
Fabular: Regression Formulas as Probabilistic Programming

Johannes Borgström
Uppsala University

Sweden

Andrew D. Gordon
Microsoft Research and
University of Edinburgh

UK

Long Ouyang
Stanford University

USA

Claudio Russo
Microsoft Research

UK

Adam Ścibior
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Abstract
Regression formulas are a domain-specific language adopted by
several R packages for describing an important and useful class
of statistical models: hierarchical linear regressions. Formulas are
succinct, expressive, and clearly popular, so are they a useful ad-
dition to probabilistic programming languages? And what do they
mean? We propose a core calculus of hierarchical linear regression,
in which regression coefficients are themselves defined by nested
regressions (unlike in R). We explain how our calculus captures the
essence of the formula DSL found in R. We describe the design and
implementation of Fabular, a version of the Tabular schema-driven
probabilistic programming language, enriched with formulas based
on our regression calculus. To the best of our knowledge, this is the
first formal description of the core ideas of R’s formula notation,
the first development of a calculus of regression formulas, and the
first demonstration of the benefits of composing regression formu-
las and latent variables in a probabilistic programming language.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing

Keywords Bayesian inference; linear regression; probabilistic
programming; relational data; hierarchical models

1. Introduction
Our goal is to embrace and extend R’s hugely popular regression
formulas to get better probabilistic programming languages.

1.1 Background: R’s Regression Formulas
The R statistical programming language allows notation of the form
y∼ x to express linear regression models. If xi,yi are the data in row
i of a table, this model expresses that each yi = α +βxi + ei where
ei is an error term. Given this data and model, the regression task is

to learn the global parameters α and β , the intercept and the slope
of the line, by statistical inference.

While this example is an elementary univariate regression, the
domain-specific languages of R formulas, as implemented by sev-
eral different inference packages, support a wide range of classes of
regressions (including multivariate, hierarchical, and generalized).
The notation anonymises the parameters, such as α and β , has use-
ful defaults, such as including the intercept and error terms auto-
matically, and hence is extremely succinct.

Still, the published descriptions of R formulas are informal and
non-compositional. If we are to transplant R formulas to other lan-
guages, the first problem is to obtain precise syntax and semantics.

1.2 Background: Probabilistic Programming
A system for probabilistic programming (Goodman 2013; Gordon
et al. 2014b) asks the user to provide a probabilistic model as a
piece of code, and provides a compiler to generate efficient code
for statistical inference. Following the earliest system BUGS (Gilks
et al. 1994; Lunn et al. 2013), there are many systems, including
BLOG (Milch et al. 2007), Infer.NET (Minka et al. 2009), Church
(Goodman et al. 2008), Figaro (Pfeffer 2009), HANSEI (Kiselyov
and Shan 2009), Fun (Borgström et al. 2013), Stan (Stan Develop-
ment Team 2014a), R2 (Nori et al. 2014), Anglican (Wood et al.
2014), Probabilistic C (Paige and Wood 2014), Venture (Mans-
inghka et al. 2014), and Wolfe (Riedel et al. 2014).

From the start, BUGS, Stan, and other languages have been ap-
plied to hierarchical models, but written as explicit nested loops
over the data. To the best of our knowledge, no previous proba-
bilistic programming language has adopted R’s formula notation.

1.3 Part 1: Regression Calculus for Hierarchical Models
In their classic textbook, Gelman and Hill (2007) define a hierarchi-
cal/multilevel model to be “a regression (a linear or generalized lin-
ear model) in which the parameters—the regression coefficients—
are given a probability model.” Their textbook uses R formulas for
simple regressions, but since there is no R notation for defining
priors on coefficients or for directly describing hierarchical mod-
els, Gelman and Hill use probabilistic programs (in BUGS) when
describing hierarchical models with priors.

Calculus of Hierarchical Regression The purpose of our regres-
sion calculus is to be a precise notation for hierarchical models with
explicit priors for coefficients, and with default choices of priors to
retain the succinctness of R formulas. Our calculus is inspired by
R formulas and translates to probabilistic programs (in Fun, but
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easily adapted to BUGS). A unique feature in our calculus is the
coefficient regression v{α ∼ r}, which introduces a coefficient α

together with its nested probability model r, directly corresponding
to Gelman and Hill’s definition of a hierarchical model.

Section 2 introduces the syntax and informal semantics of our
regression calculus via a series of examples. Section 4 completes
the exposition by explaining more complex examples.

Section 3 presents the standard Bayesian interpretation of re-
gression via our calculus. We recall Fun as a syntax for interpreting
regressions as typed probabilistic programs, themselves formalised
in measure theory. Theorem 1 (Type Preservation) guarantees that
each well-typed regression maps to a well-typed Fun expression,
and hence is interpreted as a measure over the measurable space
for its type. Hence, for any well-typed regression y ∼ r we define
the prior distribution on its parameters and the output column of
data for y; and conditioned on observed data Vy possibly with miss-
ing values, we define the posterior distribution on its parameters
and output, which yields predictions for the missing values.

Our calculus has new features beyond R’s regression formulas:

(1) The coefficient construct v{α ∼ r} is a nested syntax for hier-
archical linear models. R has no nested syntax for models.

(2) We can set priors for coefficients such as slopes, intercepts, or
the precision of error terms.

(3) Input and output data and parameters are all typed.

Flattening Multilevel Formulas to Single Level A hierarchical
regression such as (1{α ∼ rα} | s) + x{β ∼ rβ } includes subex-
pressions rα and rβ that model the parameters α and β (here, the |s
syntax after {α ∼ rα} indicates that we will have one α for every
value of the categorical variable s). The regressions rα and rβ may
themselves include nested coefficients on group-level input data. In
Section 5 we recall Gelman and Hill’s discussion of how a hierar-
chical regression may be re-arranged so there are no nested coeffi-
cients, and by accessing group-level data from the top-level. Theo-
rem 2 establishes that any well-typed regression has an equivalent
single-level counterpart. Still, the advantage of our calculus over
flattened formulas in R is that hierarchical syntax better reflects the
intended structure of the model.

Explaining R’s Regression Formulas We developed our calculus
to be a core language to explain the regression formulas of R. Sec-
tion 6 describes a semantics for the formula dialects implemented
by lm, lmer, and blmer by mapping to the regression calculus.

1.4 Part 2: Fabular = Tabular + Regression Calculus
Tabular (Gordon et al. 2014a, 2015) is a schema-driven probabilis-
tic programming language embedded in a spreadsheet, with infer-
ence by Infer.NET (Minka et al. 2009). In Section 7, we extend
Tabular with columns defined by regressions from the regression
calculus. Hence, we can express hierarchical models. In addition,
since Tabular, like most probabilistic programming languages, sup-
ports latent variables defined by a model, we can use formulas to
express models based on latent variables, such as clustering or rank-
ing models. Moreover, we adopt a vectorized interpretation of re-
gressions, where coefficients and outputs are vectors; hence, we
obtain a formula notation for vector-based models. We develop
in detail the bilinear recommender model Matchbox (Stern et al.
2009). We report a list of Fabular models we have running within
the spreadsheet environment.

Formulas in Fabular have all the power of the regression calcu-
lus, and go beyond R in allowing:

(1) Use of latent variables, either continuous (such as abilities) or
discrete (such as mixture components for clustering).

(2) Vectorized interpretation for examples such as Matchbox.

Section 8 concludes the paper. Technical report (Borgström
et al. 2015) contains more details, definitions and proofs.

1.5 Contributions of the Paper
We propose the first formal calculus of regressions, with a unique
recursive syntax for hierarchical models (based on the coefficient
construct v{α ∼ r}), and a rigorous typed semantics. We develop
a semantic equivalence for regressions, which we apply to trans-
form multilevel regressions to equivalent single-level regressions.
We explain the essence of the popular formula notation in R’s lm,
lmer, and blmer by converting formulas to terms of the regres-
sion calculus. To our knowledge, this is the first formal description
of the core ideas of R’s formula notation. We design and imple-
ment Fabular, a version of the Tabular schema-driven probabilistic
programming language that is enriched with formulas from our re-
gression calculus.

1.6 Related Work
We discussed probabilistic programming systems in Section 1.2.
Morandat et al. (2012) conduct a careful analysis of the design of
the R programming language, but do not consider its formula no-
tation for regression. There are informal descriptions of R formu-
las such as (Hahn) and in the documentation for R packages. For
example, Bates et al. (2014) provide a careful description of the
semantics of lmer formulas in terms of matrix representations and
algorithms. In addition, they detail instructive examples of a variety
of lmer formulas but do not provide a grammar for this language
or discuss the precise semantics of the syntax.

2. A Core Calculus of Regression, by Example
We give the syntax and informal semantics of the regression calcu-
lus, together with a series of examples. The formal typing rules and
semantics are in Section 3.

2.1 Syntax and Informal Semantics
The types of the calculus are real, bounded naturals mod(n) for
n≥ 0, and sized array types. Let s range over real constants.

Variables, Naming Conventions, and Types:
T,U ::= real |mod(n) | T [n] type (n≥ 0)
x,y (continuous real) c,d (categorical mod(n)) α,β ,π (parameter)
Γ ::= x1 : T1, . . . ,xn : Tn xi distinct type environment

A core idea of the calculus is that expressions denote probabil-
ity distributions over multidimensional arrays of data, referred to as
cubes. A cube may be a column of predicted data, a single param-
eter (a zero-dimensional array), an array or a doubly-indexed array
of parameters. (Higher dimensions are possible.)

Dimensions and Cube-Expressions:

Let a dimension,~e or ~f , be a finite list of natural numbers.
Let a cube-expression with dimension~e = [e1; . . . ;en] be a phrase
that denotes a multi-dimensional array of some type T [en] . . . [e1].
An index for~e is a list [i1; . . . ; in] with 0≤ i j < e j for each j.

A predictor v is a (deterministic) cube-expression made up of
constants, variables, interactions, and paths.

Syntax of Predictors:
u,v ::= predictor

s scalar (common cases are 1 and 0)
x variable (categorical or continuous)
u : v interaction (multiplication)
(u1, . . . ,un).v path
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A scalar s returns the cube with s at each index. A variable
x returns the cube denoted by x. An interaction u : v is the pair-
wise multiplication of u and v; it returns the cube with v[~i]× u[~i]
at each index~i. Finally, a path (u1, . . . ,un).v computes an interme-
diate [ f1; . . . ; fn]-cube for v, computes cubes u1, . . . , un containing
indexes for dimensions f1, . . . , fn, and returns the cube obtained by
applying the indexes from u1, . . . , un to v. For instance, the form
().v allows a []-dimensional cube v (that is, a scalar) to be mapped
to a cube of arbitrary dimension. We write u1.v for (u1).v.

A regression r is a probabilistic cube-expression that returns a
tuple of static parameters alongside a cube of outputs.

Syntax of Regressions:
r ::= regression

D(v1, . . . ,vn) noise with distribution D
v{α ∼ r} predictor with coefficient
r+ r′ sum
r | v grouping
(να)r restriction (scope of α is r)

A noise term D(v1, . . . ,vn) returns a cube with an independent
random draw from the distribution D(v1[~i], . . . ,vn[~i]) at each in-
dex [~i]. We assume the following families D of distributions.

Distributions: D : (y1 : U1, . . . ,yn : Un)→ T

Dirac : (point : T )→ T
Gaussian : (mean : real,variance : real)→ real
Gamma : (shape : real, rate : real)→ real

As indicated by the type signatures, the basic parameterization
of a Gaussian is in terms of the mean and variance, and for a
Gamma in terms of shape and scale. We write Gaussian(m,s2) for
the normal distribution with mean m and standard deviation s; its
variance is s2 and its precision is 1/s2. We allow some inverted
parameterizations such as Gaussian(u,1/v) for a Gaussian with
mean and precision (the inverse of variance) given by u and v, and
Gamma(u,1/v) for a Gamma distribution with shape and rate (the
inverse of scale) given by u and v. The following is a useful special
case of noise: the distribution Dirac(v) has all its mass on v.

Derived Form of Regression:
δv , Dirac(v) deterministic case of noise: exactly v

In the simple case, a predictor with coefficient v{α ∼ r} defines
parameter α by the []-dimensional cube of r (that is, a scalar), and
returns the parameters of r together with α , alongside a cube of
the same dimension as v, with each component of v multiplied by
α . A more complex case arises in hierarchical models, where α

denotes not a single scalar coefficient, but a whole array or even
multi-dimensional array of coefficients.

A sum r1 + r2 returns the concatenation of the parameters of r1
and r2 alongside the pairwise sum of their cubes.

A grouping r | v introduces a hierarchical model; in the simple
case, where r itself contains no grouping and v is a cube of indexes
of bounded type mod( f ), the regression r | v is the same as r except
it generates arrays of parameters of dimension [ f ], and uses v to
choose which parameter to select. In the more complex case, the
parameters form an arbitrary cube.

A restriction (να)r is the same as r, except that the parameter
α returned by r is hidden.

We write fv(v) and fv(r) for the sets of variables free in v and r.
We identify phrases of syntax up to alpha-conversion, the consistent
renaming of bound variables. We write {φ/x} for syntactic substitu-
tion of phrase φ for variable x, avoiding capture of bound variables.
For example, (να)r = (να ′)(r{α ′/α}) if α ′ /∈ fv(r).

Let the domain of regression r be the list of names of parameters
defined by r: we define dom(r) below. We write lists as [x1; . . . ;xn]
or [xi

i∈I ] for ordered index set I, and @ is list concatenation. If
~α = [αi

i∈I ] and j ∈ I then ~α \α j = [αi
i∈I\ j].

Domain of a Regression: dom(r)

dom(D(v1, . . . ,vn)) = []
dom(v{α ∼ r}) = dom(r)@[α]
dom(r1 + r2) = dom(r1)@dom(r2)
dom(r | v) = dom(r)
dom((να)r) = dom(r)\α

2.2 Setting: Predicting Students’ Grades
To introduce the calculus, we consider a series of example regres-
sions for a dataset corresponding to the opening example of Gel-
man and Hill (2007). The dataset consists of tables of schools and
students, containing schools and students rows. (Throughout we as-
sume that the rows in a table t of size t have primary keys numbered
0, . . . , t−1, and hence we treat a table as a set of arrays of the same
size.) Each student i has a property x[i] (such as a pre-test score)
and a school s[i], while each school j has a group-level property
u[ j] (such as average parents’ incomes). We refer to the data via
variables in the type environment Γ given below.

Γ = u : real[schools],
s : mod(schools)[students],
x : real[students]

Moreover we have a column y = Vy of type real[students] of
test-grades, possibly with missing values. We consider a series of
regressions that model y, that is, they return a cube of dimension
[students]. Each regression defines a joint distribution over its pa-
rameters and its output column y. If we condition this prior distribu-
tion on the observed data Vy, we obtain predictions for the missing
test scores, and a posterior distribution for the model’s parameters.

The task defined by a regression r plus input data matching Γ

and observed output column Vy is to compute (approximations of)
these conditional distributions. (We formalize in Section 3.5.)

We now consider a series of regressions for this data.

2.3 Pure Intercept: r1 = 1{α ∼ Gaussian(0,slarge
2)}

Our first regression r1 is a flat baseline set by a parameter α with
an uninformative prior, that is, a very wide Gaussian distribution.
Our semantics for r1 is a probabilistic program: the Fun expression
shown below.

let α = Gaussian(0,slarge
2) in

(α, [for z < students→ 1×α])

(Fun is a probabilistic dialect of ML. We introduce its formal
syntax in Section 3.1. A for-loop expression [for x < n→ F ] pro-
duces an array [F{0/x}, . . . ,F{n−1/x}].)

The expression defines α by a draw from a Gaussian with a
large standard deviation slarge, and returns α alongside an array
y = [for z < students→ 1×α] that sets each entry to α . A plot
of each input x[i] versus y[i] for each student i is a flat line that
intercepts the Y -axis at y = α , so we refer to α as the intercept.

(In practice, choosing slarge is a balance between being α biased
toward small numbers, and being so large as to trigger overflows.
The subject of configuring priors in detail is a statistical question
beyond the scope of this paper.)

In general, a regression v{α ∼Gaussian(0,slarge
2)} chooses an

uninformative prior for a coefficient α for a predictor v. This is a
common pattern, so we allow the following abbreviations.

v{α} , v{α ∼ Gaussian(0,slarge
2}

v , (να)v{α} for α /∈ fv(v)
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For instance, 1{α} is the same as r above, while 1 on its own is
the same as r except the parameter α is hidden.

2.4 Pure Noise: r2 = ?

A model such as r1 does not fit data unless all the points fall exactly
on the intercept; the model allows the intercept to be learnt, but
allows no per-point variation from the intercept. In practice, all data
is noisy in that there is deviation from the line and so we need to
include noise, also known as an error term. The regression written
r2 =? is a pure noise model. Its semantics is the following.

let π = Gamma(1,1/λlarge) in
((), [for z < students→ Gaussian(0,1/π)])

Each item in the output array is a draw from Gaussian(0,1/π), a
zero-mean Gaussian with precision π . The smaller the precision the
greater the variance of the noise. The precision π is drawn from dis-
tribution Gamma(1,1/λlarge) with a small rate parameter 1/λlarge
to achieve a non-informative prior on the precision. The effect is
that the precision of the noise is determined by the observed data.

The syntax ? is not primitive in the calculus but is derived from
other constructs as follows.

?{π ∼ r} , 0{π ∼ r}+Gaussian(0,1/().π)
? , (νπ)?{π ∼ Gamma(1,1/λlarge)}

The coefficient 0{π ∼ r} is a coding trick that defines the
parameter π by r, but makes no contribution to the output column.
The literal semantics of ? is the following, though the term 0×π

may be cancelled out.

let π = Gamma(1,1/λlarge) in
((), [for z < students→ 0×π +Gaussian(0,1/π)])

2.5 Intercept (with Noise): r3 = 1{α}+ ?

Combining an intercept and noise term yields the following model,
which learns the intercept α while allowing for noise.

let α = Gaussian(0,slarge
2) in

let π = Gamma(1,1/λlarge) in
((α), [for z < students→ α +Gaussian(0,1/π)])

2.6 Slope and Intercept (with Noise): r4 = 1{α}+ x{β}+ ?

By including a slope x{β}, we obtain a regression equivalent to the
R formula y∼ x from Section 1.1, except that our notation includes
priors on the parameters.

let α = Gaussian(0,slarge
2) in

let β = Gaussian(0,slarge
2) in

let π = Gamma(1,1/λlarge) in
((α,β ), [for z < students→

α + x[z]×β +Gaussian(0,1/π)])

2.7 Varying Intercept per School: r5 = (1{α} | s)+ ?

The regression r5 groups the intercept on the school s, so that we
learn an array α of parameters, a baseline per school.

let α = [for z < schools→ Gaussian(0,slarge
2)] in

let π = Gamma(1,1/λlarge) in
((α), [for z < students→ α[s[z]]+Gaussian(0,1/π)])

The regression 1{α} | s+x{β}+? is the same, but has slope β .

2.8 Hierarchical (Varying-Intercept, Fixed-Slope): r6

To take into account the school-level data u, we construct a nested
regression rα with slope b to predict each school-level parameter

α . (The model rα is similar to r4 but at school not student level.)

rα = 1{a}+u{b}+ ?
r6 = (1{α ∼ rα} | s)+ x{β}+ ?

The meaning of rα is the following:

let a = Gaussian(0,slarge
2) in

let b = Gaussian(0,slarge
2) in

let π ′ = Gamma(1,1/λlarge) in
((a,b), [for z < schools→

a+u[z]×b+Gaussian(0,1/π ′)])

Hence, we assemble the meaning E6 of the whole model r6:

let a = Gaussian(0,slarge
2) in

let b = Gaussian(0,slarge
2) in

let π ′ = Gamma(1,1/λlarge) in
let α = [for z < schools→

a+u[z]×b+Gaussian(0,1/π ′)] in
let β = Gaussian(0,slarge

2) in
let π = Gamma(1,1/λlarge) in
((a,b,α,β ), [for z < students→

α[s[z]]+ x[z]×β +Gaussian(0,1/π)])

This is the first hierarchical model of Gelman and Hill (2007).

3. Type System and Semantics of Regression
3.1 Fun: Probabilistic Expressions (Review)
Syntax of Fun We use a version of the core calculus Fun
(Borgström et al. 2013) as presented by Gordon et al. (2013) with
arrays of deterministic size, but without a conditioning operation
within expressions.

We assume a collection of total deterministic functions g, in-
cluding arithmetic and logical operators.

Expressions of Fun:
E,F ::= expression

x variable
s constant (real, unit, int, Boolean)
g(E1, . . . ,En) deterministic primitive g
D(F1, . . . ,Fn) random draw from distribution D
if E1 then E2 else E3 if-then-else
[E1, . . . ,En] | E[F ] array literal, lookup
[for x < n→ F ] for loop (scope of index x is F)
let x = E in F let (scope of x is F)
(E,F) pair
fst(E) snd(E) projections

Type system of Fun We here recall the type system of Fun with-
out zero-probability observations (Bhat et al. 2013). The syntax of
types is as in Section 2, with the addition of unit, bool, int, and pair
types T1×T2. We write Γ ` E : T to mean that in type environment
Γ = x1 : T1, . . . ,xn : Tn (xi distinct) expression E has type T . Let
det(E) mean that E contains no occurrence of D(. . .). The typing
rules for Fun are standard for a first-order functional language.

Semantics of Fun Intuitively, an expression E defines a proba-
bility distribution over its return type. For each type T , we define
a measurable space T[[T ]]; probability measures on that space for-
malize distributions over values of the type. A valuation ρ = [xi 7→
Vi

i∈1..n] is a map from variables to values. For each expression E
and valuation ρ for its free variables, we define its semantics as
P[[E]]ρ .

Lemma 1. If Γ ` E : T and Γ ` ρ then P[[E]]ρ is a probability
measure on T[[T ]].
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The semantics has a corresponding notion of equivalence.

Definition 1. Let Γ ` E1 ≡ E2 : T if and only if both Γ ` E1 : T and
Γ ` E2 : T and, for all ρ , Γ ` ρ implies that P[[E1]]ρ = P[[E2]]ρ .

Finally, we define notation for conditioning the distribution de-
fined by a whole expression. (We have no operators for condi-
tioning within the syntax of expressions.) If Γ ` E : T1× ·· · × Tn
and Γ ` ρ , and for i ∈ 1..m we have ∅ ` Vi : Ui and det(Fi) and
x1 : T1, . . . ,xn : Tn ` Fi : Ui, we write

P[[E]]ρ[x1, . . . ,xn | F1 =V1∧·· ·∧Fm =Vm]

for (a version of) the conditional probability distribution of P[[E]]ρ
given that the random variable f (x1, . . . ,xn) , (F1, . . . ,Fm) equals
(V1, . . . ,Vm).

3.2 Typing the Regression Calculus
Let a type environment Γ be of the form x1 : T1, . . . ,xn : Tn where
the variables xi are distinct, and let dom(Γ) = {x1, . . . ,xn}.

Judgments of the Type System:
Γ;~e ` v : T predictor v yields an~e-cube of T
Γ;~e;~f ` r ! Π regression r yields~e-cube with parameter ~f -cubes

We type-check a regression r with output dimension ~e and
parameter dimension ~f . The effect of the regression is to introduce
parameters described by the Fun context Π.

The judgment for predictors ensures that their cubes are acces-
sible, constructible or reachable from the ambient dimensions~e:

Typing Rules for Predictors:
(SCALAR)
Γ ` � s ∈ R
Γ;~e ` s : real

(VAR)
Γ ` x : T [~e]

Γ;~e ` x : T

(INTERACT)
Γ;~e ` u : real Γ;~e ` v : real
Γ;~e ` (u : v) : real

(PATH)
Γ;~e ` ui : mod( fi) ∀i ∈ 1..n Γ;~f ` v : T

Γ;~e ` (u1, . . . ,un).v : T

In the rule (VAR), the notation T [~e] is short for the multi-
dimensional array T [en] . . . [e1] where~e = [e1; . . . ;en].

Typing Rules for Regressions:
(NOISE)
D : (x1 : U1, . . . ,xn : Un)→ real Γ ` � Γ;~e ` u j : U j ∀ j ∈ 1..n
Γ;~e;~f ` D(u1, . . . ,un) ! ∅
(COEFF)
Γ;~e ` v : real Γ;~f ; [] ` r ! Π α /∈ dom(Γ,Π)

Γ;~e;~f ` v{α ∼ r} ! (Π,α : real[~f ])
(SUM)
Γ;~e;~f ` r ! Π

(Γ,Π);~e;~f ` r′ ! Π′

Γ;~e;~f ` r+ r′ ! (Π,Π′)

(GROUP)
Γ;~e ` v : mod( f )
Γ;~e;( f ::~f ) ` r ! Π

Γ;~e;~f ` r | v ! Π

(RES)
Γ;~e;~f ` r ! (αi : Ti)

i∈I j ∈ I

Γ;~e;~f ` (να j)r ! (αi : Ti)
i∈I\ j

The rules for typing regressions check all subregressions are
real-valued in the current dimension~e and parameter dimension ~f .
Rule (COEFF) changes dimension from ~e to ~f , entering the nested
regression; Rule (GROUP) adds a categorical dimension to ~f . All

rules additionally accumulate or drop parameters introduced by the
regression or its subregressions, threading an output context Π.

For example, we can derive the following. (Recall ?{π ∼ r} is
short for 0{π ∼ r}+Gaussian(0,1/().π).)

(NOISE)
Γ; [] ` r : real π /∈ dom(Γ)

Γ;~e; [] `?{π ∼ r} ! (π : real)

3.3 Translation to Pure Fun
Translation of Predictors to Fun: [[v]] ~E = E

[[s]] ~E , s
[[x]] ~E , x[~E]
[[u : v]] ~E , [[u]] ~E× [[v]] ~E
[[(u1, . . . ,un).v]] ~E , [[v]] [[[u1]] ~E] . . . [[[un]] ~E]

Lemma 2. If Γ;(ei)
i∈I ` v : T and Γ ` Ei : mod(ei) for all i ∈ I

then Γ ` [[v]] (Ei)
i∈I : T .

Strictly speaking the following rules are type-directed, as they
assume knowledge of the typing of r. We write [for ~z <~e → E]
short for [for z1 < e1 → . . . [for zn < en → E] . . . ], and E[~z] for
E[z1] . . . [zn]. Also, α[~F [~z]] below is short for α[F1[~z]] . . . [Fn[~z]]. We
use a pattern-matching let ([x1; . . . ;xn],y) = E1 in E2 derivable
from fst and snd.

Translation of Regressions to Fun: [[r]]~e ~f ~F = E

[[D(u1, . . . ,un)]]~e ~f ~F , ((), [for~z <~e→ D([[u1]]~z, . . . , [[un]]~z)])
[[v{α ∼ r}]]~e ~f ~F , let (dom(r),α) = [[r]] ~f [] [] in

(dom(r)@[α], [for~z <~e → [[v]]~z×α[~F [~z]]])
[[r+ r′]]~e ~f ~F , let (dom(r),y) = [[r]]~e ~f ~F in

let (dom(r′),y′) = [[r′]]~e ~f ~F in
(dom(r)@dom(r′), [for~z <~e → y[~z]+ y′[~z]])

[[r | v]]~e ~f ~F , [[r]]~e ( f ::~f ) (F ::~F) where
Γ;~e ` v : mod( f ) and F = [for~z <~e → [[v]]~z]

[[(να)r]]~e ~f ~F , let (dom(r),y) = [[r]]~e ~f ~F in(dom(r)\α,y)

If Π = α1 : T1, . . . ,αn : Tn is a regression calculus context, we
define the Fun type: tuple(Π) = T1×·· ·×Tn.

Theorem 1 (Type Preservation). If Γ;~e;( f j)
j∈J ` r ! Π and

Γ ` Fj : mod( f j)[~e] for all j ∈ J, and E = [[r]] ~e ( f j)
j∈J (Fj)

j∈J ,
then we have Γ ` E : tuple(Π)× real[~e].

Proof: By induction on the derivation of Γ;~e;( f j)
j∈J ` r ! Π.

Recall Γ, rα , r6, E6 from Section 2. We have Γ; [schools]; [] `
rα : (a : real,b : real). We also have Γ; [students]; [] ` r6 : Π where
Π = a : real,b : real,α : real[schools], β : real. We have E6 ≡
[[r6]] [students] [] []. Hence, by Theorem 1 (Type Preservation),
Γ ` E6 : tuple(Π)× real[students].

3.4 Data for Regression: Column-Oriented Databases
We consider regression in the context of a column-oriented database,
where the columns consist of arrays of values, and columns of the
same size are grouped into tables. Let t range over table names and
c range over column names. We consider a database to be a pair
DB = (δin,ρsz) consisting of a record of tables δin = [ti 7→ τi

i∈1..n],
where each table τi = [ci, j 7→ inst(Vi, j)

j∈1..mi ] is a record of
columns Vi, j , together with a valuation ρsz = [ti 7→ ti i∈1..n] holding
the number of rows ti ∈ N in each column Vi, j of table ti.

To name the columns in a database, we flatten it into an en-
vironment with an array-typed variable for each column. Con-
sider an environment Γ and a valuation ρ . We say that Γ and
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ρ match DB to mean that Γ = (ci, j : Ti, j[ρsz(ti)])i∈1..n, j∈1..mi and
ρ = [(ci, j 7→Vi, j)

i∈1..m, j∈1..pi ] and that Γ` ρ . The latter implies that
the column names ci, j are pairwise distinct. We write Γ` ρ to mean
that the values in ρ match the types in Γ, that is, Γ ` [xi 7→Vi

i∈1..n]
if and only if Γ = (xi : Ti)

i∈1..n and ∅ `Vi : Ti for all i ∈ 1..n.
For example, consider a database for our schools example:

DB = (δin,ρsz)

ρsz = [schools 7→ 20,students 7→ 200]
δin = [schools 7→ τschools,students 7→ τstudents]

τschools = [u 7→ inst(V1,1)]

τstudents = [x 7→ inst(V2,1),s 7→ inst(V2,2)]

We have that Γ and ρ match DB, where Γ is as in Section 2.2
and ρ = [u 7→V1,1,x 7→V2,1,s 7→V2,2].

3.5 Semantics of Regression
Consider Γ and ρ that match the input database DB, so that Γ ` ρ .
We wish to use the regression ry as model for a column y on a table
t of size t, where y does not appear in DB. We then define the prior
distribution µ of the tuple (dom(ry),y) of coefficients and y as

µ , P[[Ey]]ρ where Ey = [[ry]] [t] [] [].

Lemma 3. Suppose that Γ ` ρ and Γ; [t]; [] ` ry ! Π. Then µ

is a probability measure on the measurable space T[[tuple(Π)×
real[t]]].

Proof: By Theorem 1 (Type Preservation), Γ; [t]; [] ` ry ! Π implies
that Γ`Ey : tuple(Π)×real[t] where Ey = [[ry]] [t] [] []. By Lemma 1
and inversion of typing, Γ ` Ey : tuple(Π)× real[t] and Γ ` ρ imply
that P[[Ey]]ρ is a probability measure on T[[tuple(Π)× real[t]]].

To apply a regression, we need observations of some or all of
the items in the column y predicted by ry. Consider O a subset of
the indexes of y, that is, O ⊆ {i | 0 ≤ i < t}. Let an O-observation
on t be an array of observed values for the indexes in O, that is, an
array Vy = [d0, . . . ,dt−1] such that di ∈ R if i ∈ O, and otherwise
di = _ where _ represents a missing value.

The posterior distribution of (dom(ry),y) given an O-observation
Vy on t is the conditional distribution

µ[~α,y | yi =Vy[i] for all i ∈ O]

which is µ conditioned on the outputs y[i] being equal to the
observed values di where i ∈ O. Marginalizing this distribution
yields the posterior for each parameter in ~α and the posterior
prediction for each unobserved output y[i] for i /∈ O.

Semantic equivalence for regressions is given by semantic
equivalence of the corresponding Fun terms.

Definition 2. Let Γ;~e;( f j)
j∈J ` r1 ≡ r2 ! Π if and only if both

Γ;~e;( f j)
j∈J ` ri ! Π for i ∈ 1..2 and for all (Fj)

j∈J such that
Γ ` Fj : mod( f j)[~e], if Ei = [[ri]] ~e ( f j)

j∈J (Fj)
j∈J then Γ ` E1 ≡

E2 : tuple(Π)× real[~e].

4. Examples: Radon and InstEval
We now resume the exposition of models in the regression calcu-
lus from Section 2, by explaining how our calculus captures typical
multi-level models and techniques such as partial pooling and mul-
tiple grouping, as illustrated by the radon example from Gelman
and Hill (2007), and the InstEval example from Bates et al. (2014).

4.1 Example of Partial Pooling: Radon
Gelman and Hill (2007) consider a specific data set that contains
radiation measurements taken in houses across different counties
in Minnesota. Each measurement includes the floor f (either 0 or

1, represented by a real) and the radon activity activity and the
county c of the house. For each county, we have a background level
of uranium radiation u.

Γ = u : real[counties],
c : mod(counties)[houses],
f : real[houses]

We treat floor as a continuous predictor and presume that
the county-level intercept depends on the uranium level in each
county—in particular, this intercept is a linear function of uranium
level. Our model r7 defines radiation activity in terms of the floor
the measurement was taken on (basement, first floor, . . . ) and the
county:

rα = 1{a}+u{b}+ ?{π ∼ δv}
r7 = (1{α ∼ rα} | c)+ f{β}+ ?
Π = a,b,π : real,α : real[counties],β : real

(This concrete dataset is in fact isomorphic to the hypothetical
schools example. The model is isomorphic to r6 except that we are
exposing the precision parameter π for the group-level noise.)

Our purpose with this example is to discuss a critical feature:
partial pooling of data across different groups of observations. Par-
tial pooling is an interpolation between no pooling, where observa-
tions from different groups are treated completely separately, and
complete pooling, where observations from different groups are
treated identically.

For example, in the radon data set, suppose that we wish to
model radon activity in a house simply as a function of the county
that the house is located in. This means that y[i] = α[c[i]]+ noise,
where y[i] is the measured radon activity in house i and α[c[i]] is
an intercept for county c[i], or as a regression calculus formula,
1{α ∼ rα} | c+ ?.

In complete pooling, we set a single α for all counties, i.e,. ∀i, j
α[c[i]] = α[c[ j]], which is equivalent to leaving off the grouping | c
from the regression calculus formula above. In no pooling, we in-
dependently fit the α[c] (in particular, we sample these values from
a distribution with known parameters so that the individual α[c] are
conditionally i.i.d.). Partial pooling is a compromise between these
two extremes; we sample the α[c] from some distribution with un-
certain parameters, e.g.,

1{α ∼ Gaussian(µα ,σα )} | c
where µα and σα are estimated from the data. Because there is
uncertainty about these parameters, the individual α[c] are not
independent; information about all counties informs the estimate
for any particular county.

The package lmer (cf. Section 6.2) allows for concise represen-
tation of partial pooling using the syntax activity∼ (1|county)
but it cannot express the no- or complete pooling variants; these
must be expressed using lm, R’s method for ordinary least squares
regression (cf. Section 6.1). This is slightly awkward, as it means
that exploring small variations on the model for α[c[i]] (e.g.,
comparing complete pooling with partial pooling) would require
switching between two different R packages.

By contrast, our calculus cleanly expresses all three possibilities
based on the following template:

rcounty = 1{a}+ ?{η ∼ rη}
rhouse = (1{α ∼ rcounty} | c)+ ?

Here, rcounty is the county-level regression, and rhouse is the house-
level regression. To get complete pooling, we set rη to δ∞. This
maximal precision for the county-level noise will result in all α

having the same value across counties. To get no pooling, we set rη

to δ0. This minimal precision for the county-level noise will result
in the α essentially being free parameters. To get partial pooling,
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we set rη to Gamma(1,1/λlarge). By placing uncertainty over the
precision η , we allow information to “flow” between counties—
information about one county informs estimates about others. For
concreteness, here is a simplified Fun translation of the above
model (with rη left unspecified, and assuming that dom(rη ) = []):

let a = Gaussian(0,s2
large) in

let ((),η) = [[rη ]] [] [] [] in
let α = [for z < counties→ a+Gaussian(0,1/η)] in
let π = Gamma(1,1/λlarge) in
((a,η ,α), [for z < houses→ α[c[z]]+Gaussian(0,1/π)])

4.2 Example of Multiple Grouping: InstEval
One formula pattern that is possible with hierarchical models is
what we call multiple grouping: grouping on the Cartesian product
of multiple variables. For example, consider an analysis of the In-
stEval dataset (from the lme4 package by Bates et al. (2014)) which
contains ratings that ETH Zurich students gave their professors:

rating ~ (1|student) + (1|professor) +
(1|department:service)

Here, department indicates the department that the course was
taught in and service indicates whether the course was a ser-
vice course taught to students outside the department. We model
the rating as depending on three random effects intercepts: one that
varies by student (e.g., some students may tend to give high rat-
ings), another that varies by professor (e.g., some professors may
be particularly well-liked), and another that varies by the interac-
tion of course department with service status (e.g., some depart-
ments might put less effort into their service courses than others
and thus receive lower ratings). We obtain the same behavior in our
calculus by composing grouping operators:

Γ = student : mod(students)[ratings],
course : mod(courses)[ratings],
professor : mod(professors)[courses],
department : mod(departments)[courses],
service : mod(2)[courses]

rrating = (1{a} | student)+(1{b} | course.professor)+
((1{c} | course.department) | course.service)+ ?

Π = a : real[students],b : real[professors],

c : real[2][departments]

5. Reducing Multilevel to Classical Regression
5.1 Equivalent Formulations of the Radon Example
Hierarchical linear models can be written in several equivalent
forms, as demonstrated in section 12.5 of Gelman and Hill (2007).
The essence of such equivalence is that predictors can be placed
at different levels of a regression and it can be useful both for
understanding the model and for computational reasons. In this
section we use the Radon model as an example to present such
an equivalence and then we develop an equational theory for our
regression calculus. We use it to prove that every regression can be
reduced to a certain normal form.

Recall the Radon model with no or complete pooling from
Section 4.1 (where we omit the known precision π = 1/s):

rα = 1{a}+u{b}+Gaussian(0,s)
ractivity = (1{α ∼ rα} | c)+ f{β}+ ?

Π = a,b, : real,α : real[counties],β : real

We can write it using a single formula in three equivalent forms:

r1 = (1{α1 ∼ 1{a}+u{b}+Gaussian(0,s)} | c)+ f{β}+ ?
r2 = (c.u){b}+(1{α2 ∼ 1{a}+Gaussian(0,s)} | c)+ f{β}+ ?
r3 = 1{a}+(c.u){b}+(1{α3 ∼ Gaussian(0,s)} | c)+ f{β}+ ?

The regressions are equivalent in the sense of producing the
same predictions and the same posteriors for parameters a,b,β , but
their α parameters are slightly different. They are related by

α1[c] = α2[c]+ c.u×b = α3[c]+a+ c.u×b.

The r3 form is particularly interesting in that the county level
contains no inner coefficients. Below we show that every multilevel
regression can be put in such a form.

5.2 Every Regression Has Single-Level Counterpart
We here give an algorithm that normalizes a regression to an equiv-
alent single-level regression. We first define specific classes of
terms that help state the normal form, the algorithm, and its cor-
rectness theorem.

We use the path notation~u.v as short for (u1. . . . .un).v. We write
Σn

i=1ri for the regression r1 + . . .+ rn, letting Σ0
i=1ri = δ0. We also

write (νβ ,~α)r for (νβ )(ν~α)r, and (ν)r for r.

Classes of Terms: N, P

N ::= Σn
i=1Di(ui1, . . . ,ui|Di|) noise

P ::= Σn
i=1vi{αi ∼ Ni} | ~wi single-level regression

Every regression r normalizes to a single-level regression of
the form (ν~α)(P + N). Here ~α contains all restrictions in r, as
well as the auxiliary coefficients that can be used to reconstruct
original coefficients, as seen above in Section 5.1. The term N
describes the noise. P intuitively contains two different kinds of
terms: coefficients v{α ∼N} | ~w, and post-processing terms 0{β ∼
N} | ~w that compute the original coefficient β in terms of ~α (which
appear as part of N).

The algorithm applies constant folding, written cf(u), to predic-
tors: paths ending in scalars simplify to the scalar, and interactions
with the scalars 0 and 1 are simplified (0 is an absorbing element
for interaction, 1 is a unit).

Normalization of regressions: r | ~w ⇓ (ν~α)(P+N)

(NORM NOISE)
D(v1, . . . ,vn) | ~w ⇓ δ0+D(v1, . . . ,vn)

(NORM RES)
r | ~w ⇓ (ν~α)(P+N) β /∈ ~α,~w

((νβ )r) | ~w ⇓ (νβ ,~α)(P+N)

(NORM GROUP)
r | v,~w ⇓ (ν~α)(P+N)

(r | v) | ~w ⇓ (ν~α)(P+N)

(NORM PLUS)
r1 | ~w ⇓ (ν~α1)(P1 +N1) ~α1∩ fv(~α2,P2,N2) =∅
r2 | ~w ⇓ (ν~α2)(P2 +N2) ~α2∩ fv(~α1,P1,N1) =∅
(r1 + r2) | ~w ⇓ (ν~α1,~α2)((P1 +P2)+(N1 +N2))

(NORM COEFF NOISE)
r | ε ⇓ (ν~α)(δ0+N) ~α ∩ fv(v,α,~w) =∅
v{α ∼ r} | ~w ⇓ (ν~α)(v{α ∼ N} | ~w+δ0)

(NORM COEFF)
r | ε ⇓ (ν~α)(P+N) P = Σn

i=1ui{βi ∼ ti} |~vi n > 0
β ′∩ fv(~α,v,α,r,~w) =∅ ~α ∩ fv(v,α,~w) =∅
~w.(x1, . . . ,xm) := ~w.x1, . . . ,~w.xm
P′ = Σn

i=1 cf(v : ~w.ui){βi ∼ ti} | ~w.~vi
r′ = 0{α ∼ Σn

i=1δ cf(ui:~vi.βi)+δβ ′} | ~w
v{α ∼ r} | ~w ⇓ (ν~α,β ′)((P′+ v{β ′ ∼ N} | ~w+ r′)+δ0)
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Noise terms lose any grouping ~w. Restrictions and groupings are
simply recursed into. The normal form of a sum is the sum of
the normal forms, rearranged to match the desired format. The
interesting case is a predictor v whose coefficient is given by an
inner regression with normal form (ν~a)(P + N). If there are no
inner coefficients (i.e., P = δ0), we simply rearrange the term to
fit the format. Otherwise, we create a fresh coefficient β ′ for the
noise term N. Each term ui{βi ∼ ti} |~vi of P is normalised to an
interaction between the top-level predictor v and the inner predictor
ui, where ui is obtained through the path ~w. The regression formula
giving the coefficient of this interaction is unchanged (ti), though its
conditions~vi now need to be obtained through the path ~w. Finally,
the term r′ gives the original regression coeffient α as a sum of
interactions between the predictors ui in P and their coefficients βi
(obtained via the path~vi), plus the fresh coefficient β ′.

The special case treated by (NORM COEFF NOISE) ensures that
the common patterns v{α} and ?{π ∼N} normalize to themselves,
i.e., v{α} | ε ⇓ v{α} and ?{π ∼ N} | ε ⇓ ?{π ∼ N}.

The normal form always exists, and is unique.

Lemma 4. For all r,~w there exist~α,P,N such that r | ~w⇓ (ν~α)(P+
N). Moreover, if r | ε ⇓ (ν~α ′)(P′ + N′) then (ν~α)(P + N) =
(ν~α ′)(P′+N′).

The normal form has the same type as the original regression
formula, and represents the same prior probability distribution.

Theorem 2. If Γ;~e; [] ` r : Π and r | ε ⇓ (ν~α)(P+N) then
Γ;~e; [] ` r ≡ (ν~α)(P+N) ! Π.

Proof: The proof is via a typed equational theory for regressions,
which is proven sound with respect to ≡ via a typed equational
theory for Fun.

In the Radon example at the beginning of this section, we have

r1 ⇓ (να3)(1{a}+ c.u{b}+(1{α3 ∼ Gaussian(0,s)} | c)+
(0{α1 ∼ δa+δu : b+δα3} | c)+ f{β}+ ?

r2 ⇓ (να3)(c.u{b}+1{a}+(1{α3 ∼ Gaussian(0,s)} | c)+
(0{α2 ∼ δa+δα3} | c)+ f{β}+ ?

Thus, the normal forms of both r1 and r2 have the same terms as
r3, apart from one additional term from which we immediately can
read off the relationship between α3 and α1 (resp. α2).

When r ⇓ (ν~α)(P + N), the single-level regression P + N is
a flattened form of r, and can be solved by many methods. The
multilevel regression r directly expresses the modeller’s intent in
terms of group-level coefficients that themselves are modelled, and
should be easier to read and understand as its structure follows the
structure of the schema.

6. The Essence of R’s Regression Formulas
Here, we show that our regression calculus explains the formula
languages recognized by three R methods: lm, lmer, and blmer.

6.1 lm
Base R (R Core Team 2015) provides a method lm for fitting linear
regressions. The core syntax of formulas recognised by lm is:1

1 In addition, the following constructs recognised by lm can be seen as
macros that expand to formulas in the core syntax: ^ (used for controlling
the arity of interaction terms), * (x*y is shorthand for x + y + x:y), / (used
to indicate nesting of variable levels within each other, e.g., c/d desugars
to c + c:d), and I (used to temporarily supplant the regression meanings
of +, *, and ^ with their traditional arithmetic meanings). Furthermore,
formulas can include transformations of variables, e.g., log(area). We omit

lm grammar:
R ::= regression

t1 + · · ·+ tn +0 without intercept
t1 + · · ·+ tn +1 with intercept

t ::= predictor
x1 : · · · : xm : c1 : · · · : cn m+n > 0

Here, R is a regression, 0 (1) disables (enables) fitting an intercept,
ti are predictor terms in the regression, xi are continuous variables,
ci are categorical variables. Observe that the ti terms are interac-
tions between any number of continuous or categorical variables.
In addition, lm always assumes normally distributed noise. Any lm
formula can be easily translated as an expression in our calculus,
as such formulas require only sum and interaction terms from our
syntax, as can be seen from our translation:

[[t1 + ...+ tn +0]] = [[t1]]+ ...+[[tn]]+?
[[t1 + ...+ tn +1]] = [[t1]]+ ...+[[tn]]+1{α}+?

[[x1 : ... : xm : c1 : ... : cn]] = 1 : x1 : ... : xm{α}|c1|...|cn

We independently translate all terms in the top level regression;
note that 0 translates to just noise (no intercept) whereas 1 translates
to an intercept along with noise. We translate interaction terms
using our grouping syntax, fitting coefficients for the product of all
continuous predictors (if any) conditional on all of the categorical
predictors.

The following lm formula is discussed by Dorie (2014):

ravens_z ~ treatment + initial_age

The formula is a model for data from Whaley et al. (2003), who per-
formed nutrition interventions on students in twelve rural Kenyan
schools. Each school was randomly assigned to one of four inter-
ventions and children at those schools took cognitive assessments
before, during, and after the intervention. Running lm with this for-
mula will regress the standardized Raven’s score (the cognitive as-
sessment) on the treatment the child received and the initial age of
the child.

6.2 lmer
The lmermethod, provided in the lme4 package (Bates et al. 2014),
extends lm by adding one or more random effects.

lmer grammar:
s ::= lmer regression

r0 +(r1|g1)+ ...+(rn|gn) Fixed and random effects
g ::= Grouping variable

c1 : ... : cm Product of discrete predictors
r ::= lm regression

t1 + · · ·+ tn +0 without intercept
t1 + · · ·+ tn +1 with intercept

t ::= predictor
x1 : · · · : xm : c1 : · · · : cn m + n > 0

Random effects terms take the form (Σn
i=1ti)|g, indicating that the

effect of the predictors in~t depends on the value of the grouping
factor g, which is a Cartesian product of discrete predictors in the
table. For example, weight ∼ (age+ height|gender) indicates
that the coefficients that relate age and height to weight (as well as
an implicit intercept) vary by gender (in a partially pooled fashion,
as discussed earlier). As with lm, it is not possible to set priors

these features because they can all be captured by +, :, and appropriate
preprocessing of predictors.

278



on the coefficient values. lmer formulas can be translated2 to our
calculus by extending our translation for lm with the following rule
to handle random effects:

[[x1 : ... : xn : c1 : ... : cm|d1 : ... : d j]]

= (1 : x1 : ... : xn) | c1 | · · · | cm | d1 | · · · | d j

Continuing the nutrition example introduced above, one possible
lmer formula is:

ravens.z ~ treatment + initial.age + (1|school)

Here, we fit a separate baseline for each school, expressing the
belief that baseline measures of cognition may differ across schools
(e.g., one school may be in a wealthier area where parents can
afford after-school tutors).

It is worth noting that actually running this model in lmer
returns a degenerate result where all schools have the same baseline
(no variation across schools); this is because lmer uses maximum
likelihood estimation, which can hit this boundary condition when
only small amounts of data are available. This problem can be
avoided by setting a priors on the fixed/random effects terms so
as to avoid the boundary, but lmer does not support this.

6.3 blmer
The blmer method, provided in the blme package (Dorie 2014),
uses the same syntax of regressions as lmer, but additionally sup-
ports setting priors on the fixed effects (Gaussian and t priors only)
and random effects (arbitrary priors). To round out the nutrition ex-
ample, we can express partial pooling using blmer like so:

blmer(ravens_z ~ treatment + initial_age + (1|school),
cov.prior = gamma(2.5, 0))

Here, we place a Gamma(2.5,0) prior on the covariance matrix for
the terms specified by (1|school). This essentially expresses the
belief that the variation in baseline cognitive scores across schools
should be non-zero. In our calculus, we can write the same model
using the regression formula
treatment+ initial_age+(1{α ∼ ?{π ∼ Gamma(2.5,0)}} | school).

Note that blmer does not define a language for setting priors but
rather enables this through method arguments (e.g., the cov.prior
argument set above). By contrast, our calculus allows to set priors
compactly and compositionally. To our knowledge, our regression
calculus admits a superset of the models expressible in blmer.

7. Fabular = Tabular + Regression Formulas
Tabular (Gordon et al. 2014a, 2015) is a table-oriented probabilistic
programming language embedded in Excel. A Tabular program is a
schema that lists a sequence of named tables. In turn, each table is
described by sequence of named attribute declarations. A static at-
tribute declares a value that is shared amongst all rows of the table.
An inst (instance) attribute, on the other hand, declares a column of
values in that table. The definition of an attribute is a Fun expres-
sion that may refer to the value of any previously declared attribute,
whether static or, for an instance level attribute, the value of any
previous instance attribute (belonging to the same row). Tabular
expressions may dereference attributes of other tables using a dot-
notation like syntax that, for instance level columns, corresponds
to array indexing. Attributes declared as input take their (deter-
ministic) values from an input database (in Excel, the database is

2 However, there is one subtle point of difference. In lmer, all coefficients
in a single random effects term are assumed to be correlated, e.g., in
(1+ x+ y|c), it is assumed that, a priori, the intercept 1 and slope terms
for x and y have some correlation (Bates et al. 2014). This default behavior
can be overridden using a double bar, e.g., (1+ x+ y||c). Thus, the single
bar in our calculus actually corresponds to the double bar in lmer.

the collection of Excel tables). Attributes marked as output have a
probabilistic definition—a Fun expression E—denoting a random
variable. If an output is present in the input database, then its deter-
ministic value is used to condition the static or instance level value
of the corresponding random variable. If an output is missing (that
is, null) in the database, then its output is given as the (marginal)
distribution of its definition. Output attributes may be missing from
all, some or none of the rows in a column. If the attribute name
is not present in the database, then the attribute is itself a latent
variable or table-sized collection of latent variables. Finally, local
attributes are similar to output attributes but statically scoped to
the current table. Unlike inputs and outputs, local attributes cannot
be referenced from other tables (even via links).

A Tabular schema defines a generative model of the database.
Conditioning the model on the database allow us to infer the distri-
butions of missing values and latent columns. Tabular is compiled
to a lower level Infer.NET model that performs message-passing
inference, yielding approximations to the marginal distributions of
all missing values.

In this section, we extend Tabular with linguistic support for
regressions. In Tabular, an attribute defined by a regression is ex-
panded into a sequence of attributes defining the static parameters
of the regression and an eponymous body defined as a sum of prod-
ucts and noise. Schemas may contain multiple regressions. In the
full Tabular language, regressions may also occur within Tabular
functions, supporting useful abstraction.

7.1 Core Tabular (Review)
Databases Tabular acts on databases of the following form, a
slight generalization of the databases from Section 3.1 to include
singleton values (static(V)) for static columns and the null value
(_) denoting a missing value of any type.

Databases, Tables, Attributes, and Values:
δin ::= [ti 7→ τi

i∈1..n] whole database
τ ::= [c j 7→ a j

j∈1..m] table in database
a ::= `(V ) attribute value: V with level `
V ::= _ | s | [V0, . . . ,Vn−1] nullable value
`, pc ::= static | inst level (static < inst)

Schemas We use the Fun types T from Section 3.1 in Tabular.
We write link(t) as a shorthand for mod(t), for foreign keys to
table t. Tabular expressions are just Fun expressions extended with
a construct E : t.c to dereference columns of other tables. In E : t.c
we expect that E : link(t) and c is a column of table t.

A Tabular schema is a sequential declaration of named tables.
Tables are sequential declarations of named static or inst level at-
tributes. The definition of a input attribute must be the empty model
ε; other attributes must have a model that is a proper expression E.

Tabular Schemas:
S ::= [(t1 = T1); . . . ;(tn = Tn)] (database) schema
T ::= [col1; . . . ;coln] table (or function)
col ::= (c : T ` viz M) attribute c declaration
viz ::= input | local | output visibility
M ::= ε | E model expression

7.2 Fabular: Extending Tabular with Formulas
We endow Tabular with regression syntax by extending the syntax
of model expressions with regression formulas (and predictors):

Fabular model expressions:
M ::= . . . | ∼ r model expression
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The meaning of a well-typed regression attribute is given by a
simple translation to Tabular:

Translation of Regressions to Tabular: [[r]]~e ~f ~F = (T,E)
[[r]]~e ~f ~F , (T, [for~z <~e → E]) where (T,E) = [[r]]†~f ~F

and
[[D(u1, . . . ,un)]]

†~f ~F , ((),D([[u1]]~z, . . . , [[un]]~z))
[[v{α ∼ r}]]†~f ~F , let (T,E) = [[r]] ~f [] [] in

(T@[(α : real[~f ] static output E)],
[[v]]~z×α[~F ])

[[r+ r′]]†~f ~F , let (T,E) = [[r]]†~f ~F in
let (T′,E ′) = [[r′]]†~f ~F in
(T@T′,E +E ′)

[[r | v]]†~f ~F , [[r]]†( f ::~f ) (F ::~F)
where Γ;~e ` v : mod( f ) and F = [[v]]~z

[[(να)r]]†~f ~F , let (T,E) = [[r]]†~f ~F in
let T′ = [for (β : T ` viz F) in T→

(β : T ` (if β = α then local else viz) F)]
in (T′,E)

Attribute c Defined by Regression Formula r:
((c : real inst viz ∼ r))† , T@[(c : real inst viz E)])

where [[r]] [][][] = (T,E) and viz 6= input

The Fabular translation function [[r]] ~e ~f ~F mirrors our earlier
translation to Fun, but now returns a pair of a Tabular table T
and an expression E. The table binds the parameters introduced
by the regression to static attributes; the expression E is the body
of the regression that is used as the model of the inst-level attribute
c. Though syntactically different, this translation is semantically
equivalent to our previous semantics—it is re-factored to introduce
a single nested loop per regression rather than one nested loop per
regression term. The local function [[r]]† constructs the body of
this loop, for fixed loop variables ~z with bounds ~e. This scheme
yields more legible code but does not affect (nor improve) the
computational complexity of the model. One subtlety is that setting
~e to the empty list in the initial call to [[r]][][][] ensures that local
predictors are referenced directly and not inappropriately indexed.

For Fabular, the translation of variable predictors must also be
slightly adjusted. The translation is induced by the Tabular context
— it is the identity on locally declared attributes, introduces a static
reference (t.c) for a predictor c declared statically in table t, and an
instance reference (E : t.c) for a predictor c declared at instance
level in table t. We elide the details.

7.3 Implementation of Fabular
We have an implementation of Fabular that includes support for
vectorized regressions and syntactic sugar (not shown here) to omit
parameter names and default priors on coefficients and noise. We
have successfully run Fabular on a variety of models, including
all of the ones mentioned in the paper. The add-in allows the user
to selectively reduce Fabular regression to equivalent Tabular pro-
grams as well as extract auto-generated C# code to construct the
Infer.NET model. The following table shows the code expansions
(measured in LOC) from Fabular to Tabular to C# Infer.NET mod-
eling code on a selection of models, together with the runtime for
inference. We use the auto-generated code as a proxy for the length
of the manually coded, equivalent Infer.NET model.

Matchbox was run on a subset of the MovieLens dataset with
6040 users, 3883 movies and the first 10000 of the available 1
million ratings. The LinearClassifier was run on a small table of 200
points. The Radon dataset comprised 87 counties and 919 houses.
The Cheese model is the sales volume of sliced cheese of 5555

Figure 1. Radon model results. For Fabular/STAN, error bars in-
dicate standard deviation of the posterior. For lmer/blmer, they
indicate standard error.

stores in 46 cities belonging to 50 chains. The Elections model
is a classic hierarchical regression discussed by Gelman and Hill
(2007) and predicts the outcome of a US election given 561 past
state election outcomes across 50 states and 12 years.

Model Fabular Tabular C# Runtime
MatchBox 30 37 522 5s

LinearClassifier 6 9 130 1.5s
Radon 6 13 117 1.5s
Cheese 9 13 99 6.7s

Elections 31 53 373 2.5s

We compared Fabular, which performs inference with expecta-
tion propagation (EP), with three other systems: STAN (Stan Devel-
opment Team 2014b), which implements an HMC-based method
called NUTS; lmer (Bates et al. 2014), an R package that performs
maximum likelihood estimation for hierarchical linear models; and
blmer (Dorie 2014), which augments lmer with Bayesian priors.

We compared these in modelling a data set taken from Gel-
man and Hill (2007) that contains radiation measurements taken
in houses across different counties in Minnesota. We use the hier-
archical model r7 from Section 4.1, which defines radiation activ-
ity in terms of the floor of the measurement (basement versus first
floor) and the county. Not directly runnable in lmer or blmer, we
reduced the model to activity∼ floor+(1|county)+uranium.

The floor coefficients in the Fabular/STAN and classical forms
are directly comparable. We compared the 1{α ∼ 1 + u+ ?} | c
term for Fabular/STAN with the uranium term of lmer/blmer
by comparing the county-intercept-versus-uranium slope for Fabu-
lar/STAN with the activity-versus-uranium slope for lmer/blmer.
Estimates of model coefficients are shown in Figure 1. Observe that
Fabular produces similar results to the other three systems. This
indicates that the expectation propagation algorithm of Infer.NET
gives viable results for inference in hierarchical models.

7.4 Example: Generalized Linear Models
A generalized linear model passes its continuous output through a
link function; for example, in logistic regression the output passes
through an non-linear logistic function to produce a sigmoidal
output. The regression calculus does not include link-functions on
outputs, although it would be a simple extension.

Adding regressions to Tabular extends our reach to such gener-
alized linear models. Take for example:

table Data
X1 real input
...
X6 real input
Z real output ∼X1 + X2 + X3+ X4 + X6 + 1.0
Y bool output Z > 0.0 //a link function
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Table Data consists of six real-valued clinical measurements X1
trhough X6 and a Boolean label Y to be predicted (given some la-
belled training points). This model is an instance of the Bayes Point
Machine (Minka 2001), a boolean classifier, in which the prior over
an implicit weight vector is drawn from a vector of Gaussian priors,
and the label Y is generated by thresholding a latent score Z (the
inner product of the weight and input vectors). (Intuitively, Z is the
distance of the point X1,..,X6 from the hyperplane defined by the
weight vector; Z’s sign determines the side of the hyperplane occu-
pied by the point). Here, the weight vector is implicitly defined by
the parameters of the regression; thresholding is the link function.
(Gordon et al. 2015) describe a more verbose variant of this model.

7.5 Example: Latent Variable Mixture Model
Fabular goes beyond traditional regression. Predictors are no longer
restricted to deterministic input data: they can be partially or even
completely unobserved random variables. For example, consider
the task of regressing points belonging to a mixture of various
lines. If each point is labelled as belonging to a given class then
we can use the label as the predictor that groups a family of linear
regressions and infer the parameters of each line.

However, we can also generalize this model by assuming that
only a subset of the points have been labelled. In Figure 2, we
explicitly impose a discrete distribution on each point’s Class. The
figure contains both the Fabular code and its expansion to Core
Tabular. The result is a supervised classifier, that infers the most
likely class that each unlabelled point belongs to. (The operator |
has lower precedence than + so the entire sum is grouped by Class.)

For example, here is a plot we generated using synthetic data
from a mixture of three lines (training data points in light blue).

The blue, purple and green points are correctly classified, but
the red ones were incorrectly classified. The red points all lie close
to the intersections of the lines and are thus harder to separate.

If we furthermore assume that none of the points are labelled,
then we obtain an unsupervised clustering algorithm, that partitions
the points into three distinct sets of similar points.

7.6 Extension: Vectorized Regression
Until now our predictors have had scalar types, but our notation
extends naturally to vectorized regressions, whose predictors have
vector types and contain arrays of scalars. The vectorized notation
is convenient shorthand for the simultaneous definition of a fam-
ily of regressions. Our Matchbox example, presented in the sequel,
illustrates the feature. To generalize the notation, we index our re-
gression judgments by the dimensionality d of the regression. The
scalar dimensionality • indicates a regression or predictor produc-
ing a single scalar value (as before). The vector dimensionality •[n]
indicates a regression or predictor producing an n-vector of scalar
values. We also define the operation of dimensioning a type, written
d(T): •(T ) , T is just the identity on types while •[n](T ) , T [n],
vectorizing its type argument.

Dimensionalities of Types:
d ::= • | •[n] scalar or vector dimensionality

The typing rules for regressions are indexed by an additional
dimensionality d and enforce that the dimensions of subregressions
and coefficients are invariant and thus consistent.

Judgments of the Vectorized Type System:
Γ;~e `d v : T d-dimensional predictor has type T
Γ;~e;~f `d r ! Π d-dimensional regression r exports Π

Most rules merely propagate the invariant into sub-expressions.
Rule (COEFF-VEC) generalizes rule (COEFF): it requires the type
of the predictor expression to match the expected dimension d and
vectorizes the parameters α when d is a vector. Rule (SUM-VEC)
restricts its terms to have the same dimensionality.

Typing Rules for Vectorized Regressions (extract):
(COEFF-VEC)
Γ;~e `d v : d(real) Γ;~f ; [] `d r ! Π α /∈ dom(Γ,Π)

Γ;~e;~f `d v{α ∼ r} ! (Π,α : d(real)[~f ])
(SUM-VEC)
Γ;~e;~f `d r ! Π (Γ,Π);~e;~f `d r′ ! Π′

Γ;~e;~f `d r+ r′ ! (Π,Π′)

Full typing judgments are presented in (Borgström et al. 2015).
The details of the vectorizing translation are straightforward but

omitted for the sake of brevity. Constant predictors are replicated as
vectors of constants; vectorized coefficient terms translate to vec-
tors of component-wise products and sums of vectorized regres-
sions translate to component-wise sums of vectors.

In our Fabular implementation, the decision to vectorize a re-
gression is driven by the type of the attribute defined by that re-
gression. For added convenience, scalar predictors appearing in a
context expecting a vector are implicitly cast into the appropriately
sized vector (by replication).

7.7 Example: Matchbox
Matchbox (Stern et al. 2009) is a recommender system that works
by integrating metadata about users and items. The system repre-
sents users and items as trait vectors in a common latent space and
defines the affinity between users and items as the dot product of
their vectors. Matchbox then uses this affinity to predict the rat-
ings that a user would give to an item. We demonstrate that, to our
surprise, this matrix model of recommendations can be concisely
captured as a Fabular vectorized regression.

In Matchbox, u ∈ Rn and m ∈ Rm are sparse binary vectors
representing metadata for users and items, respectively. For illus-
tration, we might have n = 3 users and m = 2 movies as items:

u =

userId0 0
userId1 0
userId2 1

 m =

(
movieId0 1
movieId1 0

)
Thus, rows are labelled by values for dimensions of the meta-

data, e.g., u has one row per user id, while m has one row per
movie id. We project u and m into a common trait space by left-
multiplying them by random matrices UT and MT , which have di-
mensions k×n and k×m, yielding ut = UTu and mt = MTm, e.g.,
for k = 2 and trait space R2:

ut =
(

UT00 UT01 UT02
UT10 UT11 UT12

)
×

0
0
1

=

(
UT02
UT12

)
Where the individual UTi j and MTi j components are drawn from
independent Gaussians (note that we sample a single UT and MT
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table Classes
table Points
X real input
Class link(Classes) output DiscreteUniform(SizeOf(Classes))
Y real output ∼(1.0{intercept∼Gaussian(0.0,100.0)} + X{slope∼Gaussian(0.0,100.0)} + ?{pi∼Gamma(1.0,2.0)}|Class)

table Classes
table Points
X real input
Class link(Classes) output DiscreteUniform(SizeOf(Classes))
intercept real[SizeOf(Classes)] static output [for c1 < SizeOf(Classes)-> Gaussian(0.0,100.0)]
slope real[SizeOf(Classes)] static output [for c2 < SizeOf(Classes)-> Gaussian(0.0,100.0)]
pi real[SizeOf(Classes)] static output [for c3 < SizeOf(Classes)-> Gamma(1.0,2.0)]
Y real output 1.0∗intercept[Class] + X∗slope[Class] + 0.0 + GaussianFromMeanAndPrecision(0.0,pi[Class])

Figure 2. Linear Classification as a regression in Fabular (and its expansion to Tabular)

table Users
gender link(Genders) input
threshold1 real output Gaussian(-1.5,1.0)
threshold2 real output Gaussian(-0.5,1.0)
threshold3 real output Gaussian(0.5,1.0)
threshold4 real output Gaussian(1.5,1.0)
userTraitMean real[2] output ∼(1.0{umean∼Gaussian(0.0,1.0)}|gender)
table Movies
ID int input
genre link(Genres) input
traitMeanOther real[2] output ∼(1.0{mmean∼Gaussian(0.0,1.0)}|genre)
movieTraitMean real[2] output if ID = 1 then [1.0;0.0] else if ID = 2 then [0.0;1.0] else traitMeanOther
table RatingQuery
userId link(Users) input
movieId link(Movies) input
UserTrait real[2] output ∼(1.0{userMean∼δuserTraitMean}|userId)
MovieTrait real[2] output ∼(1.0{movieMean∼δmovieTraitMean}|movieId)
affinity real output Sum([for i < 2 -> UserTrait[i] ∗ MovieTrait[i]])
level real output ∼δaffinity + (1.0{userbias∼Gaussian(0.0,1.0)}|userId)

+ (1.0{moviebias∼Gaussian(0.0,1.0)}|movieId)+ ?{Prec∼δ10.0}
Rating1 bool output level > Gaussian(userId.threshold1,0.1)
Rating2 bool output level > Gaussian(userId.threshold2,0.1)
Rating3 bool output level > Gaussian(userId.threshold3,0.1)
Rating4 bool output level > Gaussian(userId.threshold4,0.1)

Figure 3. Matchbox, an illustration of vectorized regression (trivial (user) Genders and (movie) Genres tables omitted)

and use this for all users and movies, respectively). Because u and
m are sparse binary vectors, ut and mt each denote a single column
of UT and MT . Thus, we can view ut and mt as vector intercepts,
selected by the encoded values, u and m, of the user and movie ids.

For a generic userId, we can express the trait vector component-
wise using k scalar regressions or, more succinctly, as a single k-
dimensional vectorized regression:

ut =

ut0
· · ·
utk

 =

(1{UT0 ∼ Gaussian(0,1)}|userId)
· · ·

(1{UTk ∼ Gaussian(0,1)}|userId)


= (1{UT∼ Gaussian(0,1)}|userId)

Trait vectors, the crucial data representation in Matchbox, are
surprisingly compact in vectorized Fabular.

A more realistic model exploits features of the entities, such
as the gender of users or the genre of movies. The features are
used to impose pooled priors on the Gaussian trait vectors, grouped
by feature. The pooled prior addresses the cold-start problem by
assuming that new users behave like other users of the same gender:

utm = (1{um∼ Gaussian(0,1)}|gender)
ut = (1{UT∼ δutm}|userId)

See Figure 3 for the full model, which exploits features in this
way but also includes bias terms for individuals users and movies.

The model also adds an ordinal regression response that thresholds
ratings to a 5 point scale — illustrating a link function.

8. Conclusions
We set out to enrich probabilistic programming languages with the
regression formulas from R. Our regression calculus amounts to
an explicit description of the underlying syntax and (probabilistic)
semantics of R formulas. We embed the calculus in Tabular, and
hence allow users of a particular probabilistic programming system
to write models with formulas. They go beyond R in setting priors
for coefficients, using latent variables, tolerating missing input val-
ues, and getting the benefits of efficient inference using Infer.NET.

Tabular seeks to empower spreadsheet users with probabilistic
models. By incorporating R’s popular formula notation, we hope
Fabular makes it easier for spreadsheet users to get started with
modelling, as they need only specify a single formula. In future
work, we aim to develop a graphical user interface to ease the
construction of Fabular formulas, and to help configure priors.

And formulas would make a great feature for other languages!
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