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Abstract

In this paper, we present two classes of Bayesian approaches to the two-
sample problem. Our first class of methods extends the Bayesian t-test to
include all parametric models in the exponential family and their conju-
gate priors. Our second class of methods uses Dirichlet process mixtures
(DPM) of such conjugate-exponential distributions as flexible nonpara-
metric priors over the unknown distributions.

1 Introduction

In this paper, we tackle the so-called two-sample problem:

Problem Statement 1 Given two samples X = {x1, . . . , xm1
} ∼ q1 and Y =

{y1, . . . , ym2
} ∼ q2 from two underlying distributions q1 and q2. The two-sample

problem is to decide whether q1 = q2.

An associated test is called a two-sample test. Such tests are encountered in
various disciplines from the life sciences to the social sciences:

• In medical studies, one may want to find out if two classes of patients
show different behaviour, response to a drug or susceptibility to a disease.

• In microarray analysis, one may compare measurements from different
weeks, labs or platforms to find out if they follow the same distribution,
before integrating them into one dataset, in order to increase sample size.

• In the neurosciences, one may want to compare measurements of brain
signals under different external stimuli, to check whether brain activity is
affected by these stimuli.

• In the social sciences, one may want to compare whether the behavior of a
group of people, e.g. when they graduate, marry, or die, is different across
countries or generations.

• In the financial sciences, one could for example compare the set of trans-
actions performed at a stock exchange during different weeks, to find out
if there is a change in activity in the financial markets.
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While this question has been studied in detail by classic statistics for uni-
variate data, there is less work on multivariate data (which we review in Section
2). The only machine learning approach to this problem is a kernel method by
(Gretton et al., 2007), using the means of the two samples X and Y in a univer-
sal reproducing kernel Hilbert Space as its test statistics, but it has created lots
of interest in that subject and follow-on studies (Borgwardt et al., 2006; Huang
et al., 2007; Gretton & Györfi, 2008).

Here, we approach this two-sample problem from a Bayesian perspective.
The classic Bayesian formulation of this problem would be in terms of a Bayes
factor (Kass & Raftery, 1995) which represents the likelihood ratio that the data
were generated according to hypothesis H0 (that is from the same distribution)
or hypothesis H1 (that is from different distributions). However, how to exactly
define these two hypotheses is a crucial question, and many answers have been
given in the Bayesian literature with hypotheses that are tailored to a specific
problem or application domain; one example are the Bayesian t-tests used in
microarray data analysis (Baldi & Long, 2001; Fox & Dimmic, 2006). Our goal
in this paper is to define two general classes of two-sample tests that represent a
precise formulation of the two-sample problem, but are not tailored to a specific
application. They are designed to offer an attractive middle ground between
the general idea of using Bayes factors and the specialised hypotheses testing
problems studied in the literature.

In detail, we define a class of nonparametric Bayesian two sample tests based
on Dirichlet process mixture models. The use of Dirichlet process mixtures
for flexible nonparametric modelling of general unknown distributions has a
long history in Statistics. However, although the two-sample problem depends
crucially on testing whether data come from one or two unknown distributions,
Bayesian approaches based on nonparametric density models have not been
explored to date. Here we propose and explore such a non-parametric method
using the classic Dirichlet process mixture. To the best of our knowledge, the
only work that is remotely related is that on a Bayesian test for a parametric
versus a nonparametric model of the data by Berger and Guglielmi (Berger &
Guglielmi, 1998). This addresses a different but related question since it assumes
a parametric null hypothesis. We also define a parametric Bayesian two-sample
test where the model of the data is a member of the exponential family. This
test generalizes the Bayesian t-test by (Baldi & Long, 2001) and (Fox & Dimmic,
2006), who assume that the samples are Gaussian.

This paper is structured as follows. In Section 2 we will review existing
approaches to the two-sample problem on multivariate data, and highlight some
differences between frequentist and Bayesian hypothesis testing. In Section 3 we
outline the common core of our two Bayesian two-sample test, before providing
the details on the parametric test in Section 4 and on the non-parametric test
in Section 5.
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2 Multivariate two-sample tests

Related work in statistics and kernel machines Our method is a Bayesian
approach to a problem that has been studied in classic statistics and kernel ma-
chine learning. Here we describe in short the prominent multivariate two-sample
tests (see also (Gretton et al., 2007)).

Frequentist two sample tests follow the same principle of classic hypothesis
testing: Given the two samples X and Y , a test statistic is computed. Then
the distribution of this test statistics under the null distribution (q1 = q2) is
determined. If the value of the test statistic falls into the 1 − α-quantile of the
null distribution, the null hypothesis q1 = q2 is accepted at significance level α.
If its value exceeds the 1 − α quantile, it is rejected at significance level α. So
the outcome of these test depends on the significance level α which has to be
chosen apriori.

Frequentists tests differ mainly in two points: a) the test statistic they em-
ploy and b) the way in which they determine the null distribution for this test
statistic. The classic multivariate t-test (Hotelling, 1951) assumes that both dis-
tributions are multivariate Gaussian with unknown identical covariance; Fried-
man and Rafsky (Friedman & Rafsky, 1979; Henze & Penrose, 1999) define test
statistics based on spanning trees, namely the number of edges that connect
points from X to Y in a minimum spanning tree (Wald-Wolfowitz test) and
the closeness of points from X and Y in a ranking derived from the minimum
spanning tree (Kolmogorov-Smirnow test) (Bickel, 1969; Friedman & Rafsky,
1979). Rosenbaum’s test statistic is the number of pairs containing a data point
from X and Y in a minimum distance non-bipartite matching over X ∪ Y .
Hall and Tajvidi (Hall & Tajvidi, 2002) essentially for each data point count
its number of nearest neighbours in X ∪ Y that are from the other sample.
Biau and Gyorfi ’s statistic is the distance between Parzen window estimates of
the densities (Anderson et al., 1994; Biau & Gyorfi, 2005). Gretton et al. use
the distance between the means of X and Y in a universal reproducing kernel
Hilbert space as their test statistic (Gretton et al., 2007).

Frequentist versus Bayesian approach In contrast to classic hypothesis
testing, the test statistic in Bayesian hypothesis testing is a so-called Bayes
factor. It is the ratio of the likelihoods of two opposing hypotheses having
generated the data D = {X, Y }, the hypothesis H0 (q1 = q2) and its alternative
H1 (q1 6= q2).

To summarize, frequentist classic hypothesis testing considers only one hy-
pothesis and evidence against it, whereas Bayesian hypothesis testing compares
the likelihoods of two alternative hypotheses having generated the data at hand.
While the question of which perspective is to prefer is still an ongoing and un-
resolved debate, we deem it useful to have a Bayesian alternative to the classic
frequentist two sample tests for the following reasons: Bayesian approaches have
a clear interpretability compared to the commonly used p-values. Prior knowl-
edge on the probability of the two hypotheses can be incorporated into the Bayes
factor in a straightforward manner.
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3 Concept of Bayesian two-sample tests

3.1 Bayes factor as test criterion

Our two classes of Bayesian two sample tests are based on the idea to compute a
Bayes factor between two alternative hypotheses: the hypothesis H1 that both
samples were independently generated from different underlying distributions
q1 and q2 with q1 6= q2, and the hypothesis H0 that they originated from the
same distribution q (q1 = q2). This idea is formalised in the following lemma.

Lemma 1 Given two samples X ∼ q1 and Y ∼ q2, we accept the hypothesis
H1 that q1 6= q2 if the Bayes factor

χ =
P (X, Y |H1)

P (X, Y |H0)
> 1, (1)

otherwise we accept the hypothesis H0 that q1 = q2 = q.

The hypothesis H1 is that the samples originate from different distributions,
such that

P (X, Y |H1) = P (X |H1)P (Y |H1). (2)

3.2 Computation of the Bayes factor

The central challenge when computing the Bayes factor χ is that we do not
know the distributions q1, q2, and q our Bayes factor is based upon. Since q, q1

and q2 are unknown probability distributions, we have to compute the integral
over all such distributions with respect to some prior on distributions. We offer
two classes of solutions here. In Section 4, we present a parametric test where
the distributions are in the exponential family and have conjugate priors. In
Section 5, we present a non-parametric test where the distributions q1,q2, and
q are assumed to be drawn from a Dirichlet Process mixture model.

4 Parametric Bayesian two-sample test

4.1 Exponential Families

For the parametric Bayesian two-sample test, we assume that the underlying
distributions q1 and q2 are in the exponential family: The distribution for models
from this family can be written in the form

p(x|θ) = f(x)g(θ) exp{θ⊤u(x)}, (3)

where u(x) is a K-dimensional vector of sufficient statistics, θ are the natural
parameters, and f and g are non-negative functions. The conjugate prior is

p(θ|η, ν) = h(η, ν)g(θ)η exp{θ⊤ν}, (4)

where η and ν are hyperparameters, and h normalizes the distribution.
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4.2 Bayes factor of parametric test

The Bayes factor of the parametric two-sample test can then be computed as

χ =
P (X |β)P (Y |β)

P (X, Y |β)
= (5)

=

∫
P (X |θ)P (θ|β)dθ

∫
P (Y |θ)P (θ|β)dθ∫

P (X, Y |θ)P (θ|β)dθ
= (6)

=
h(η, ν)h(η + m1 + m2, ν + u(X) + u(Y ))

h(η + m1, ν + u(X))h(η + m2, ν + u(Y ))
, (7)

where

u(X) =

m1∑
i=1

u(xi),u(Y ) =

m2∑
j=1

u(yj), (8)

and β is the set of hyperparameters {η, ν} of the prior.

5 Nonparametric Bayesian two-sample test

Unlike its parametric counterpart, our nonparametric Bayesian two-sample test
does not employ one single model for the data, but rather the limit of infinitely
many components of a finite mixture model: P (X |α, β) =

∫
P (X |q)P (q|α, β)dq

where q is an unknown distribution, modelled as an infinite mixture, and α and
β are hyperparameters controlling it.

This can be achieved via a Dirichlet process mixture of members of the
exponential family. The Bayes factor for the nonparametric two-sample test
equals

χ =
P (X |α, β)P (Y |α, β)

P (X, Y |α, β)
(9)

where P (X |α, β) is the marginal probability of sample X under a Dirichlet
Process Mixture Model (analogous definitions for P (X |α, β) and P (X, Y |α, β))
with concentration parameter α and base measure hyperparameter β.

5.1 Dirichlet Process Mixture Models

A key component in our nonparametric two sample test is the ability to approx-
imately infer the marginal probability of a set of observations from a Dirichlet
Process Mixture Model (DPM). As these DPMs are at the heart of our non-
parametric two-sample test, let us review them here (Ferguson, 1973; Antoniak,
1974).

A Dirichlet Process (DP), and also a Dirichlet Process Mixture Model (DPM),
is a probability distribution on probability distributions, and DPMs consider the
limit of infinitely many components of a finite mixture model. By allowing for

5



an infinite number of components, we are able to model the complicated distri-
butions that we encounter in real-world applications via DPMs.

Consider a finite mixture model with C components

p(x(i)|φ) =

C∑
j=1

p(x(i)|θj)p(ci = j|ζ) (10)

where ci ∈ {1, . . . , C} is a cluster indicator variable for data point i, ζ are the
parameters of a multinomial distribution with

p(ci = j|ζ) = ζj , (11)

θj are the parameters of the jth component, and

φ = (θ1, . . . , θC , ζ). (12)

Let the parameters of each component have conjugate priors p(θ|β) as before,
and the multinomial parameters also have a conjugate Dirichlet prior

p(ζ|α) =
Γ(α)

Γ(α/C)C

C∏
j=1

ζ
α/C−1
j (13)

Given a data set D = {x(1), . . . , x(n)}, the marginal likelihood for this mix-
ture model is

p(D|α, β) =

∫
[

n∏
i=1

p(x(i)|φ)]p(φ|α, β)dφ, (14)

where

p(φ|α, β) = p(ζ|α)

C∏
j=1

p(θj |β). (15)

This marginal likelihood can be rewritten as

p(D|α, β) =
∑

c

p(c|α)p(D|c, β) (16)

where c = (c1, . . . , cn) and

p(c|α) =

∫
p(c|ζ)p(ζ|α)dζ (17)

is a standard Dirichlet integral. The quantity (16) is well-defined even in the
limit C → ∞. Although the number of possible settings of c grows as Cn and
therefore diverges as C → ∞, the number of possible ways of partitioning the n
points remains finite (roughly O(nn)). Using V to denote the set of all possible
partitioning of n data points, we can re-write (16) as

p(D|α, β) =
∑
v∈V

p(v|α)p(D|v, β) (18)
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5.2 Approximate inference of marginal probabilities un-

der DPM

While finite, the number of partitions still grows as O(nn) with the size n of the
dataset, rendering an exact inference of the marginal probabilities under a DPM
intractable even for moderate size datasets (roughly n > 10). Hence we have to
resort to approximate inference methods for computing these marginals. One
choice is Bayesian hierarchical clustering (BHC), a clustering algorithm that
can be used for approximate inference of marginal probabilities under a DPM
in O(n2) (Heller & Ghahramani, 2005).

5.3 Bayes factor in nonparametric test

For the nonparametric two-sample test we use a DPM as the distribution on
distributions q, q1, q2. This allows us to integrate out the parameters of the
unknown underlying probability distributions q, q1 and q2 in a Bayesian manner,
while employing a flexible model for these distributions.

The Bayes factor χ from (1) can then be computed as

χ =

∫
P (X |q1)P (q1|α, β)dq1 ∗

∫
P (Y |q2)P (q2|α, β)dq2∫

P (X, Y |q)P (q|α, β)dq
(19)

=
P (X |α, β)P (Y |α, β)

P (X, Y |α, β)
, (20)

where P (X |q1) =
∏m1

i=1 q1(xi) and P (q1|α, β) is a Dirichlet process mixture
with concentration parameter α and base measure hyperparameter β. Hence
P (X, Y |α, β) denotes the marginal probability that X and Y were generated
from this DPM with hyperparameters α and β (analogous for P (X |α, β) and
P (Y |α, β)).

6 Discussion and Conclusions

In this paper, we have proposed two classes of Bayesian two sample tests, a
parametric test based on distributions from the exponential family, and a non-
parametric test based on Dirichlet Process Mixture Models.

An issue of future work will be the runtime of two-sample tests. Frequentist
tests are often expensive to compute, as the test statistic often requires at
least an runtime of O(n2) for n datapoints and bootstrapping for determining
the null distribution. The Bayesian tests avoid this bootstrapping step and
there exist various approximations to a Dirichlet process mixture model (Blei &
Jordan, 2005; Kurihara et al., 2006; Kurihara et al., 2007), some of which can
be computed in less than O(n2). Hence the Bayesian approach might hold the
key for efficient two-sample tests, which we will look at in future work.
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