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Abstract 1. Introduction

Simultaneous localization and mapping (SLAM) is the prob-
lem of acquiring a map of an unknown environment with a
moving robot, while simultaneously localizing the robot rel-
ative to this map (Leonard and Durrant-Whyte 1992; Dis-
sanayake et al. 2001). The SLAM problem addresses sit-
uations where the robot lacks a global positioning sensor.
Instead, it has to rely on a sensor of incremental egomotion for
robot position estimation (e.g., odometry, inertial navigation).
Such sensors accumulate error over time, making the problem
of acquiring an accurate map a challenging one (Thorpe and
Durrant-Whyte 2001). Inrecentyears, the SLAM problem has
received considerable attention by the scientific community,
and a flurry of new algorithms and techniques has emerged
(Leonard et al. 2002).

Existing algorithms can be subdivided into batch and on-
line techniques. The former offer sophisticated techniques
to cope with perceptual ambiguities (Shatkay and Kaelbling
1997; Thrun, Fox, and Burgard 1998; Burgard et al. 1999),
but they can only generate maps after extensive batch pro-
KEY WORDS—mobile robotics, mapping, SLAM, filters, cessing. On-line techniques are specifically suited to acquire
Kalman filters, information filters, multi-robot systems,maps as the robot navigates (Smith and Cheeseman 1985; Dis-
robotic perception, robot learning sanayake et al. 2001). On-line SLAM is of great practical im-
portance in many navigation and exploration problems (Bur-
gard et al. 2000; Simmons et al. 2000). Today’s most widely
used on-line algorithms are based on the extended Kalman
filter (EKF), whose application to SLAM problems was de-
veloped in a series of seminal papers (Smith and Cheese-
man 1985; Moutarlier and Chatila 1989; Smith, Self, and

In this paper we describe a scalable algorithm for the simultaneous
mapping and localization (SLAM) problem. SLAM is the problem of
acquiring amap of a static environment with a mobilerobot. Thevast
majority of SLAM algorithmsarebased on the extended Kal man filter
(EKF). Inthispaper weadvocate an algorithmthat relieson thedual
of the EKF, the extended information filter (EIF). \We show that when
represented in the information form, map posteriors are dominated
by a small number of links that tie together nearby features in the
map. Thisinsight isdevel oped into a sparse variant of the EIF, called
the sparse extended information filter (SEIF). SEIFsrepresent maps
by graphical networks of features that are locally interconnected,
where links represent relative information between pairs of nearby
features, as well as information about the robot’s pose relative to
the map. We show that all essential update equations in SEIFs can
be executed in constant time, irrespective of the size of the map.
We also provide empirical results obtained for a benchmark data
set collected in an outdoor environment, and using a multi-robot
mapping simulation.
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Cheeseman 1990). The EKF calculates a Gaussian posteifimations on the computational properties of solving SLAM
over the locations of environmental features and the robptoblems.
itself. The estimation of such a joint posterior probability dis- The use of sparse matrices, or local links, is motivated by
tribution solves one of the most difficult aspects of the SLAM key insight: the posterior distribution in SLAM problems is
problem, namely the fact that the errors in the estimates dbminated by a small number of relative links between ad-
features in the map are mutually dependent, by virtue of thecent features in the map. This is best illustrated through an
fact that they are acquired through a moving platform witexample. Figure 1 shows the result of the vanilla EKF (Smith
inaccurate positioning. Unfortunately, maintaining a Gausind Cheeseman 1985; Moutarlier and Chatila 1989; Smith,
sian posterior imposes a significant burden on the memogglf, and Cheeseman 1990) applied to the SLAM problem,
and space requirements of the EKF. The covariance matrixjgfan environment containing 50 landmarks. The left panel
the Gaussian posterior requires space quadratic in the sizesgbws a moving robot, along with its probabilistic estimate of
the map, and the basic update algorithm for EKFs requirgse |ocation of all 50 point features. The central information
quadratic time per measurement update. This quadratic spa§gintained by the EKF solution is a covariance matrix of these
and time requirement imposes severe scaling limitations. Hiferent estimates. The normalized covariance, i.e., the cor-
practice, EKFs can only handle maps that contain a few hupsiation, is visualized in the center panel of this figure. Each of
dred features. In many application domains, it is desirable {fq two axes lists the robot pose{wlocation and orientation)
acquire maps that are orders of magnitude larger (Julier aggowed by thex—y locations of the 50 landmarks. Dark en-
Uhimann 2000). _ tries indicate strong correlations. It is known that in the limit
This limitation has long been recognized, and a number gf SLAM, all x-coordinates and alj-coordinates become
approaches exist that represent the posterior in a more sty ¢orrelated (Dissanayake et al. 2001). The checkerboard
tured way; some of those W'” be discussed in d?ta" t.OW"’“%'S;)pearance of the correlation matrix illustrates this fact. Main-
the end of the paper. Possibly the most popular idea is to %'ﬁning these cross-correlations—of which there are quadrati-

compose the map into collections of smaller, more manage: : . .
R ally many in the number of features in the map—are essential
ggl)elsléborgggsfle‘sggzdaan%d; elli?rZ%)%%Q’ng(;\({)inétagld IZ\I Oe 0 _Ehe SLAM problem. This observation has given rise to the
’ ' ' ' : alse) suspicion that on-line SLAM inherently requires up-

Williams and Dissanayake 2002), thereby gaining represen-.~ - L .
. . L . ate time quadratic in the number of features in the map.
tational and computational efficiency. An alternative struc-

. ) . : The key insight that underlies SEIF is shown in the right
tured representation effectively estimates posteriors over e ol of Fiaure 1. Shown there is the inverse covariance ma-
tire paths (along with the map), not just the current rob 9 '

pose. This makes it possible to exploit a conditional indepeﬁr-'x (also known as the information matrix; Maybeck 1979;

dence that is characteristic of the SLAM problem, which irﬁ\lettleton, Gibbens, and Durrant-Whyte 2000), normalized

turn leads to a factored representation (Murphy 2000; Mont&J—St like the correlation matrix. Elements in this normalized
’ information matrix can be thought of as constraints, or links,

merlo et al. 2002; 2003). Most of these structured techniqugg X : . . ; .
are approximate, and most of them require memory linear Which constrain the relative locations of pairs of features in the

the size of the map. Some can update the posterior in const3HtP; the darker an entry in the display, the stronger the link.
time, whereas others maintain quadratic complexity at amué)§ this depiction suggests, the normalized information ma-
reduced constant factor. trix appears to be naturally sparse: it is dominated by a small

In this paper we describe a SLAM algorithm that reprenumber of strong links; and it possesses a large number of
sents map posterior by relative information between featurdgks whose values, when normalized, are near zero. Further-
in the map, and between the map and the robot's pose. THI9'e, the strength of each link is related to the distance of the
idea is not new; in fact, it is at the core of recent algorithms bgorresponding features: strong links are found only between
Newman (2000), Csorba (1997) and Deans and Hebert (200@)¢trically nearby features. The more distant two features, the
and it is related to an algorithm by Lu and Milios (1997). Justveaker their link. As will become more obvious in the paper,
as in recent work by Nettleton, Gibbens, and Durrant-Whytéis sparseness is not coincidental; rather, it directly relates
(2000), our approach is based on the well-known informatidi® the way information is acquired in SLAM. This observa-
form of the EKF, also known as the extended information filtion suggest that the EKF solution to SLAM can indeed be
ter (EIF; Maybeck 1979). This filter maintains an informatiorapproximated using a sparse representation—despite the fact
matrix, instead of the common covariance matrix. The maithat the correlation matrix is densely populated. In particular,
contribution of this paper is an EIF that maintains a sparsghile any two features are fully correlated in the limit, the cor-
information matrix, called the sparse extended informatiorelation arises mainly through a network of local links, which
filter (SEIF). This sparse matrix defines a Web-like networknly connect nearby features. Itis important to notice that this
of local relative constraints between pairs of adjacent featursgucture naturally emerges in SLAM; the results in Figure 1
in the map, reminiscent of a Gaussian Markov random fielake obtained using the vanilla EKF algorithm in Smith and
(Weiss and Freeman 2001). The sparsity has important ra@heeseman (1986).
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Fig. 1. Typical snapshots of EKFs applied to the SLAM problem. Shown here is a map (left panel), a correlation (center
panel), and a normalized information matrix (right panel). Notice that the normalized information matrix is naturally almost
sparse, motivating our approach of using sparse information matrices in SLAM.
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Fig. 2. lllustration of the network of features generated by our approach. Shown on the left is a sparse information matrix,
and on the right a map in which entities are linked whose information matrix element is non-zero. As argued in the paper, the
fact that not all features are connected is a key structural element of the SLAM problem, and at the heart of our constant time
solution.

As noted above, our approach exploits this insight by maimequires inversion of the entire information matrix, which is an
taining a sparse information matrix, in which only nearbyO (N?®) operation; plain EKFs, in comparison, requiéN?)
features are linked through a non-zero element. The resultitime (for the perceptual update).
network structure is illustrated in the right panel of Figure 2, The remainder of this paper is organized as follows. In Sec-
where disks correspond to point features and dashed arcditm 2 we formally introduce the EIF, which forms the basis of
links, as specified in the information matrix visualized on theur approach. SEIFs are described in Section 3, which states
left. This diagram also shows the robot, which is linked téhe major computational results of this paper. In this section
a small subset of all features only. Those features are calleg develop the constanttime algorithm for maintaining sparse
active features and are drawn in black. Storing a sparse infanformation matrices, and we also present an amortized con-
mation matrix requires space linear in the number of featuregant time algorithm for recovering a global map from the
in the map. More importantly, all essential updates in SLAMelative information in the SEIF. The important issue of data
can be performed in constant time, regardless of the numtsssociation finds its treatment in Section 4, which describes
of features in the map. This result is somewhat surprising, agaconstant time technique for calculating local probabilities
naive implementation of motion updates in information filtermecessary to make data association decisions. Experimental
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results are provided in Section 5. We specifically compare our Following the rich EKF tradition in the SLAM literature,
new approach to the EKF solution, using a benchmark datair approach represents the postefi¢s, | z*, u') by a mul-
set collected in an outdoor environment (Dissanayake et &lariate Gaussian distribution over the stgteThe mean of
2001; Guivant and Nebot 2001). These results suggest that thes distribution will be denoted,, and covariance matrix, :
sparseness constraint introduces only very small errors in the
resulting maps, when compared to the computationally more p(§ | z',u’) o exp{—3(& — ) S E — n)}. (1)
cumbersome EKF solution. The paper is concluded by a lit-
erature review in Section 6 and a discussion of open reseaithe proportionality sign replaces a constant normalizer that is
issues in Section 7. easily recovered from the covariangg. The representation
of the posterior via the mean and the covariance matrix,
is the basis of the EKF solution to the SLAM problem (and
2. Extended Information Filters to EKFs in general).
Information filters represent the same posterior through a
In this section we review the EIF, which forms the basis ofo-called information matri¥Z, and an information vector
our work. EIFs are computationally equivalent to EKFs, bus,—instead ofu, andX,. These are obtained by multiplying
they represent information differently: instead of maintainingut the exponent of eq. (1):
a covariance matrix, the EIF maintains an inverse covariance
matlrixbalso knolwr:j as iﬂformation m:g\;[rix. ElIFs have Elre\t/)ip(g, |z u') ocexp{—3 [£7 2,6 — 2u] =76 + i) 57 )
ously been applied to the SLAM problem, most notably by 1eTw 1 Two1 1 Teo1
Nettleton et al. (2000) and Nettleton, Gibbens, and Durrant- = exp{—3&" 5% + B — S E }2
Whyte (2000), but they are much less common than the EKF @
approach. C . . . We now observe that the last term in the exponent,
Most of the material in this section applies equally tolinear ; < _; : .
and nonlinear filters. We have chosento present all material 2/ %, ", does n_ot contain the free varla_kﬁ;eand _hen_ce
L . . gzn be subsumed into the constant normalizer. This gives us
the more general nonlinear form, since robots are mherent[

X . . . . . e form:
nonlinear. The linear form is easily obtained as a special case.

oo exp{—3& T7VE + B NE) 3)
2.1. Information Form of the SLAM Problem —H, —b

Letx, denote the pose of the robot at timé-or rigid mobile  The jnformation matrix, and the information vectd, are
robots operating in a planar environment, the pose is given By defined as indicated:

its two Cartesian coordinates and the robot’s heading direc-
tion. Let N denote the number of features (e.g., landmarks) H=x"1 and b =u'H,. 4
in the environment. The variable with 1 < n < N denotes ' '

the pose of theth feature. For example, for point landmarkssjng these notations, the desired posterior can now be rep-

in the planey, may comprise the two-dimensional Cartesiaiesented in what is commonly known as the information form
coordinates of this landmark. In SLAM, it is usually assumegf the Kalman filter:

that features do not change their location over time; see Hah-
nel et al. (2003c) and Wang, _Thorp_e, and Thrun (2003) for a pE |7 u') exp{—%SITH,S, + b,éﬂ} ) (5)
treatment of SLAM in dynamic environments.

The robot poser; and the set of all feature locations As the reader may easily notice, both representations of the
together constitute the state of the environment. It will benylti-variate Gaussian posterior are functionally equivalent
denoted by the vectdy = ( X, Y1 ... YN )T,Where the (with the exception of certain degenerate cases): the EKF
superscript “T” refers to the transpose of a vector. representation of the mean and covariances,, and the

In the SLAM problem, it is impossible to sense the sgte EIF representation of the information vectgrand the infor-
directly—otherwise there would be no mapping problem. Inmation matrixH,. In particular, the EKF representation can
stead, the robot seeks to recover a probabilistic estiméte ofbe “recovered” from the information form via the following
Written in a Bayesian form, our goal shall be to calculate a postgebra:
terior distribution over the statg. This posteriop (&, | z', u’)
is conditioned on past sensor measurements z,, ... , z, ¥ = H and w, = H™'b] = T,b]. (6)
and past controls’ = ug, ..., u,. Sensor measuremergs
might, for example, specify the approximate range and bedrhe advantage of the EIF over the EKF will become appar-
ing to nearby features. Contrals specify the robot motion ent further below, when the concept of sparse EIFs will be
command asserted in the time intergal- 1; ¢]. introduced.
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Of particular interest will be the geometry of the informa-The second step of this derivation exploited common (and
tion matrix. This matrix is symmetric and positive-definite: obvious) independences in SLAM problems (Thrun 2002).

For the time being, we assume thatt, | z'~1, u’) is rep-

H H H

gy g resented byH, andb,. These will be discussed in the next
_ R section, where robot motion will be addressed. The key ques-
H = : : . . .om o2 e : .
: : : tion addressed in this section thus concerns the representation
H,, . H,,.,, H,, . of the probability distributionp(z, | &) and the mechanics

Each el in the inf . . . of carrying out the multiplication above. In the “extended”
ach element in the information matrix constrains one (Q@mily of filters, a common model of robot perception is one

the main diagonal) or two (off the main diagonal) elementﬁ] which measurements are governed via a deterministic non-

n trj? sta“te vector. We wil ref‘?f to the off-diagonal elementg, o o e asurement functidgnwith added Gaussian noise:
as “links”: the matricesH,, ,, link together the robot pose

estimate and the location estimate of a specific feature, and
the matricedd,, , , for n # n’ link together two feature loca-
tionsy, andy, . Although rarely made explicit, the manipu-Here ¢, is an independent noise variable with zero mean,
lation of these links is the very essence of Gaussian solutiowhiose covariance will be denotefl Put into probabilistic

to the SLAM problem. It will be an analysis of these linksterms, eq. (9) specifies a Gaussian distribution over the mea-
that ultimately leads to a constant-time solution to the SLAMurement space of the form

problem.

z, = hE)+e. (9)

Pz 1 &) cexp{—3(z —h(ENTZ Mz — hE))} . (10)

22 M rement Updates Following the rich literature of EKFs, EIFs approximate this

In SLAM, measurements carry spatial information on the Gaussian by linearizing the measurement functiomMore
relation of the robot’s pose and the location of a feature. Fepecifically, a Taylor series expansion/ofjives us
example,z, might be the approximate range and bearing to

a nearby feature. Without loss of generality, we will assume h(€) ~  h(w)+ Veh(u)lg — wl, (11)
that each measurementcorresponds to exactly one feature

in the map. Sightings of multiple features at the same tim\ghertetvf}tlé“’)t'stthe f|_rst detrlvkatwe (;Jacoblian)bbfw!:h re-
may easily be processed one-after-another. spect to the state variablg takené = p,. For brevity, we

Figure 3 illustrates the effect of measurements on the im'" write 2, = h(.“’) o indicate that this is a pre@ctlon
formation matrixH,. Suppose the robot measures the appr0>g-',ven our state estllmaxe. The transpo; e ofthe Jacpt?lgn ma-
imate range and bearing to the featyygas illustrated in Fig- trix V,h(u,) and will be qenoted?,. With these definitions,
ure 3(a). This observation links the robot pest the location eq. (11) reads as follows:
of y;. The strength of the link is given by the level of noise ~ 2 T
in the measurement. Updating EIFs based on this measure- hG) » Lt GG = ). (12)
ment involves the manipulation of the off-diagonal elementghis approximation leads to the following Gaussian approxi-

H,,, and their symmetric counterparts ., that link together mation of the measurement density in eq. (10):
x, andy. Additionally, the on-diagonal elementg,, ,, and

H,, ,, are also updated. These updates are additive. Each ob- p(z, | &) x exp{—2(z, — 2, — C[& + C] )"
servation of a featurg increases the strength of the total link » R : . (13)
between the robot pose and this very feature, and with it the ZMz — 4 = CTe +Clu}

total information in the filter. Figure 3(b) shows the incor-lvIuIti lVing out the exponent and rearouping the resultin
poration of a second measurement of a different featyre, plying P grouping 9

In response to this measurement, the EIF updates the Iinﬁ?srms gives us

H,, = H}  (and H,, ., and Hyz,,zl). As this example sug-  _ exp{—167C,Z2CTE + (z, — &, + CT ) ZCTE,
gests, measurements introduce links only between the robot 27t ! ! ! (14)
posex, and observed features. Measurements never gener-

ate links between pairs of features, or between the robot and —3 @ — 2 + C/ i)' Z 1z, — 2, + Clun}.
unobserved features.

For a mathematical derivation of the update rule, we Obﬁs before, the final term in the exponent does not depend on

serve that Bayes rule enables us to factor the desired postemﬁ vla_lriafbleg, .and hence can be subsumed into the propor-
into the following product: tionality factor:

pE ) o p | €2y pl | @) ocexp{ =38/ C.Z7CTE + (@ = 4+ CTu)T27CIE
= p@1&) pE | 7). ®) (13)
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|3 ¥

_ S

(@) (b)

Fig. 3. The effect of measurements on the information matrix and the associated network of features. (a) O gestiitg
in a modification of the information matrix elementg, ,,. (b) Similarly, observingy, affectsH,, ,,. Both updates can be
carried out in constant time.

We are now in the position to state the measurement updated the new covariance matr = H,* is usually non-zero
equation, which implements the probabilistic law (8). everywhere.

pE |7, u") o exp{_%éfTH_[ét +5t§t}

. 2.3. Motion Updates
cexp{—1E7C,Z7CTE + (2 — 2, + CTu) 272CTE ) P

The second important step of SLAM concerns the update of
= exp(—i&/(H +C.Z7'C)E the filter in accordance to robot motion. In the standard SLAM
D —— problem, only the robot pose changes over time. The environ-
ment is static.
+ (b + (2 — 2+ CTu) Z7ChHE). (16) The effect of robot motion on the information matik
is slightly more complicated than that of measurements. Fig-
cH[e 4(a) illustrates an information matrix and the associated
network before the robot moves, in which the robot s linked to
B two (previously observed) features. If robot motion was free
H = H+CZzZ'C! (A7) of noise, this link structure would not be affected by robot
b, b+ (z,— % +CTu)"Z272CT. (18) motion. However, the noise in robot actuation weakens the

, .. __link between the robot and all active features. Hehke,,

In th_e genergl case, these updates ma_y modify the entire 'nfgﬁd H,, ,, are decreased by a certain amount. This decrease
matlofn r”natan, andlvectqlbthresr;])ectlvely: A key Observa- yofiects the fact that the noise in motion induces a loss of infor-
tion of all SLAM problems is that the Jacobiéhis sparse. In - i q4i0n of the relative location of the features to the robot. Not
particular,C, is zero except for the elements that_ COMesPONgy| of this information is lost, however. Some of it is shifted
to the rabot pose, and the featurg, observed at time. into between-feature linkH,, ,,, as illustrated in Figure 4(b).

¢ = % 0---0 39_: 0---0 )T_ (19) This ref!ects the_ fact that even thoug_h the motion induced a

_ . _ loss of information of the robot relative to the features, no
This well-known sparseness©f (Dissanayake etal. 2001) is jytormation was lost between individual features. Robot mo-
due to the fact that measurementare only afunction of the i, ths has the effect that features that were indirectly linked
relative distance and orientation of the robot to the Observ‘?ﬁrough the robot pose become linked directly
) g .

feature. As a pleasing consequence, the update™C;’ to To derive the update rule, we begin with a Bayesian de-

the mfgrmatmn matrix in eq. (17) is only non-zero in fourg intion of robot motion. Updating a filter based on robot
places: the off-diagonal elements that link the robot pese n,qion motion involves the calculation of the following
with the observed featung, and the main-diagonal elememsposterior'

that correspond t®, andy,. Thus, the update equations (17)
and (18) are well in tune with our intuitive description given
at the beginning of this section, where we argued that mea-
surements only strengthen the links between the robot pos@(: | 27" u') = / pE &, 2 u) p&a | 27 u')
and observed features, in the information matrix.
To compare this to the EKF solution, we notice that even &1 (20)
though the change of the information matrix is local, the re-
sulting covariance usually changes in non-local ways. Put dixploiting the common SLAM independences (Thrun 2002)
ferently, the difference between the old covariabige= H;l leads to

Hy

by

Thus, the measurement update of the EIF is given by the f
lowing additive rule:
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| L] 4 ihmugh mimio |_ =N
| % ' ¥ - : - _I I _.-"- 'y
I I T
| ¥ b} , :‘ql 4
| ¥ ks '_.-.._._._.-.-ll,| l::'
b : ¥i
(@) (b)

Fig. 4. The effect of motion on the information matrix and the associated network of features: (a) before motion; (b) after
motion. If motion is non-deterministic, motion updates introduce new links (or reinforce existing links) between any two
active features, while weakening the links between the robot and those features. This step introduces links between pairs of
features.

eqg. (22) leads to an approximation&f the state at time:

pE |77 hu') = / pE N E L, u) pEa 2 u™ E o~ (I+A)Ea+A A +S6. (24)

dé, .. (1) Hence, under this approximation the random varigbles
again Gaussian distributed. Its mean is obtained by replacing
The termp(&,_, | 2%, u'™Y) is the posterior at time — 1, & ands, in eq. (24) by their respective means:
represented byd,_; andb,_;. Our concern will therefore be R
with the remaining ternp (&, | &_4, u,), which characterizes i = (U+A)w-+A —Au_1+S0
robot motion in probabilistic terms. A
Similar to thg measurement model above, it is common = Mt A (25)

practicg to model robot mqtion by a nonlinear function withrpe covariance of, is simply obtained by scaled and adding

added independent Gaussian noise: the covariance of the Gaussian variables on the right-hand
%-t = Sr—l + Ar with Ar = g(ér—l, ut) + stt- (22) side of e (24)

Hereg is the motion model, a vector-valued function which L= 4+ ATl +A) +0-0+SUS]

is non-zero only for the robot pose coordinates, as feature = (I+A)Z (U +A) +S.US;. (26)

locations are static in SLAM. The term labeléd consti- ) ) ]

tutes the state change at timeThe stochastic part of this UPdate equations (25) and (26) are in the EKF form, i.e., they

change is modeled by, a Gaussian random variable with@'® deflneql over means and covanar_lc_e_s.Thequrmatlon_form

zero mean and covariante. This Gaussian variable is a low- IS NOW easily recovered from the definition of the information

dimensional variable defined for the robot pose only. Here formineq. (4) and its inverse in eq. (6). In particular, we have

is a projection matrix of the forr§, = (7 0 ... 0)", where _ _

I is an identity matrix of the same dimension as the robot pose H =%

vectorx, and as ofs,. Each 0 in this matrix refers to a null

matrix, of which there ar&/ in S.. The products.s,, hence,

gives the following generalized noise variable, enlarged to the _ T AT

dimension of the full state vectdr. S.8, = (s, 0 ... 0)". b= H = |1+ Ar] H, = I:Ht_—jib;r—l + A,] H,

In EIFs, the functiory in eq. (22) is approximated by its first

degree Taylor series expansion: = [b,,lHtjll + Af] H,. (28)

I+ A)S o + A+ 8,U,8T]"

-1
t
t

=
[+ A)H AT+ A) +S.UST|" (27)

8G v u) ~ gy, u) + Veg (i, u)l§1 — i1l These equations appear computationally involved, in that they
= A+ A& 1— Ap . (23) require the inversion of large matrices. In the general case, the
complexity of the EIF is therefore cubic in the size of the state
HereA, = V.g(u,_1, u,) is the derivative of with respectto space. In the next section, we provide the surprising result that
& até = u,_, andu,. The symbol&, is short for the predicted both H, andb, can be computed in constant timeHf_, is
motion effect,g(u,_1, u,). Plugging this approximation into sparse.
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3. Spar se Extended Information Filters

The central, new algorithm presented inthis paperisthe SEIF. W, = | —S.(I +[SA,S. 1 H ']

The SEIF differs from the EIF described in the previous sec- UTH W, '

tion in that it maintains a sparse information matrix. Aninfor- '~ iy T e T

mation matrixH, is considered sparse if the number of links AH, H_,S.[U"+ S, H_, S8 H_,

to the robot and to each feature in the map is bounded by a H: = H,,— AH,

constant that is independent of the number of featuresinthe ;- p_, — T (AH, — H,_,+ H ) + ATH,(30)
map. The bound for the number of links between the robot

pose and other features in the map will be dendtedhe Fqor 4, £ 0, a constant-time update requires knowledge of
bound on the number of links for each feature (not counting,e mean,, , before the motion command, for the robot pose
the link to the robot) will be denote@. The motivation for  anq || active features (but not the passive features). This in-
maintaining a sparse information is mainly computational, gymation is not maintained by the standard information filter,

Wi|| become apparent below. Its justification has a_\lready beefhq extracting it in the straightforward way (via eq. (6)) re-
discussed above, when we demonstrated that in SLAM th@ires more than constant time. A constant-time solution to

normalized information matrix is already almost sparse. Thigg problem will now be presented.
suggests that by enforcing sparseness, the induced approxi-
mation error is small.

3.2. Sparsification
3.1. Constant Time Results 3.2.1. General |dea

We begin by proving three important constant time result3,he final step in SEIFs concerns the sparsification of the in-
which form the backbone of SEIFs. All proofs can be foundormation matrixH,. Because sparsification is so essential to
in the Appendix. SEIFs, let us first discuss it in general terms before we apply

. . . it to the information filter. Sparsification is an approximation
LEMMA 1. The measurement update in Section 2.2 require A . .

. . . -~ whereby a posterior distribution is approximated by two of its
constant time, irrespective of the number of features in the_~ . :
map marginals. Suppose b, andc are sets of random variables (b

. , is not to be confused with the information vecikgy. Suppose
This lemma ensures that measurements can be incorpo- : T .
) . . . ‘we are given a joint distributiop(a, b, ¢) over these vari-
rated in constant time. Notice that this lemma does not requir : L .
X : . - ables. To sparsify this distribution, suppose we would like to
sparseness of the information matrix; rather, itis a well-known . . A
: o . remove any direct link between the variabdesndb. In other
property of information filters in SLAM.

L ) words, we would like to approximageby a distributionp for
Less trivial is the following lemma. which the following property holdsp(a | b,¢) = p(a | ¢)
LEMMA 2. If the information matrix is sparse and = 0, andp(b | a,c) = p(b | ¢). This conditional independence
the motion update in Section 2.3 requires constant time. Thecommonly known as “d-separation” (Pearl 1988). In multi-

constant-time update equations are given by variate Gaussians, itis easily shown that d-separation is equiv-
alent to the absence of a direct link betweeandb, i.e., the
L, = SIU'+STH 1S]1'STH, 1 corresponding element in the information matrix is zero.
H = H_,—H_L, (29) A good approximatiorp is obtained by a term proportional

to the product of the marginalg,a, ¢) and p(b, ¢). Neither
of these marginals retain dependence between the variables
a andb, since they both contain only one of those variables.

This result addresses the important special e¢ase 0, i.e., QFS’ the producp(a, ¢) p(b. c) does not contain any direct

: . T
the Jacobian of pose change with respect to the absolute rogependences betweeandp: insteadg andb are d-separated

pose is zero. This is the case for robots with linear mechani ?y ¢. However,p(a. ) p(b, ¢) is not yet a valid probability

S
I

bt—l + A;r[']t—l - br—lLt + A;I—Iit—lLt-

and with nonlinear mechanics where there is no “cross-talk” . " . :
. L d%Stl‘Ibuthl’] overa, b, andc. This is because occurs twice
between absolute coordinates and the additive change due i . L
. in this expression. However, proper normalization fxy)

motion. ields a probability distribution (assumingc) > 0):

In general A, # 0, since thex—y update depends on the P y '
robot orientation. This case is addressed by the next lemma.

@b = pla,c) p(b,c) (31)

LEMMA 3. If the information matrix is sparse, the motion pia b, - p(c)
update in Section 2.3 requires constant time if the megan
is available for the robot pose and all active features. Theo understand the effect of this approximation, we apply the

constant-time update equations are given by following transformation:
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motion introduces links between any two active features, and

hence leads to violations of the bouéd This consideration
pla,b,¢) pla,c) p(b,c) uhy

pla,b,c) = suggests that controlling the number of active features can
pa. b, o) p(©) avoid violation of both sparseness bounds.
= pa,b, o) pla,c) pb,c) Our sparsification technique is illustrated in Figure 5.
p(c) pla,b, o) Shown there is the situation before and after sparsification.
pa|c) The removal of a link in the network corresponds to setting
= plab.o pla|b,c) (32) an element in the information matrix to zero; however, this

requires the manipulation of other links between the robot
In otherwords, removing the directdependence betweenl g other active features. The resulting network is only an
b is equivalent to approximating the conditionala | b, c)  approximation to the original one, whose quality depends on
by a conditionalp(a | ¢). We also note (without proof) that the magnitude of the link before removal.
among all approximationgof p in whichc d-separates and To define the sparsification step, it will prove useful to

b, the one described here is “closest’ iowhere closeness partition the set of all features into three disjoint subsets
is measured by the Kullback Liebler divergence, a common o
Y = Yr4Y°4v7, (34)

information-theoretic measure of the “nearness” of probabil-
ity distributions (see Cover and Thomas 1991, for a definitioghere Y+ is the set of all active features that shall remain

and discussion of KL divergence): active.Y° are one or more active features that we seek to
_ ) deactivate (remove the link to the robat). are all currently
p = argminD(q || p). (33)  passive features. Sinag" U Y° contains all currently active
An important observation pertains to the fact that the originé?atures’ the posterior can be factored as follows:
p(a | b, c) is at least as informative gs(a | c); the condi- p(x, Y |2 u) = px, YY" Y |z, u')
tional hatreplaceg(a | b, ¢) in p. Thisis becausg(a | b, ¢) = px, | YO, Y, Y, 7 u')

is conditioned on a superset of variables of the conditioning 0 vt v | ot ot
. . . .. . pY , YT, Y |Z,u")
variables inp(a | ¢). For Gaussians, this implies that the 0 ui o L
variance of the approximatiom(a | ¢) is equal or larger than = pla | YL Y7, Y™ =02 u)
the variance of the original conditional(a | b, c). Further, p(Y° YT YT | ). (35)
the variances of the marginaiga), p(b), andp(c) are also
larger than or equal to the corresponding variances(of§,
p(b), andp(c). In other words, it is impossible that the vari-

ance shrinks under this approximation. Such an operationgs .y, a|ue without affecting the conditional posterior over
commonly referred to as consistent in the SLAM I|teratur%(x | Y%, Y+, Y, 7', u'). Here we simply chosg~ = 0.1
t L) L) EEECNE] . — .

(Dissanaya_ke etal. 2001). However, we note that the consis- Following the sparsification idea discussed in general

tency of a single-step update does not imply that the posterigh s in the previous section, we now replagey, |

of asparsified Bayes filterremains consistent—aphenomenpm Y*, Y- = 0) by p(x, | Y*,Y~ = 0), that is, we drop
9 9 - t 9 - 1 1

we will discuss in detail below.

In the last step we exploit the fact that if we know the ac-
tive featuresy® and Y+, the variablex, does not depend on
the passive featureB~. We can hence sef~ to an arbi-

the dependence arf:
~ t t _ + - t t
3.2.2. Application to Extended Information Filters P Y |zhu) = pl | Y7, Y"=0.2.u)
. e . pY° Y Y2 u). (36)
SEIFs apply the idea of sparsification to the postesiat, Y | ) o ] ] )
2, u'), thereby maintaining a matrik, that is sparse at all This appm).(lmatlon is obviously equivalent to the following
times. This sparseness is at the core of SEIF’s efficiency. Sp&KPression.
sification is necessarily an approximative step, since informa- Yl — p(x, YT | Y =0,z7,u")
tion matrices in SLAM are naturally not sparse—even though P Y| 2hu) = p(Y*t Y- =0,z7,u')
normalized mformatlo_n mat_rlces tend to be_almost sparse. In p(YO, Y Y™ | 7, u). (37)
the context of SLAM, it suffices to remove links (deactivate)
between the roboft pose a'nd' individual feature§ in the map;é.fz'& Constant-Time Calculation
done correctly, this also limits the number of links between
pairs of features. The approximate posterigr defined in eq. (37) is now easily
To see, let us briefly consider the two circumstances ugalculated in constant time. In particular, we begin by calculat-
der which a new link may be introduced. First, observing g the information matrix for the distributiop(x,, Y°, Y~ |
passive feature activates this feature, that is, introduces a MW nother choice would have been to integrate out the varidbiashow-

link between the robot pose an_d the very feature. Thus, Mege,, the resulting sparsification requires inversions of large matrices, and
surement updates potentially violate the bodndSecondly, numerical truncation errors may yield non-sparse matrices.
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Y~ = 0) of all variables butr —, and conditioned o~ = 0. Empirically, it induces approximation errors that are negli-
This is obtained by extracting the submatrix of all state vargible for appropriately chosen sparseness constrajrasd

ables butr—: 0,. In practice, our implementation constrains ofaly This
induces a bound on the number of between-landmark links,
H = S«rvY*vYOSxT,yonzSx,YtYOSxT,ytw- (38) simply because only adjacent links tend to be active at the

same time. All our experiments below, thus, consttaibut

With that, the matrix inversion lemradeads to the following

information matrices for the terms(x,, Y* | Y~ =0, z', u")

andp(Y* | Y~ =0,z,u"),denotedd! andH?, respectively:
3.3. Amortized Approximate Map Recovery

used, = N.

H'! = H/ — H,Sy,(Sy H/Sy,) 'Sy H/

t
H? = H — H/S, (ST, HS. ) ST, H. (40)

t x,Yo

Before deriving an algorithm for recovering the state estimate
u, from the information form, let us briefly consider what

Here the variouss-matrices are projection matrices, analoParts ofu, are needed in SEIFs, and when. SEIFs need the

gous to the matrixs, defined above. The final term in ourState estimatg, of the robot pose and the active features in
approximation (37)p(Y°, Y+, Y~ | z', u'), has the following the map. These estimates are needed at three different occa-

information matrix: sions: (1) the linearization of the nonlinear measurement and
motion model; (2) the motion update according to Lemma 3;
H} = H, —HS, (S HS,) 'S H,. (41) (3) the sparsification technique described further below. For

linear systems, the means are only needed for the sparsifi-
pﬁion (third point above). We also note that we only need
constantly many of the values i, namely the estimate of
the robot pose and of the locations of active features.

A = H'- H*+H®=H, — H Sy ST H,Sy,) S H] andA; §tated in eg. (6), the mean vectaris a function ofH,

the following information matrix, in which the featun€ is
now indeed deactivated:

H, S (ST Suo) ST ] L
T 1T M = H; bt = Esz' (44)
—H,S,. (S, HS,) S, H,. (42)

Unfortunately, calculating eq. (44) directly involves inverting
alarge matrix, which would requires more than constant time.
The sparseness of the matitk allows us to recover the
by = WH =u'(H—-H+H) state mcrementally. In particular, we can do so on-llnez as the

data are being gathered and the estimatasd H are being

constructed. To do so, it will prove convenient to pose eq. (44)

The resulting information vector is now obtained by the fol
lowing simple consideration:

= w HA4u (H — H) =b,+u'(H — H,). (43)

All equations can be computed in constant time, regardle&§ an Optimization problem.

of the size ofH,. The effect of this approximation is the LEMMA 4. The state, is the mode, := argmax, p(v,) of

deactivation of the featurex®, while introducing only new the Gaussian distribution, defined over the variahle

links between active features. The sparsification rule requires

knowledge of the mean vectoy for all active features, which p(v) = const-exp{—3v/Hv +b/v}. (45)

is obtained via the approximation technique described in the

previous section. From eq. (43), it is obvious that the spardilerev, is a vector of the same form and dimensionality:as

fication does not affect the megn, thatis,H*»T = A-'5T.  This lemma suggests that recoverjngis equivalent to find-

However, the mean can be affected by a number of other 489 the mode of eq. (45). Thus, ittransforms a matrix inversion

pects of SEIF, such as the use of an approxintatmatrix in ~ Problem into an optimization problem. For this optimization

subsequent filter updates. problem, we will now describe an iterative hill climbing al-
The sparsification is executed whenever a measuremd@@rithm which, thanks to the sparseness of the information

update or a motion update would violate a sparseness cdhatrix, requires only constant time per optimization update.

straint. Active features are chosen for deactivation in reverse Our approach is an instantiation of coordinate descent. For

order of the magnitude of their link. This strategy tends to déimplicity, we state it here for a single coordinate only; our

activate features whose last sighting is furthest away in timénplementation iterates a constant numieiof such opti-

— - - mizations after each measurement update step. The hode
2. The matrix inversion lemma (Sherman—Morrison—Woodbury formula), aSf eq. (45) is attained at

used throughout this paper, is stated as follows:

(ht4sssT) " = Hows(5l4sTHS) STH @) ¥ = argmax, p(v)=argmax, exp{—iv Hy, +b/v,}
= argmin, v Hyv, —b/v,. (46)

t 20t
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We note that the argument of the min-operator in eq. (4@)his approach requires a mechanism for evaluating the like-
can be written in a form that makes the individual coordinatéhood of a measurement under an alleged data association,

variablesy;, (for theith coordinate ob,) explicit: S0 as to identify the association that makes the measurement
most probable. The key result here is that this likelihood can
W Hy, —blv, = YN WH v, be approximated tightly in constant time.
i
4.1. Recovering Data Association Probabilities
~ bl v (47) g

To perform data association, we augment the notation to make
the data association variable explicit. Lgtbe the index of
whereH, ;, isthe elementwith coordinatés j) in H,,andb,,  the measurement, and letn’ be the sequence of all corre-

if the ith component of the vectdt. Taking the derivative of spondence variables leading up to tim&@he domain ofs,

this expression with respect to an arbitrary coordinate variabite 1, . .. , N,_; + 1 for some number of feature$_; that is
v;, gives us increased dynamically as new features are acquired. We dis-
tinguish two cases, namely that a feature corresponds to a pre-
Bl 1 T T viously observed one (henge< N,_;), orthatz, corresponds
P {5 Z Z VieHijavin = Z bi i to a new, previously unobserved feature£ N, _; + 1). We
Y ' will denote the robot’s guess of by 7,.
= Z H; v, — b/, (48) To make the correspondence variables explicit in our no-
j tation, the posterior estimated by SEIF will henceforth be
. . . . denoted
Setting this to zero leads to the optimum of tkiecoordinate
variablev;, given all other estimates,: p& 12 u' ). (51)
Heren' is the sequence of the estimated values of the cor-
pel — gl pT Z H . W (49) respondence variables. Notice that we choose to place the
it ii,t it Lt ot . . . .
I correspondences on the right side of the conditioning bar. The

maximum likelihood approach simply chooses the correspon-

The same expression can conveniently be written in matrience that maximizes the measurement likelihood at any point
notation, where; is a projection matrix for extracting théh  jn time:

component from the matrix,:

A, = argmax,p(z | 274 u', At )
[k+1] — T . -1¢T _ [k] ) T, k]
l)i,t - (S, HtSt) S,‘ [bt Htvt +HtS1Sl' U, ] (50) argma)’(/ /P(Zz |§”nr) p(gr | Zt—l’ ut’ﬁt—l) d%-t
All other estimates; , with i’ £ i remain unchanged in this H.b
update step, i.ev; " = v}l B
Asis easily seen, the number of elements in the summation =~ 2'9Ma% PG | X0 Yuo )
in eg. (49), and hence the vector multiplication in eq. (50), is POy v, | 2785 Ul Y. (52)

constant ifH, is sparse. Hence, each update requires constant
time. To maintain the constant-time property of our SLAMOUr notationp(z, | x;, y,,, n,) of the sensor model makes the
algorithm, we can afford a constant number of updatemer ~ correspondence variable explicit. Calculating this proba-
time_step_ This will genera”y not lead to convergence, blhlllty exactly is not possible in constant time, since itinvolves
the relaxation process takes place over multiple time-steggarginalizing out almost all variables in the map (which re-
resulting in small errors in the overall estimate. quires the inversion of a large matrix). However, the same type
of approximation that was essential for the efficient sparsifi-
cation can also be applied here as well.

In particular, let us denote by the combined Markov

blanket of the robot pose and the landmarlg,, . This Markov

Data association refers to the problem of determining the cqi, et is the set of all features in the map that are linked to the
respondence between multiple sightings of identical featurq%.bot of landmarks

, 4 ., - Figure 6 illustrates this set. Notice that
Features are ger_1e_rally notunique in appearance, and t_h_e roPOlcludes by definition all active landmarks. The sparseness
has to make decisions with regards to the identity of individua[;' - . . :
L of H, ensures thdt " contains only a fixed number of features,
features. Data association is generally acknowledged to b(?ea ardless of the ns/ize of the map
key problem in SLAM, and a number of solutions have been g

proposed (Dissanayake et al. 2001; Montemerlo et al. 200|3'
Tardos et al. 2002). Here we follow the standard maximum
likelihood approach described in Dissanayake et al. (2001). Y = Y=Y —{w} (53)

ne ne

4. Data Association

All other features will be collectively referred to a5,
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Fig. 5. Sparsification: a feature is deactivated by eliminating its link to the robot. To compensate for this change in information
state, links between active features and/or the robot are also updated. The entire operation can be performed in constant time.

The setr, contains only features whose location asserts only
an indirect influence on the two variables of interastand

y.,. Our approach approximates the probabilitgy,, v, |
271 u', ') ineq. (52) by essentially ignoring these indirect
influences:

1

- Ar—1
Py, 1 27U 1T

B / / p(xr’ yn” Y"Jlr’ Y’; | Ztil’ ut’ ﬁtil) dYnJ,r dYnT

//p(xn AN ATS ST TN ) Fig. 6. The combined Markov blanket of featurgand robot
POV Y- 2w Y x, is sufficient for_approximgt@ng_the posterior probability of
e ot o the feature locations, conditioning away all other features.
p(Y, 1275, a0 dy,ndY, G4 This insight leads to a constant time method for recovering

) RS 1
/p(x” Yo | Y5 Y = i 21t Y the approximate probability distributign(x;, y, | z'~*, u’).

pY 1Y, =pu,, 7w, ah dr,’.

2

This probability can be computed in constant time. In com-
plete analogy to various deriva}tiorjs above, we note that. tl}fz_ Map Management
approximation of the posterior is simply obtained by carving
out the submatrix corresponding to the two target variablesyr exact mechanism for building up the map is closely re-
Y = STO(ST L HS. ., ,)S., lated to common procedures in the SLAM community (Dis-
’ RS e o sanayake et al. 2001). Due to erroneous feature detections
Pang = HeSe (55) caused for example by moving objects or measurement noise,
This calculation is constant time, since it involves a matriadditional care has to be taken to filter out those interfer-
whose size is independent &f. From this Gaussian, the de-ing measurements. For any detected object that cannot be ex-
sired measurement probability in eq. (52) is now easily rglained by existing features, a new feature candidate is gen-
covered, as described in Section 2.2. In our experiment, veeated but not put into SEIF directly. Instead it is added into
found this approximation to work surprisingly well. In thea provisional list with a weight representing its probability
results reported further below using real-world data, the aef being a useful feature. In the next measurement step, the
erage relative error in estimating likelihoods is %x410*. newly arrived candidates are checked against all candidates in
Association errors due to this approximation were practicallhe waiting list; reasonable matches increase the weight of cor-
non-existent. responding candidates. Candidates that are not matched lose
New features are detected by comparing the likelihoodeight because they are more likely to be a moving object.
p(z, | 7% u', 7", n,) to a thresholdx. If the likelihood When a candidate has its weight above a certain threshold, it
is smaller tharw, we setn, = N,_; + 1 andN, = N,_; + 1; joins the SEIF network of features.
otherwise the size of the map remains unchanged, that is,We notice that data association violates the constant-time
N, = N,_;. Such an approach approach is standard in thproperty of SEIFs. This is because when calculating data asso-
context of EKFs (Dissanayake et al. 2001). ciations, multiple features have to be tested. If we can ensure
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Fig. 7. Comparison of EKFs (top column) with SEIFs (bottom column) using a simulationMWita 50 landmarks. In

both diagrams, the left panels show the final filter result, which indicates higher certainties for our approach due to the
approximations involved in maintaining a sparse information matrix. The center panels show the links: black, between the
robot and the active landmarks; gray, between landmarks. The right panels show the resulting covariance and normalized
information matrices for both approaches. Notice the similarity. Even though the information matrix in SEIFs is sparse, the
resulting correlation matrix is almost equivalent to that produced by the EKF.

that all plausible features are already connected in the SEIF
by a short path to the set of active features, it would be feasi
ble to perform data association in constant time. In this way,
the SEIF structure naturally facilitates the search of the mos
likely feature given a measurement. However, this is not thej
case when closing a cycle for the first time, in which case
the correct association might be far away in the SEIF adja
cency graph. Using incremental versions of kd-trees (Lomet
and Salzberg 1990; Procopiuc et al. 2002), it appears to b
feasible to implement data association in logarithmic time by
recursively partitioning the space of all feature locations us-
ing a tree. However, our present implementation does not rel
on such-trees, _hence 1S oyerly |neff|C|ent.. . Fig. 8. The vehicle used in our experiments is equipped with
As afinal aside, we notice that another important operation : . : . !
; o ) : ._a two-dimensional laser range finder and a differential GPS
can be done in constant time in SEIF: the merge of identical o o .
: . ; system. The vehicle’s ego-motion is measured by a linear
features previously mistreated as two or more unigue ones. . . : .
o . ; . variable differential transformer sensor for the steering, and
It is simply accomplished by adding corresponding values in .
: . S a wheel-mounted velocity encoder. In the background, the

the H, matrix andb, vector. This operation is necessary WheQ/. ; .

. X . ; ictoria Park test environment can be seen.
collapsing multiple featuresinto one upon the arrival of further

sensor evidence, a topic that is presently not implemented.

5. Experimental Results lar EKF algorithm, from which the SEIF is derived. We begin
) our exposition with experiments using a real-world bench-
5.1. Real Vehicle Results mark data set, which has commonly used to evaluate SLAM

The primary purpose of our experimental comparison was tigorithms (Guivant and Nebot 2001; Montemerlo et al. 2003;
evaluate the performance of the SEIF against that of the popNeira, Tardés, and Castellanos 2003). This data set was
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(b)

Fig. 9. The testing environment. A 350350 nt patch in Victoria Park in Sydney. (a) shows integrated path from odometry
readings and (b) shows the path as the result of SEIF.

ure 9(a), which shows the path of the vehicle. The poor quality
of the odometry information along with the presence of many
.+ spurious features make this data set particularly amenable for
o testing SLAM algorithms.
e L The path recovered by the SEIF is shown in Figure 9(b).
A | This path is quantitatively indistinguishable from the one pro-
duced by the EKF and related variants (Guivant and Nebot
2001; Montemerlo and Thrun 2003; Montemerlo et al. 2003;
Neira, Tardds, and Castellanos 2003). The average position
e T T | error, as measured through differential GPS, is smaller than
i -_: S 0.50 m, which is small compared to the overall path length of
150 PR L i i 3.5 km. Compared with EKF, SEIF runs approximately twice
O Anloen e @ o ame asn 20 a9 fast and consumes less than a quarter of the memory EKF
e merter) uses. Moreover, the residual error is approximately the same
Fig. 10. Overlay of estimated landmark positions and rob@&s that of other state-of-the-art techniques, such as those re-
path. ported in Guivant and Nebot (2001) Montemerlo and Thrun
(2003), and Montemerlo et al. (2003).
We conclude that the SEIF performs as well on a phys-

. . . . ical benchmark data set as far as its accuracy is concerned,;
collected with an instrumented outdoor vehicle driven througp

. . owever, even though the overall size of the map is small,

a parkin S)_/dney, Aqstralla: N sing SEIFs results in noticeable savings both in memory and

The vehicle and its environment are shown in Figures éxecution time.
and 9, respectively. The robot is equipped with a SICK laser
range finder and a system for measuring steering angle and
forward velocity. The laser is used to detect trees in the €8 gimulation Results
vironment, but it also picks up hundreds of spurious features
such as corners of moving cars on a nearby highway. The rdumfortunately, the real-world data set prohibits systematic
odometry, as used in our experiments, is poor, resulting irariation of key parameters, such as the size of the environ-
several hundred meters of error when used for path integr@ent and the amount of measurement noise. The results re-
tion along the vehicle’s 3.5 km path. This is illustrated in Figported in the remainder of this paper are based on simulation.

T =

104

Morthimeler)
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In our simulations, we focused particularly on the “loop clos- 1.2 T T T T J  —

I o SEIF ——
ing” problem, which is generally acknowledged to be one of = EKF —a

the hardest problemsin SLAM (Lu and Milios 1997; Gutmann £ i n ]
and Konolige 1999; Thrun 2000; Bosse et al. 2003; Hahnel § - A

et al. 2003a). When closing a loop, usually many landmark & i 1
locations are affected. This puts to the test our amortized majs | |

recovery mechanism under difficult circumstances. As noted2

above, loop closures are the only condition under which SEIFs2 .

cannot be executed in constant time per update, since the mo'= ﬁ_‘_,_r__ e

likely data association requires non-local search. oz | - -
The robot simulator is set up to always generate maps= Z__-""f

with the same average density of landmarks; as the numbe ] 2

of landmarks is increased, so is the size of the environment

Each unitinterval possesses 50 landmarks (on average). Lana-

marks are uniformly drawn in a squared region of S8 N Fig. 11. The comparison of average CPU time between SEIF

by +/50 N; however, only landmarks are retained that meeind EKF.

a minimum distance requirement to previously drawn land-

marks. By growing the size of the environment by the square

root of N, the average density of landmarks remains constant,

PLI

1 A 1 I 1 I 1
50 100 150 A0 250 300 350 400 450 500
Mumber of landmarks

regardless of the number of landmarks involved. The noise of | ' T T TEEE —a— |
robot motion and measurements are all modeled by zero mea ERF —a—
Gaussian noise. Specifically, the variance is*X0r forward ey ]
velocity, 1072 for rotational velocity, 0.002 for range detection //=

and 0.003 for bearings measurements. In each iteration of th =~ 4«06 - rd ]

simulation, the robot takes one move and one measuremenZ

atwhich it may sense a variable number of nearby landmarks= =" T
In each of our experiments, we performed a total avVater- e | i
ations, which leads roughly to the same number of sightings

of individual landmarks. The maximum sensor range is set Tl - /"" -
to 0.2, which results in approximately six landmark detec- g e ‘f‘

tions on average for one measurement step. Unless otherwis N 100 e 00 e A00 wah Ao 460 800
noted, the number of active landmarks bounded by 6. Number of landmarks

The variabled, remains unconstrained, since the constraint
on 6, effectively restricts the number of between-landmarkig. 12. The comparison of average memory usage between
links. SEIF and EKF.

Figures 11 and 12 show that SEIFs outperform EKFs in
terms of computation and memory usage. In particular, Fig-
ure 11 illustrates that in SEIFs, the computation time virtually
levels off atN = 300, regardless of the number of landmarks
involved. In EKFs, in contrast, the time increases quadrati- a.0es EKF —a— -
cally with the number of landmarkd'. Clearly, this makes

.04 5 T T T T T

EKFs prohibitively slow for larger maps. EKFs, on the other = e ;,,_-——-""

hand, outperform SEIFs for very small number of landmarks £~ 985 S/ '
(N < 200), due to the additional computational overhead in- & omef /, . . J
volved in the sparsification and the map recovery. Figure 125 o

illustrates that the memory requirement of SEIFs is strictly = il - —_:.‘-ﬁ':"" 1
superior of that of EKFs. The memory consumed by SEIFs o B |

increases linearly with the size of the map, whereas that of 0,005

EKFs grows quadratically. . y y ey .
A key open questilon pertains to the degree at which main- ':'50 100 150 200 250 300 350 400 450 500

taining sparse matrices affects the over_all error of the map Mumber of landmarks

Empirical simulation results are shown in Figure 13, which

plots the empirical error as a function of the map sizeln  Fig. 13. The comparison of root mean square distance error

absolute terms, the error in each of these maps is extremélgtween SEIF and EKF.
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Fig. 14. Comparison of EKFs and SEIFs for different degrees of sparseness, induced by different valués) afpdate
time; (b) rms error in the residual estimate.

small. Recall that fov = 200, the landmarks are spread ina This result raises the question as to what causes this error.
region of size 100 by 100, whereas both methods yield an ape dissect possible sources of error, we implemented SEIFs
proximate error of 0.015 per landmark. Both curves increasesing the exact equations for recovering the mean and covari-
approximately linearly withV. This should not surprise, as ance, as defined in eq. (6). In this way, we can separate the
the total area of the environment also increases linearly withror arising from the amortized recovery of the mean, from
N. However, SEIFs perform noticeably poorer than EKFs ithe error induced by the sparsification. The dashed curve in
this experiment. This increase in error is due to the variousgure 14(b) shows the resulting error. As this curve illus-
approximations underlying SEIFs. trates, even a highly sparse SEIF is capable of producing
In a final series of experiments, we evaluated the depeaecurate results. The error féy = 4 active landmarks is
dence of the computation time and the error on the sparsity0701+ 0.0372, which is only 33% larger than that of EKFs
of the filter. We systematically varied the threshé|dwhich (instead of 548%).
determines the maximum number of landmarks than can be
active at a time. Because between-landmark arcs can orrr%l% Consisten
develop between landmarks that are active at the same time, cy

limiting 6, also limits the number of between-landmark arcssg|Fs can be overconfident, that s, the covariance of the pos-
Figure 14 shows the basic result. The left diagram depicfgrior estimates can suggest a higher degree of confidence
the update time for EKFs and SEIFs with varying numbergan actually warranted by the sensor measurements. Such
of active landmarks, and the solid curve in the I’ight diagral’@\/erconfidence is Common|y called “inconsistency” in the
shows the corresponding map errors. For a map Witk= S| AM literature. It arises from a number of factors. First,
50 landmarks, EKFs require 135225 s per update on a the linearization frequently causes overconfidence, which af-
low-end PC. SEIFs witl#, = 10 active landmarks require fects both the EKF and the SEIF solution. Further, the trun-
21.8+ 3.50 s. The increase in error is quite small. Whereagation of direct long-range links in SEIFs—a result of the
EKF's error is 00526+ 0.0189, the SEIF error is.0584+  sparsification—can further induce overconfidence. Inconsis-
0.0215. As the number of active landmarks is reduced, thgncy does not necessarily induce error or jeopardize conver-
update becomes increasingly efficient, but at the expensed¥nce. In fact, a recent result proves convergence for a filter
an increased error. For = 6, we obtain an update time of that maintains no covariance estimate, hence is maximally
13.0+1.81, with an error of @800+ 0.0463, whichis a51% overconfident (Montemerlo et al. 2003). However, overconfi-
increase in error for a tenfold speedup. Beyond this, the err@ence can adversely affect the ability to perform data associa-
grows more rapidly. For example fér = 6 the update time tjon (as can underconfidence). For this reason, characterizing
is 9.07+0.513, but the error is now.841+0.295, whichisa  the degree of overconfidence is a common step in evaluating
548% increase over EKFs. From these results, it appears tha viability of a new SLAM algorithm. Here we are interested
five active landmarks give good results; less than that inducgsthe additional confidence arising from the sparsification,
asignificantloss—although the final selectio@ohevitably  and we compare it to the confidence levels of EKFs.
will depend on the costs of mapping error relative to the costs The confidence of SEIFs is depicted in Figure 15, which
of computation. plots the determinant of the covarianié| as a function of
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17707 - ample illustrates that a small amount of overconfidence (0.1%

60l N in our cqse) may .be. well tolerable, qssuming that the gqal of
= T the filter is to maximize the accuracy in the map. In fact, given

wo T [ T T the result in Montemerlo et al. (2003), the relation between

/ consistency and error remains unclear.

Confidence
4 4
~ ~
w B
(=] (=}

5.4. Multi-Vehicle SLAM

1720

17101 Inafinal series of experiments we applied SEIFs to arestricted
version of the multi-robot SLAM problem, commonly stud-

worl - o ied in the literature (Nettleton, Gibbens, and Durrant-Whyte
EKF 10  Active Featires 5 4 2000). In our implementation, the robots are informed of

their initial pose. This is a common assumption in multi-robot

Fig. 15. Overconfidence in SEIFs. The determinant o8LAM, necessary forthe type linearization thatis applied both
the covariance matrixzt — Hfl p|0tted for EKFs and in EKFs and SEIFs (Nettleton, Gibbens, and Durrant-Whyte
SEIFs with varying degrees of sparseness. This determin&00). Recent work that enables vehicles to build joint maps

characterizes the overall confidence in the posterior estimatéthout initial knowledge of their relative pose can be found
in Gutmann and Konolige (1999), Stewart et al. (2003), and
Thrun and Liu (2003).

Our simulation involves a team of three air vehicles. The
vehicles are not equipped with GPS; hence they accrue po-
sitioning error over time. Figure 17 shows the joint map at
Sifferent stages of the simulation. As in Nettleton, Gibbens,
and Durrant-Whyte (2000), we assume that the vehicles com-
municate updates of their information matrices and vectors,
active landmarks, we obseryE | = 1729+ 27.3, a 0.3% ena_blmgthe_m to generate_asmgle,_lomt map. As argued there,
. L I the information form provides the important advantage over
increase that also lacks statistical significance. L o :

. EKFs that communication can be delayed arbitrarily, which

To understand the effect of the overconfidence on the er- : S

e . . . .overcomes a need for tight synchronization inherent to the
ror, we modified the basic SEIF algorithm to yield less confi: . 2 .
s . KF. This characteristic arises directly from the fact that the
dentresults. Our modification was straightforward. After eac'f:i . ; X ; .
|E|format|on matrixH, and the information vectdr, in SEIFs

update, the links between the robot and the active landmarks_ | .. . . .
IS additive, whereas covariance matrices are not. In particu-

were yveak.ened, by a “soft sparsmcanop rule. More Spt?c'f\'ar, let (H', b') be the posterior of théth vehicle. Assum-
cally, imagine after theth update we are given an information. "

! . . . ing that all posteriors are expressed over the same coordinate
matrix H, and an information vectab,. Our approach first :

. . . : system and that each map uses the same numbering for all

sparsifies away all active landmark links using the math dé:

scribed above (applied to all active landmarks). Let the resuﬁndm.ark% the joint posterior mte.gratln.g. all of these local
: : o 0 maps is given by . H/, >". b'). This additive nature of the
of this operation be denote? andb’. Our approach then . . —i T Ll T .
: 0 1Ov L o information form is well known, and has in the context of
mixes(H,, b,) and(H?, b?) using a mixing ratiqo:

re SLAM previously been exploited by Nettleton, Gibbens, and
H, <«— (1-p)H +pH’ and Durrant-Whyte (2000). SEIFs offer over the work in Nettle-
(56) ton, Gibbens, and Durrant-Whyte (2000) that the messages

sent between vehicles are small, due to the sparse nature of
The resulting estimate is less confident (by definition) thatie information form. A related approach for generating small
the original one, wherg characterizes the loss of confidencemessages in multi-vehicle SLAM has recently been described
This is illustrated in Figure 16(a), which depicts the determin Nettleton, Thrun, and Durrant-Whyte (2003).
nant of the covarianci, | for different levels ofo (here with Figure 17 shows a sequence of snapshots of the multi-
0, = 6). vehicle system, using three different air vehicles. Initially, the

The interesting finding is that this reduction invehicle starts our in different areas, and the combined map (il-

confidence—in fact, the resulting estimate is “consistent’ustrated by the uncertainty ellipses) consists of three disjoint
adversely affects the RMS map error. This is illustrated iregions. During steps 62—64, the top two vehicles discover
Figure 16(b), which shows the error for different valuegof identical landmarks; as aresult, the overall uncertainty of their
The more confident the filter, the smaller the resulting errorespective map region decreases; This illustrates that the SEIF
While this approach is just one way out of many to reducimdeed maintains the correlations in the individual landmark’s
confidence by taking information out of the system, this exancertainties; albeit using a sparse information matrix instead

the algorithm, for our simulation wittv = 50 landmarks.
The larger this value, the more confident the filter. While th
determinant of EKFs is 1724 27.4, SEIFs withy, = 10
active landmarks yield a determinant of 172626.8. This
0.1% increase is not statistically significant. With = 6
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Fig. 16. Making SEIFs underconfident (consistent). Shown on the left is the determingnfafEKFs and the modified
SEIF algorithm, withd, = 6 active landmarks, but for different levels of information decay (see text). The right diagram
depicts the corresponding error.

of the covariance matrix. Similarly, in steps 85-89, the thirduch as the sequential map joining techniques described in
vehicle begins to discover identical landmarks also seen Byrdds et al. (2002) and Williams, Dissanayake, and Durrant-
another vehicle. Again, the resulting uncertainty of the elWhyte (2002) can achieve the same rate of convergence as the
tire map is reduced, as can be seen easily. The last panefiili EKF solution, but incur arO (N?) computational burden.
Figure 17 shows the final map, obtained after 500 iterations. A different line of research has relied on particle filters for
This example shows that SEIFs are well suited for multi-robefficient mapping (Doucet, de Freitas, and Gordon 2001). The
SLAM, assuming that the initial poses of the vehicles arEastSLAM algorithm (Montemerlo et al. 2002, 2003; Héhnel
known. et al. 2003b) and earlier related mapping algorithms (Murphy
2000; Thrun 2001) require time logarithmic in the number of
featuresinthe map, butthey depend linearly on a particle-filter
6. Related Work specific parameter (the number of particles). There exists now
evidence that a single particle may suffice for convergence in
SEIFs are related to a rich body of literature on SLAM andtlealized situations (Montemerlo et al. 2002), but the number
high-dimensional filtering. Recently, several researchers hawéparticles required for handling data association problems
developed hierarchical techniques that decompose maps indbustly is still not fully understood. More recently, thin junc-
collections of smaller, more manageable submaps (Leondrdn trees have been applied to the SLAM problem by Paskin
and Feder 1999; Guivant and Nebot 2001; Bailey 2002; Bos62002). This work establishes a viable alternative to the ap-
et al. 2002; Tardos et al. 2002; Williams and Dissanayak@moach proposed here, with somewhat different computational
2002). While, in principle, hierarchical techniques can solvproperties. However, at the present point this approach lacks
the SLAM problem in linear time, many of these techniquean efficient technique for making data association decisions.
still require quadratic time per update. One recent technique As noted in the introduction of this paper, the idea of rep-
updates the filter in constant time (Leonard and Feder 199@senting maps by relative information has previously been
by restricting all computation to the submap in which the@xplored by a number of authors, most notably in recent al-
robot presently operates. Using approximation techniques fgorithms by Newman (2000) and Csorba (1997) and Deans
transitioning between submaps, this work demonstrated thatd Hebert (2000); it is also related to an earlier algorithm by
consistent error bounds can be maintained with a constahts and Milios (1997) and Gutmann and Nebel (1997). The
time algorithm (which is not necessarily the case for SEIFsNewman algorithm assumes sensors that provide relative in-
However, the method does not propagate information to prisrmation between multiple landmarks, which enables it to
viously visited submaps unless the robot subsequently revisiigpass the issue of sparsification of the information matrix.
these regions. Hence, this method suffers a slower rate of cdrire work by Lu and Milios uses robot poses as the core repre-
vergence in comparison to tlig N 2) full covariance solution. sentation, hence the size of the filter grows linearly over time
Alternative methods based on decomposition into submagsyen for maps of finite size). As a result, the approach is not
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Stepr = 62

Stepr = 65 Stepr = 85

Stepr = 89 Stepr = 500

Fig. 17. Snapshots from our multi-robot SLAM simulation at different points in time. Initially, the poses of the vehicles are
known. During steps 62—64, vehicles 1 and 2 traverse the same area for the first time; as a result, the uncertainty in their local
maps shrinks. Later, in steps 85-89, vehicle 2 observes the same landmarks as vehicle 3, with a similar effect on the overall
uncertainty. After 500 steps, all landmarks are accurately localized.
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applicable on-line. However, the approach by Lu and Miliosnay easily become overconfident, a property often referred
relies on local links between adjacent poses, similar to the as “inconsistent” (Leonard and Feder 1999; Julier and
local links maintained by SEIFs between nearby landmarkghlmann 2000). The overconfidence mainly arises from the
It therefore shares many of the computational properties approximation in the sparsification step. Such overconfidence
SEIFs when applied to data sets of limited size. is not necessarily an problem for the convergence of the ap-
Just as in recent work by Nettleton, Gibbens, and Durranproach (Montemerlo et al. 2003), but it may introduce errors
Whyte (2000), our approach is based on the information forin the data association process. In practice, we did not find
of the EKF (Maybeck 1979), as noted above. However, Nethe overconfidence to affect the result in any noticeable way;
tleton and colleagues focus on the issue of communicatidrowever, it is relatively easy to construct situations in which
between multiple robots; as a result, they have not addresselkads to arbitrary errors in the data association process.
computational efficiency problems (their algorithm requires Another open question concerns the speed at which the
O(N?) time per update). Relative to this work, a central inamortized map recovery converges. Clearly, the map is needed
novation in SEIFs is the sparsification step, which results iflor a number of steps; errors in the map may therefore affect
an increased computational efficiency. A second innovationtise overall estimation result. Again, our real-world experi-
the amortized constant time recovery of the map. ments show no sign of noticeable degradation, but a small
As noted above, the information matrix and vector esteerror increase was noted in one of our simulated experiments.
mated by the SEIF defines a Gaussian Markov random field Finally, SEIF inherits a number of limitations from the
(GMRF; Weiss and Freeman 2001). As a direct consequence@mmon literature on SLAM. Among those are the use of Tay-
rich body of literature in inference in sparse GMRFs becomésr expansion for linearization, which can cause the map to di-
directly applicable to a number of problems addressed hekgrge; the static world assumption which makes the approach
such as the map recovery, the sparsification, and the marginialpplicable to modeling moving objects (Wang, Thorpe, and
ization necessary for data association (Pearl 1988; Murphghrun 2003); the inability to maintain multiple data associ-
Weiss, and Jordan 1999; Wainwright 2002). Also applicablgtion hypotheses, which makes the approach brittle in the
is the rich literature on sparse matrix transformations (Guptgresence of ambiguous features; the reliance on features, or
Karypis, and Kumar 1997). landmarks; and the requirement that the initial pose be known
in the multi-robot implementation. Virtually all of these lim-
itations have been addressed in the recent literature. For ex-
7. Discussion ample, a recent line of research has devised efficient particle
filtering techniques (Murphy 2000; Hahnel et al. 2003b; Mon-
In this paper we have proposed an efficient algorithm for tHemerlo et al. 2003) that address most of these shortcomings.
SLAM problem. Our approach is based on the well-knowithe issues addressed in this paper are somewhat orthogonal
information form of the EKF. Based on the empirical obto these limitations, and it appears feasible to combine effi-
servation that the information matrix is dominated by a smatlient particle filter sampling with SEIFs. We also note thatin a
number of entries that are found only between nearby featunesent implementation, a new lazy data association methodol-
in the map, we have developed a SEIF. This filter enforcesogy was developed that uses a SEIF-style information matrix
sparse information matrix, which can be updated in constatatrobustly generate maps with hundreds of meters in diameter
time. In the linear SLAM case with known data associatior(;Thrun et al. 2003).
all updates can be performed in constanttime; in the nonlinear The use of sparse matrices in SLAM offers a number of
case, additional state estimates are needed that are not pamgfortant insights into the design of SLAM algorithms. Our
the regular information form of the EKF. We have proposedpproach puts a new perspective on the rich literature on hier-
an amortized constant-time coordinate descent algorithm farchical mapping discussed further above. As in SEIFs, these
recovering these state estimates from the information forrtrechniques focus updates on a subset of all features, to gain
We have also proposed an efficient algorithm for data assocemputational efficiency. SEIFs, however, compose submaps
ation in SEIFs that requires logarithmic time, assuming thalynamically, whereas past work relied on the definition of
the search for nearby features is implemented by an efficiestatic submaps. We conjecture that our sparse network struc-
search tree. The approach has been implemented and cdunes capture the natural dependences in SLAM problems
pared to the EKF solution. Overall, we find that SEIFs promuch better than static submap decompositions, and in turn
duce results that differ only marginally from that of the EKFslead to more accurate results. They also avoid problems that
yet at a much improved computational speed. Given the corftequently occur at the boundary of submaps, where the es-
putational advantages of SEIFs over EKFs, we believe thétation can become unstable. However, the verification of
SEIFs should be a viable alternative to EKF solutions wheiese claims will be subject to future research. A related pa-
building high-dimensional maps. per discusses the application of constant-time techniques to
SEIFs, represented here, possess a number of critical linmformation exchange problems in multi-robot SLAM (Net-
tations that warrant future research. First and foremost, SEIffston, Thrun, and Durrant-Whyte 2002).
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Finally, we note that our work sheds some fresh light on thignitely many elements ofi,_; L, may be non-zero, namely
ongoing discussion on the relation of topological and metrithose corresponding to the robot pose and active features.
maps, atopic that has been widely investigated in the cognitifdiey are easily calculated in constant time.
mapping community (Kuipers and Byun 1988; Chown, Ka- For the information vector, we obtain from egs. (28) and
plan, and Kortenkamp 1995). Links in SEIFs capture relati60):
information, in that they relate the location of one landmark to
another (see also Csorba 1997; Deans and Hebert 2000; New-
mann 2000). This is a common characteristic of topological b, = [b_ H:+ ATIH,
map representations (Matari¢ 1990; Kuipers and Byun 1991;

Choset 1996; Shatkay and Kaelbling 1997). SEIFs also offer -
a sound method for recovering absolute locations and affil-
iated posteriors for arbitrary submaps based on these links,
of the type commonly found in metric map representations

(Smith and Cheeseman 1986; Moravec 1988). Thus, SEIKS ahove, the sparsenessiif, and of the vector, ensures
bring together aspects of both paradigms, by defining simplgat the update of the information vector is zero except for
computational operations for changing relative to absoluitries corresponding to the robot pose and the active features.
representations, and vice versa. Those can also be calculated in constant time. O

[b,_1H ™Y + ATI(H,.y — H,_,L,)
b, + A,THz—l —b,1L, + A,THz—le (61)

. Proof of Lemma 3: The update o, requires the definition
Appendix: Proofs of the auxiliary variableV, := (I + A,)". The non-trivial

i .components of this matrix can essentially be calculated in
Proof of Lemma 1. Measurement updates are realized Vidonstant time by virtue of

egs. (17) and (18), restated here for the reader’s convenience:

H = H+Cz7'CT (57)

- ] W, = (I+S,5A,S.8)*
bt b/ + (Z: -7+ C;H/)Tzilctt (58) ( * y X)

I —18.(S.IST+[STA, S I H ST

From the estimate of the robot pose and the location of the = I-S.+[STAS I DS (62)
observed feature, the predictignand all non-zero elements

of the Jacobiaf’, can be calculated in constant time, for any

of the commonly used measurement mogel€he constant- Nptice thatw, differs from the identity matrixt only at el-

time property follows now directly from the sparseness of thgments that correspond to the robot pose, as is easily seen

matrix C,, discussed already in Section 2.2. This sparseneggm the fact that the inversion in eq. (62) involves a low-
implies that only finitely many values have to be changegimensional matrix.

when transitioning fron#, to H,, and from, to b,. U The definition of®, allows us to derive a constant-time

Proof of Lemma 2: For A, = 0, eq. (28) gives us the follow- €XPression for updating the information matti
ing updating equation for the information matrix:

H = [HY14S.UST™" (59) _

B = [U+A0H 30+ 40T + 5057171
Applying the matrix inversion lemma leads to the following = [ H_1v)t+sU87T17L
form: -
. 1, T 1T e
H = Hi_1—H_ 18U ~+S; Hi_1Sx] ~Sy Hi—1 _ [(Ht/ 1)71+SXU;SI]71
=:L; ’ ’ -1 Ty —1¢T gy
= H _{—H _{ScelU "+ S, H _{Sx]7"S; H_
— H,_q1—H_1L;. (60) t—1 t—=1°x1"r X Hr=10X x -1
=:AH;
The update of the information matrik,_, L,, is a matrix that = H ;- AH,. (63)

is non-zero only for elements that correspond to the robot pose
and the active features. To see, we note that the term inside
the inversion inL, is a low-dimensional matrix which is of
the same dimension as the motion ndiseThe inflation via The matrixH, ; = W' H, ¥, is easily obtained in constant
the matricess, andST leads to a matrix that is zero except fortime and, by the same reasoning as above, the entire update
elements that correspond to the robot pose. The key insigieqjuires constant time. The information vedipis now ob-

now is that the sparseness of the maifjx, implies that only tained as follows:
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