That is, the predicted direction of
attention not only depends on the alpha activity but is also highly related to
the previous predicted direction. In our dynamic validation approach, we model
this smoothness assumption again in a linear dynamical system framework. The
graphical representation of this model is presented in Fig. 2b. Using data of the
training set and again following the equations reported in [17], we can learn the
parameters of this model and use it for predicting the conditions of the test set.

3 Results and Discussion

We computed the absolute correlation of the sources reconstructed using both the
beamformer and the dynamic beamformer with the experimental design which,
in our case, is given by the sine and cosine of the direction of attention. As shown
in Fig. 3a, occipital sources are more correlated with the experimental design
in the dynamic beamformer reconstruction. These occipital sources are known
to be involved when subjects are covertly attending to a peripheral target [4].
Here, the higher correlation is expected, as the experimental design changes
very smoothly and the dynamic beamformer enforces the smooth transition of
the sources which results in a higher correlation.

in
g

Be
am

fo
rm

ng
c
Be

am
fo
rm

in
D
yn
am

i

0 0.05
B f i i f i

0

(a) (b)
Beamforming Dynamic Beamforming

Fig. 3. (a) Correlation of the sources reconstructed using both the beamformer and
the dynamic beamformer with the experimental conditions. (b) Correlation between
actual and predicted experimental design based on the sources reconstructed using
either the beamformer or the dynamic beamformer. Significant correlations (p < 0.001)
are marked with a ‘*’.
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Following the stationary validation approach, we show the prediction re-
sults using two L2 regularized linear regressors. Figure 3b shows the correla-
tion of the predictions for sine and cosine based on the sources reconstructed
using the beamformer and the dynamic beamformer with the true values. As
shown, the dynamic beamformer results in a better prediction of the conditions
than the standard beamformer. Specifically, the dynamic beamformer is per-
forming much better for the sine component of the angle than the standard
version. As the sign of the cosine and sine represent left versus right and up
versus down, respectively, Fig. 3b implies that it is more difficult to discriminate
up from down than left from right using the sources reconstructed with stan-
dard beamforming. Furthermore, if we look at the absolute regression coefficients
obtained by either standard or dynamic beamforming shown in Fig. 4, we see
that only the regression coefficients of the dynamic beamformer are consistent
with the correlations shown in Fig. 3a. As the trained regressor on the sources
reconstructed from standard beamforming focuses on the task-irrelevant brain
regions, the poor performances of the beamforming part of Fig. 3b is expected.

max

00
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Fig. 4. Average absolute value of the regression coefficients for predicting sine and
cosine of the direction of attention using the sources obtained by (a) standard beam-
forming and (b) dynamic beamforming

We further checked whether we could improve predictive performance by mak-
ing use of a linear dynamical system on the dynamic beamformer results following
the dynamic validation approach. Having the sources reconstructed from the dy-
namic beamformer, based on the training data, we sorted the sources according
to their correlation with the experimental condition. We then checked whether
we need all the sources to have a good prediction. Using a linear dynamical
system on a subset of sources, from 1 to 500 sources, we show how the average
absolute correlation between the predictions and the true directions changes in
Fig. 5a. As the performance drops dramatically by adding more sources than
400, we did not go beyond analyzing 500 sources. It can be seen in Fig. 5a that
the optimal number of sources to be used for predicting the direction of attention
is about 300. Using a linear dynamical system on the 300 sources, the prediction
result is shown in Fig. 5b. This result is equivalent to a correlation of 0.42 for
sine and 0.58 for cosine compared to the results shown in Fig. 3b. In other words,
making use of a linear dynamical system on a subset of sources, the prediction
of the experimental condition becomes about three times better than using two
linear regressors. The predictions are consistent with the results shown in [11].
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Fig. 5. (a) Average absolute correlation between the experimental condition and the
predictions using a linear dynamical system model. (b) The prediction on the test set
using 300 sources. Red dots show the true angle and blue dots show the predictions.

4 Conclusion

In this paper, we showed that we can incorporate the independence assumption
of the standard beamformer in a linear dynamical system by using the leadfield
matrix as the observation model and setting the covariance of the observation
noise to be proportional to the covariance of the observation. This led to our
formulation of the dynamic beamformer. We evaluated our method using an
MEG dataset reported in [3]. We validated our method by decoding the experi-
mental design from the sources extracted using both the standard beamformer
and the dynamic beamformer. Our validation as shown in Fig. 3b, demonstrated
that the dynamic beamformer outperforms the standard beamformer in predict-
ing the direction to which a subject was covertly attending. We further showed
in Fig. 5 that we can improve the prediction of the attended direction from the
sources by making use of a linear dynamical system. Our results strongly suggest
that the dynamic beamformer outperforms the standard approach in estimating
the active neural generators. Further Bayesian optimization approaches other
than the maximum likelihood can be applied to improve the performance of the
dynamic beamformer in future studies [5].
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