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Abstract

We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A
threshold model that generalizes theprobit function is used as the likelihood function for ordinal
variables. Two inference techniques, based on the Laplace approximation and the expectation prop-
agation algorithm respectively, are derived for hyperparameter learning and model selection. We
compare these two Gaussian process approaches with a previous ordinal regression method based
on support vector machines on some benchmark and real-worlddata sets, including applications of
ordinal regression to collaborative filtering and gene expression analysis. Experimental results on
these data sets verify the usefulness of our approach.

Keywords: Gaussian processes, ordinal regression, approximate Bayesian inference, collaborative
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1. Introduction

Practical applications of supervised learning frequently involve situationsexhibiting an order among
the different categories, e.g. a teacher always rates his/her students by giving grades on their overall
performance. In contrast to metric regression problems, the grades areusually discrete and finite.
These grades are also different from the class labels in classification problems due to the existence
of ranking information. For example, grade labels have the orderingF < D < C < B < A. This is
a learning task of predicting variables of ordinal scale, a setting bridging between metric regression
and classification referred to asranking learningor ordinal regression.

There is some literature about ordinal regression in the domain of machine learning. Kramer
et al. (2001) investigated the use of a regression tree learner by mappingthe ordinal variables into
numeric values. However there might be no principled way of devising an appropriate mapping
function. Frank and Hall (2001) converted an ordinal regression problem into nested binary clas-
sification problems that encode the ordering of the original ranks, and then the results of standard
binary classifiers can be organized for prediction. Har-Peled et al. (2003) proposed a constraint
classification approach for ranking problems based on binary classifiers. Cohen et al. (1999) con-
sidered general ranking problems in the form of preference judgements. Herbrich et al. (2000)
applied the principle of Structural Risk Minimization (Vapnik, 1995) to ordinalregression lead-
ing to a new distribution-independent learning algorithm based on a loss function between pairs of
ranks. Shashua and Levin (2003) generalized the formulation of support vector machines to or-
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dinal regression and the numerical results they presented shows a significant improvement on the
performance compared with the on-line algorithm proposed by Crammer and Singer (2002).

In the statistics literature, most of the approaches are based on generalized linear models (Mc-
Cullagh and Nelder, 1983). The cumulative model (McCullagh, 1980) is well-known in classical
statistical approaches for ordinal regression, in which they rely on a specific distributional assump-
tion on the unobservable latent variables and a stochastic ordering of the input space. Johnson and
Albert (1999) described Bayesian inference on parametric models for ordinal data using sampling
techniques. Tutz (2003) presented a general framework for semiparametric models that extends
generalized additive models (Hastie and Tibshirani, 1990) by incorporating nonparametric parts.
The nonparametric components of the regression model are fitted by maximizingpenalized log
likelihood, and model selection is carried out using AIC.

Gaussian processes (O’Hagan, 1978; Neal, 1997) have provided apromising non-parametric
Bayesian approach to metric regression (Williams and Rasmussen, 1996) and classification prob-
lems (Williams and Barber, 1998). The important advantage of Gaussian process models (GPs) over
other non-Bayesian models is the explicit probabilistic formulation. This not only provides prob-
abilistic predictions but also gives the ability to infer model parameters such asthose that control
the kernel shape and the noise level. The GPs are also different from the semiparametric approach
of Tutz (2003) in several ways. First, the additive models (Fahrmeir and Tutz, 2001) are defined by
functions in each input dimension, whereas the GPs can have more general non-additive covariance
functions; second, the kernel trick allows to use infinite basis function expansions; third, the GPs
perform Bayesian inference in the space of the latent functions.

In this paper, we present a probabilistic kernel approach to ordinal regression in Gaussian pro-
cesses. We impose a Gaussian process prior distribution on the latent functions, and employ an
appropriate likelihood function for ordinal variables which can be regarded as a generalization of
the probit function. Two Bayesian inference techniques are applied to implement modeladapta-
tion by using the Laplace approximation (MacKay, 1992) and the expectationpropagation (Minka,
2001) respectively. Comparisons of the generalization performance against the support vector ap-
proach (Shashua and Levin, 2003) on some benchmark and real-worlddata sets, such as movie
ranking and gene expression analysis, verify the usefulness of this approach.

The paper is organized as follows: in Section 2, we describe the Bayesianframework in Gaus-
sian processes for ordinal regression; in Section 3, we discuss the Bayesian techniques for hyperpa-
rameter inference; in Section 4, we present the predictive distribution forprobabilistic prediction; in
Section 5, we give some extensive discussion on these techniques; in Section 6, we report the results
of numerical experiments on some benchmark and real-world data sets; we conclude this paper in
Section 7.

2. Bayesian Framework

Consider a data set composed ofn samples. Each of the samples is a pair of input vectorxi ∈ R d

and the corresponding targetyi ∈ Y whereY is a finite set ofr ordered categories. Without loss
of generality, these categories are denoted as consecutive integersY = {1,2, . . . , r} that keep the
known ordering information. The main idea is to assume an unobservable latent function f (xi) ∈ R

associated withxi in a Gaussian process, and the ordinal variableyi dependent on the latent function
f (xi) by modelling the ranks as intervals on the real line. A Bayesian framework is described with
more details in the following.
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2.1 Gaussian Process Prior

The latent functions{ f (xi)} are usually assumed as the realizations of random variables indexed
by their input vectors in a zero-mean Gaussian process. The Gaussian process can then be fully
specified by giving the covariance matrix for any finite set of zero-mean random variables{ f (xi)}.
The covariance between the functions corresponding to the inputsxi andx j can be defined by Mercer
kernel functions (Wahba, 1990; Schölkopf and Smola, 2001), e.g. Gaussian kernel which is defined
as

Cov[ f (xi), f (x j)] = K (xi ,x j) = exp

(

−κ
2

d

∑
ς=1

(xς
i −xς

j)
2

)

(1)

whereκ > 0 andxς
i denotes theς-th element ofxi .1 Thus, the prior probability of these latent

functions{ f (xi)} is a multivariate Gaussian

P ( f ) =
1

Z f
exp

(

−1
2

f TΣ−1 f

)

(2)

where f = [ f (x1), f (x2), . . . , f (xn)]
T , Z f = (2π)

n
2 |Σ|

1
2 , andΣ is then×n covariance matrix whose

i j -th element is defined as in (1).

2.2 Likelihood for Ordinal Variables

The likelihood is the joint probability of observing the ordinal variables given the latent functions,
denoted asP (D| f ) whereD denotes the target set{yi}. Generally, the likelihood can be evaluated
as a product of the likelihood function on individual observation:

P (D| f ) =
n

∏
i=1

P (yi | f (xi)) (3)

where the likelihood functionP (yi | f (xi)) could be intuitively defined as

Pideal(yi | f (xi)) =

{

1 if byi−1 < f (xi) ≤ byi ,
0 otherwise

(4)

whereb0 = −∞ andbr = +∞ are defined subsidiarily,b1 ∈ R and the other threshold variables can
be further defined asb j = b1 +∑ j

ι=2 ∆ι with positive padding variables∆ι andι = 2, . . . , r −1. The
role ofb1 < b2 < .. . < br−1 is to divide the real line intor contiguous intervals; these intervals map
the real function valuef (xi) into the discrete variableyi while enforcing the ordinal constraints.
The likelihood function (4) is used for ideally noise-free cases. In the presence of noise from
inputs or targets, we may explicitly assume that the latent functions are contaminated by a Gaussian
noise with zero mean and unknown varianceσ2.2 N (δ;µ,σ2) is used to denote a Gaussian random
variableδ with meanµ and varianceσ2 henceforth. Then the ordinal likelihood function becomes

P (yi | f (xi)) =
Z

Pideal(yi | f (xi)+δi)N (δi ;0,σ2)dδi = Φ
(

zi
1

)

−Φ
(

zi
2

)

(5)

1. Other Mercer kernel functions, such as polynomial kernels and spline kernels etc., can also be used in the covariance
function.

2. In principle, any distribution rather than a Gaussian can be assumed for the noise on the latent functions.
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Figure 1: The graph of the likelihood function for an ordinal regressionproblem withr = 3, along
with the first and second order derivatives of the loss function (negative logarithm of the
likelihood function), where the noise varianceσ2 = 1, and the two thresholds areb1 =−3
andb2 = +3.

wherezi
1 =

byi− f (xi)

σ , zi
2 =

byi−1− f (xi)

σ , andΦ(z) =
R z
−∞ N (ς;0,1)dς. Note that binary classification

is a special case of ordinal regression whenr = 2, and in this case the likelihood function (5) be-
comes theprobit function. The quantity− lnP (yi | f (xi)) is usually referred to as the loss function
`(yi , f (xi)). The derivatives of the loss function with respect tof (xi) are needed in some approx-
imate Bayesian inference methods. The first order derivative of the lossfunction can be written
as

∂`(yi , f (xi))

∂ f (xi)
=

1
σ

N (zi
1;0,1)−N (zi

2;0,1)

Φ(zi
1)−Φ(zi

2)
(6)

and the second order derivative can be given as

∂2`(yi , f (xi))

∂2 f (xi)
=

1
σ2

(

N (zi
1;0,1)−N (zi

2;0,1)

Φ(zi
1)−Φ(zi

2)

)2

+
1

σ2

zi
1N (zi

1;0,1)−zi
2N (zi

2;0,1)

Φ(zi
1)−Φ(zi

2)
. (7)

We present graphs of the ordinal likelihood function (5) and the derivatives of the loss function
in Figure 1 as an illustration. Note that the first order derivative (6) is a monotonically increasing
function of f (xi), and the second order derivative (7) is always a positive value between 0 and 1

σ2 .
Given the facts thatPideal(yi | f (xi) + δi) is log-concave in( f (xi),δi) andN (δi ;0,σ2) is also log-
concave, as pointed out by Pratt (1981), the convexity of the loss function follows, because the
integral of a log-concave function with respect to some of its arguments is a log-concave function
of its remaining arguments (Brascamp and Lieb, 1976, Cor. 3.5).

2.3 Posterior Probability

Based on Bayes’ theorem, the posterior probability can then be written as

P ( f |D) =
1

P (D)

n

∏
i=1

P (yi | f (xi))P ( f ) (8)

where the prior probabilityP ( f ) is defined as in (2), the likelihood functionP (yi | f (xi)) is defined
as in (5), andP (D) =

R

P (D| f )P ( f )d f .
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The Bayesian framework we described above is conditional on the model parameters including
the kernel parametersκ in the covariance function (1) that control the kernel shape, the threshold
parameters{b1,∆2, . . . ,∆r−1} and the noise levelσ in the likelihood function (5). All these param-
eters can be collected intoθ, which is the hyperparameter vector. The normalization factorP (D)
in (8), more exactlyP (D|θ), is known as the evidence forθ, a yardstick for model selection. In the
next section, we discuss techniques for hyperparameter learning.

3. Model Adaptation

In a full Bayesian treatment, the hyperparametersθ must be integrated over theθ-space. Monte
Carlo methods (Neal, 1997) can be adopted here to approximate the integraleffectively. However
these might be prohibitively expensive to use in practice. Alternatively, weconsider model se-
lection by determining an optimal setting forθ. The optimal values of hyperparametersθ can be
simply inferred by maximizing the posterior probabilityP (θ|D), whereP (θ|D) ∝ P (D|θ)P (θ).
The prior distribution on the hyperparametersP (θ) can be specified by domain knowledge, or al-
ternatively some vague uninformative distribution. The evidence is given by a high dimensional
integral,P (D|θ) =

R

P (D| f )P ( f )d f . A popular idea for computing the evidence is to approxi-
mate the posterior distributionP ( f |D) as a Gaussian, and then the evidence can be calculated by an
explicit formula (MacKay, 1992; Csató et al., 2000; Minka, 2001). In this section, we describe two
Bayesian techniques for model adaptation by using the Laplace approximation and the expectation
propagation respectively.

3.1 MAP Approach with Laplace Approximation

The evidence can be calculated analytically after applying the Laplace approximation at the max-
imum a posteriori (MAP) estimate, and gradient-based optimization methods can then be used to
infer the optimal hyperparameters by maximizing the evidence. The MAP estimate on the latent
functions is referred tof MAP = argmaxf P ( f |D), which is equivalent to the minimizer of negative
logarithm ofP ( f |D), i.e.

S( f ) =
n

∑
i=1

`(yi , f (xi))+
1
2

f TΣ−1 f (9)

where`(yi , f (xi)) = − lnP (yi | f (xi)) is known as the loss function. Note that∂2S( f )
∂ f ∂ f T = Σ−1 +Λ is a

positive definite matrix, whereΛ is a diagonal matrix whoseii -th entry is∂2`(yi , f (xi))
∂2 f (xi)

given as in (7).

Thus, this is a convex programming problem with a unique solution.3 The Laplace approximation
of S( f ) refers to carrying out the Taylor expansion at the MAP point and retainingthe terms up
to the second order (MacKay, 1992). Since the first order derivative with respect tof vanishes at
f MAP, S( f ) can also be written as

S( f ) ≈ S( f MAP)+
1
2
( f − f MAP)T (Σ−1 +ΛMAP

)

( f − f MAP) (10)

whereΛMAP denotes the matrixΛ at the MAP estimate. This is equivalent to approximating the pos-
terior distributionP ( f |D) as a Gaussian distribution centered onf MAP with the covariance matrix

3. The Newton-Raphson formula can be used to find the solution for simplecases.
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(Σ−1 + ΛMAP)−1, i.e. P ( f |D) ≈ N ( f ; f MAP,(Σ−1 + ΛMAP)−1). Using the Laplace approximation
(10) andZ f defined as in (2), the evidence can be computed analytically as follows

P (D|θ) =
1

Z f

Z

exp(−S( f ))d f ≈ exp(−S( f MAP))|I +ΣΛMAP|−
1
2 (11)

whereI is ann×n identity matrix. The gradients of the logarithm of the evidence (11) with respect
to the hyperparametersθ can be derived analytically. Then gradient-based optimization methods
can be employed to search for the maximizer of the evidence. Refer to Appendix A for the detailed
gradient formulae and the outline of our algorithm for model adaptation.

3.2 Expectation Propagation with Variational Methods

The expectation propagation algorithm (EP) is an approximate Bayesian inference method (Minka,
2001), which can be regarded as an extension of assumed-density-filter (ADF). The EP algorithm
has been applied in Gaussian process classification along with variational methods for model selec-
tion (Seeger, 2002; Kim and Ghahramani, 2003). In the setting of Gaussian processes, EP attempts
to approximateP ( f |D) as a product distribution in the form ofQ( f ) = ∏n

i=1 t̃i( f (xi))P ( f ) where
t̃i( f (xi)) = si exp(−1

2 pi( f (xi)−mi)
2). The parameters{si ,mi , pi} in {t̃i} are successively optimized

by minimizing the following Kullback-Leibler divergence,

t̃new
i = argmin

t̃i
KL
(

Q( f )

t̃old
i

P (yi | f (xi))

∥

∥

∥

∥

Q( f )

t̃old
i

t̃i

)

. (12)

SinceQ( f ) is in the exponential family, this minimization can be simply solved by moment match-
ing up to the second order. A detailed updating scheme can be found in Appendix B. At the
equilibrium of Q( f ), we obtain an approximate posterior distribution asP ( f |D) ≈ N ( f ;(Σ−1 +
Π)−1Πm,(Σ−1+Π)−1) whereΠ is a diagonal matrix whoseii -th entry ispi andm= [m1,m2, . . . ,mn]

T .
Variational methods can be used to optimize the hyperparametersθ by maximizing the lower

bound on the logarithm of the evidence. By applying Jensen’s inequality, we have

logP (D|θ) = log
R P (D| f )P ( f )

Q( f ) Q( f )d f ≥ R

Q( f ) log P (D| f )P ( f )
Q( f ) d f

=
R

Q( f ) logP (D| f )d f +
R

Q( f ) logP ( f )d f − R

Q( f ) logQ( f )d f = F (θ).
(13)

The lower boundF (θ) can be written as an explicit expression at the equilibrium ofQ( f ), and then
the gradients with respect toθ can be derived by neglecting the possible dependency ofQ( f ) on θ.
The detailed formulation can be found in Appendix C.

4. Prediction

We have described two techniques, the MAP approach and the EP approach, to infer the optimal
model. At the optimal hyperparameters we inferred, denoted asθ∗, let us take a test casex for
which the targetyx is unknown. The latent variablef (x) and the column vectorf containing then
zero-mean random variables{ f (xi)}n

i=1 have the prior joint multivariate Gaussian distribution, i.e.

[

f
f (x)

]

∼ N

[(

0
0

)

,

(

Σ k
kT K (x,x)

)]
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wherek = [K (x,x1),K (x,x2), . . . ,K (x,xn)]
T . The conditional distribution off (x) given f is a

Gaussian too, denoted asP ( f (x)| f ,θ∗) with mean f TΣ−1k and varianceK (x,x)− kTΣ−1k. The
predictive distribution ofP ( f (x)|D,θ∗) can be computed as an integral overf -space, which can be
written as

P ( f (x)|D,θ∗) =
Z

P ( f (x)| f ,θ∗)P ( f |D,θ∗)d f . (14)

The posterior distributionP ( f |D,θ∗) can be approximated as a Gaussian by the MAP approach or
the EP approach (refer to Section 3). The predictive distribution (14) can then be simplified as a
GaussianN ( f (x);µx,σ2

x) with meanµx and varianceσ2
x. In the MAP approach, we reach

µx = kTΣ−1 f MAP and σ2
x = K (x,x)−kT(Σ+Λ−1

MAP)−1k. (15)

While in the EP approach, we get

µx = kT(Σ+Π−1)−1m and σ2
x = K (x,x)−kT(Σ+Π−1)−1k. (16)

The predictive distribution over ordinal targetsyx is

P (yx|x,D,θ∗) =
R

P (yx| f (x),θ∗)P ( f (x)|D,θ∗)d f(x)

= Φ
(

byx−µx√
σ2+σ2

x

)

−Φ
(

byx−1−µx√
σ2+σ2

x

)

.

The predictive ordinal scale can be decided as argmax
i

P (yx = i|x,D,θ∗).

5. Discussion

In the MAP approach, the mean of the predictive distribution depends on theMAP estimatef MAP,
which is unique and can be found by solving a convex programming problem.Evidence maximiza-
tion is useful if the Laplace approximation around the mode pointf MAP gives a good summary of
the posterior distributionP ( f |D). While in the approach of expectation propagation, the mean of
the predictive distribution depends on the approximate mean of the posterior distribution. When
the true shape ofP ( f |D) is far from a Gaussian centered on the mode, the EP approach can have
a great advantage over the Laplace approximation. However the EP algorithm cannot guarantee
convergence, though it usually works well in practice.

The gradient-based optimization method usually requests evidence evaluationat tens of different
settings ofθ before the minimum is found. For eachθ, the inversion of the matrixΣ is required that
costs time atO(n3), wheren is the number of training samples. Recently, Csató and Opper (2002)
proposed a fast training algorithm for Gaussian processes in which the set of basis vectors are
determined on-line for sparse representation. Lawrence et al. (2003)proposed a greedy selection
with criteria based on information-theoretic principles for sparse Gaussianprocesses (Seeger, 2003).
Tresp (2000) proposed the Bayesian committee machines to divide and conquer large data sets,
while using infinite mixtures of Gaussian Processes (Rasmussen and Ghahramani, 2002) is another
promising technique. These algorithms can be applied directly in the settings of ordinal regression
for speedup.

Feature selection is an essential part in modelling. In Gaussian processes, the automatic rele-
vance determination (ARD) method proposed by MacKay (1994) and Neal(1996) can be embedded
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into the covariance function (1) as follows:

Cov[ f (xi), f (x j)] = K (xi ,x j) = exp

(

−1
2

d

∑
ς=1

κς(x
ς
i −xς

j)
2

)

(17)

whereκς > 0 is the ARD parameter.4 The gradients with respect to the variables{lnκς} can also
be derived analytically for model adaptation. The optimal value of the ARD parameterκς indicates
the relevance of theς-th input feature to the target. The form of feature selection we use here
results in a type of feature weighting. Furthermore, the linear combination of heterogeneous kernels
with positive coefficients is still a valid covariance function. Lanckriet et al. (2004) suggest to
learn the kernel matrix with semidefinite programming. In the Bayesian framework, these positive
coefficients for kernels could be treated as hyperparameters, and optimized using the evidence as a
criterion for optimization.

Note that binary classification is a special case of ordinal regression withr = 2, and the like-
lihood function (5) becomes theprobit function whenr = 2. Both of theprobit function and the
logistic function can be used as the likelihood function in binary classification,while they have
different origins. Due to the dichotomous nature in the classes of multi-classification, discriminant
functions are constructed for each class and then compete again others via thesoftmaxfunction to
determine the likelihood. The logistic function, as a special case of thesoftmaxfunction, comes
from general classification problems.

In metric regression, warped Gaussian processes (Snelson et al., 2004) assume that there is
a nonlinear, monotonic, and continuous warping function relating the observed targets and some
latent variables in a Gaussian process. The warping function, which is learned from the data, can be
thought of as a pre-processing transformation applied before modelling with a Gaussian process. A
different (and very common) approach to dealing with this preprocessingis to discretizethe target
values intor different bins. These discrete values are clearly ordinal, and applying ordinal regression
to these discrete values seems the natural choice. Interestingly, as the number of discretization bins
r is increased, the ordinal regression model becomes very similar to the warped Gaussian processes
model. In particular, by varying the thresholds in our ordinal regressionmodel, it can approximate
any continuous warping function.

6. Numerical Experiments

We start this section with a simple synthetic data set to visualize the behavior of these algorithms,
and report the experimental results on sixteen benchmark data sets.5 Then we perform experiments
on a collaborative filtering problem using the “EachMovie” data, and on Gleason score prediction
from gene microarray data related to prostate cancer. Shashua and Levin (2003) generalized the sup-
port vector formulation by finding multiple thresholds to define parallel discriminant hyperplanes
for ordinal scales, and reported that the performance of the supportvector approach is better than
that of the on-line algorithm (Crammer and Singer, 2002). The problem sizein the large-margin
ranking algorithm of Herbrich et al. (2000) is a quadratic function of the training data size making
the algorithmic complexityO(n4)–O(n6). This makes the experiments on large data sets computa-
tionally difficult. Thus, we decide to limit our comparisons to the support vectorapproach (SVM)

4. These ARD parameters control the covariance length-scale of the Gaussian process along each input dimension.
5. These data sets are publicly available at http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html.
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of Shashua and Levin (2003) and the two versions of our approach, the MAP approach with Laplace
approximation (MAP) and the EP algorithm with variational methods (EP). In our implementation,6

we used the routine L-BFGS-B (Byrd et al., 1995) as the gradient-basedoptimization package, and
started from the initial values of hyperparameters to infer the optimal values inthe criterion of the
approximate evidence (11) for MAP or the variational lower bound (13) for EP respectively.7 The
improved SMO algorithm (Keerthi et al., 2001) was adapted to implement the SVMapproach (refer
to Chu and Keerthi (2005) for detailed description and extensive discussion),8 and 5-fold cross vali-
dation was used to determine the optimal values of model parameters (the kernel parameterκ and the
regularization factorC) involved in the problem formulations. The initial search was done on a 7×7
coarse grid linearly spaced in the region{(log10C, log10κ)|−3≤ log10C ≤ 3,−3≤ log10κ ≤ 3},
followed by a fine search on a 9× 9 uniform grid linearly spaced by 0.2 in the(log10C, log10κ)
space. We have utilized two evaluation metrics which quantify the accuracy ofpredictive ordinal
scales{ŷ1, . . . , ŷt} with respect to true targets{y1, . . . ,yt}:

• Mean absolute erroris the average deviation of the prediction from the true target, i.e.
1
t ∑t

i=1 |ŷi −yi |, in which we treat the ordinal scales as consecutive integers;

• Mean zero-one errorgives an error of 1 to every incorrect prediction that is the fraction of
incorrect predictions.

6.1 Artificial Data

Figure 2 presents the behavior of the three algorithms using the Gaussian kernel (1) on a synthetic
2D data with three ordinal scales. In the support vector approach, the optimal thresholds were
determined by the SMO algorithm and 5-fold cross validation was used to decide the optimal values
of the kernel parameter and the regularization factor. As for the Gaussian process algorithms, model
adaptation (see Section 3) was used to determine the optimal values of the kernel parameter, the
noise level and the thresholds automatically. The figure shows that all the algorithms are working
reasonably well on this task.

6.2 Benchmark Data

We collected nine benchmark data sets (Set I in Table 1) that were used formetric regression prob-
lems. The target values were discretized into ordinal quantities using equal-length binning. These
bins divide the range of target values into a given number of intervals thatare of same length. The
resulting rank values are ordered, representing these intervals of the original metric quantities. For
each data set, we generated two versions by discretizing the target valuesinto five and ten intervals
respectively. We randomly partitioned each data set into training/test splits asspecified in Table 1.
The partition was repeated 20 times independently. The Gaussian kernel (1) was used in these three
algorithms. The test results are recorded in Tables 2 and 3. The performance of the MAP and EP
approaches are closely matching. Our Gaussian process algorithms oftenyield better results than

6. The two versions of our proposed approach were implemented in ANSI C, and the source code is accessible at
http://www.gatsby.ucl.ac.uk/∼chuwei/code/gpor.tar.

7. In numerical experiments, the initial values of the hyperparameters were usually chosen asσ2 = 1, κ = 1/d for
Gaussian kernel, the thresholdb1 = −1 and∆ι = 2/r. We suggest to try several starting points in practice, and then
choose the best model by the objective functional.

8. The source code in ANSI C is available at http://www.gatsby.ucl.ac.uk/∼chuwei/code/svorim.tar.
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Figure 2: The performance of the three algorithms on a synthetic three-rank ordinal regression
problem. The discriminant function values of the SVM approach, and the predictive
mean values of the two Gaussian process approaches are presented ascontour graphs in-
dexed by the two thresholds. The upper graphs are for the case of lower noise level, while
the lower graphs are for the case of higher noise level. The training samples we used are
presented in these graphs. The dots denote the training samples of rank 1,the crosses
denote the training samples of rank 2 and the circles denote the training samplesof rank
3.

the support vector approach on the average value, especially when thenumber of training samples
is small.

In the next experiment, we selected seven very large metric regression data sets (Set II in Table
1). The input vectors were normalized to zero mean and unit variance coordinate-wise. The target
values of these data sets were discretized into 10 ordinal quantities using equal-frequency binning.
For each data set, a small subset was randomly selected for training and then tested on the remaining
samples, as specified in Table 1. The partition was repeated 100 times independently. To show the
advantage of explicitly modelling the ordinal nature of the targets, we also employed the standard
Gaussian process algorithm (Williams and Rasmussen, 1996) for metric regression (GPR)9 to tackle
these ordinal regression tasks, where the ordinal targets were naively treated as continuous values
and the predictions for test cases were rounded to the nearest ordinalscale. The Gaussian kernel
(1) was used in the four algorithms. From the test results in Table 4, the ordinal regression algo-

9. In the GPR, the type-II maximum likelihood was used for model selection.
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Data Sets Attributes(Numeric,Nominal) Training Instances Instancesfor Test
Diabetes 2(2,0) 30 13
Pyrimidines 27(27,0) 50 24
Triazines 60(60,0) 100 86
Wisconsin Breast Cancer 32(32,0) 130 64

Set I Machine CPU 6(6,0) 150 59
Auto MPG 7(4,3) 200 192
Boston Housing 13(12,1) 300 206
Stocks Domain 9(9,0) 600 350
Abalone 8(7,1) 1000 3177
Bank Domains(1) 8(8,0) 50 8142
Bank Domains(2) 32(32,0) 75 8117
Computer Activity(1) 12(12,0) 100 8092

Set II Computer Activity(2) 21(21,0) 125 8067
California Housing 8(8,0) 150 15490
Census Domains(1) 8(8,0) 175 16609
Census Domains(2) 16(16,0) 200 16584

Table 1: Data sets and their characteristics. “Attributes” state the number of numerical and nominal
attributes. “Training Instances” and “Instances for Test” specify the size of training/test
partition. The partitions we generated and the test results on individual partitions can be
accessed at http://www.gatsby.ucl.ac.uk/∼chuwei/ordinalregression.html.

Mean zero-one error Mean absolute error
Data SVM MAP EP SVM MAP EP
Diabetes 57.31±12.09% 54.23±13.78% 54.23±13.78% 0.7462±0.1414 0.6615±0.1376 0.6654±0.1373
Pyrimidines 41.46±8.49% 39.79±7.21% 36.46±6.47% 0.4500±0.1136 0.4271±0.0906 0.3917±0.0745
Triazines 54.19±1.48% 52.91±2.15% 52.62±2.66% 0.6977±0.0259 0.6872±0.0229 0.6878±0.0295
Wisconsin ?70.78±3.73% 65.00±4.71% 65.16±4.65% 1.0031±0.0727 1.0102±0.0937 1.0141±0.0932
Machine 17.37±3.56% 16.53±3.56% 16.78±3.88% 0.1915±0.0423 0.1847±0.0404 0.1856±0.0424
Auto MPG ?25.73±2.24% 23.78±1.85% 23.75±1.74% 0.2596±0.0230 0.2411±0.0189 0.2411±0.0186
Boston 25.56±1.98% 24.88±2.02% 24.49±1.85% 0.2672±0.0190 0.2604±0.0206 0.2585±0.0200
Stocks 10.81±1.70% 11.99±2.34% 12.00±2.06% 0.1081±0.0170 0.1199±0.0234 0.1200±0.0206
Abalone 21.58±0.32% 21.50±0.22% 21.56±0.36% 0.2293±0.0038 0.2322±0.0025 ?0.2337±0.0072

Table 2: Test results of the three algorithms using a Gaussian kernel. The targets of these bench-
mark data sets were discretized by 5 equal-length bins. The results are the averages over
20 trials, along with the standard deviation. We use the bold face to indicate the cases in
which the average value is the lowest in the results of the three algorithms. Thesymbols
? are used to indicate the cases in which the indicated entry is significantly worsethan the
winning entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to decide
statistical significance.

rithms are clearly superior to the naive approach of applying standard metric regression. We also
observed that the performance of Gaussian process algorithms are significantly better than that of
the support vector approach on six of the seven data sets. This verifiesour judgement in the previous
experiment that our Gaussian process algorithms yield better performancethan the support vector
approach on small data sets. Although the EP approach often yields better results of mean zero-one
error than the MAP approach on these tasks, we have not detected any statistically significant dif-
ference on their performance. In Table 4 we also report their negativelogarithm of the likelihood in
prediction (NLL). The performance of the MAP and EP approaches areclosely matching too with
no statistically significant difference.
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Mean zero-one error Mean absolute error
Data SVM MAP EP SVM MAP EP
Diabetes ?90.38±7.00% 83.46±5.73% 83.08±5.91% 2.4577±0.4369 2.1385±0.3317 2.1423±0.3314
Pyrimidines 59.37±7.63% 55.42±8.01% 54.38±7.70% 0.9187±0.1895 0.8771±0.1749 0.8292±0.1338
Triazines ?67.91±3.63% 63.72±4.34% 64.01±3.78% 1.2308±0.0874 1.1994±0.0671 1.2012±0.0680
Wisconsin ?85.86±3.78% 78.52±3.58% 78.52±3.51% 2.1250±0.1500 2.1391±0.1797 2.1437±0.1790
Machine 32.63±3.84% 33.81±3.91% 33.73±3.64% 0.4398±0.0688 0.4746±0.0727 0.4686±0.0763
Auto MPG 44.01±2.30% 43.96±2.81% 43.88±2.60% 0.5081±0.0263 0.4990±0.0352 0.4979±0.0340
Boston 42.06±2.49% 41.53±2.77% 41.26±2.86% 0.4971±0.0305 0.4920±0.0330 0.4896±0.0346
Stocks 17.74±2.15% ?19.90±1.72% ?19.44±1.91% 0.1804±0.0213 ?0.2006±0.0166 ?0.1960±0.0184
Abalone 42.84±0.86% 42.60±0.91% 42.27±0.46% 0.5160±0.0087 0.5140±0.0075 0.5113±0.0053

Table 3: Test results of the three algorithms using a Gaussian kernel. The targets of these bench-
mark data sets were discretized by 10 equal-length bins. The results are theaverages over
20 trials, along with the standard deviation. We use the bold face to indicate the cases in
which the average value is the lowest in the results of the three algorithms. Thesymbols
? are used to indicate the cases in which the indicated entry is significantly worsethan the
winning entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to decide
statistical significance.

Mean zero-one error NLL
Data GPR SVM MAP EP MAP EP
Bank(1) ?59.43± 2.80 % 49.07± 2.69 % 48.65± 1.93 % 48.35± 1.91 % 1.14± 0.07 1.14± 0.07
Bank(2) ?86.37± 1.49 % ?82.26± 2.06 % 80.96± 1.51 % 80.89± 1.52 % 2.20± 0.09 2.20± 0.09
CompAct(1) ?65.52± 2.31 % ?59.87± 2.25 % 58.52± 1.73 % 58.51± 1.53 % 1.65± 0.16 1.64± 0.14
CompAct(2) ?59.30± 2.27 % ?54.79± 2.10 % 53.80± 1.84 % 53.92± 1.68 % 1.49± 0.11 1.48± 0.09
California ?76.13± 1.27 % ?70.63± 1.40 % 69.60± 1.12 % 69.58± 1.11 % 1.89± 0.08 1.89± 0.09
Census(1) ?78.06± 0.81 % ?74.69± 0.94 % 73.71± 0.77 % 73.71± 0.77 % 2.04± 0.08 2.05± 0.08
Census(2) ?78.02± 0.85 % ?76.01± 1.03 % 74.53± 0.81 % 74.48± 0.84 % 2.03± 0.06 2.03± 0.07

Table 4: Test results of the four algorithms using a Gaussian kernel. The targets of these bench-
mark data sets were discretized by 10 equal-frequency bins. The resultsare the average
over 100 trials, along with the standard deviation. “GPR” denotes the standard algorithm
of Gaussian process metric regression that treats the ordinal scales as continuous values.
“NLL” denotes the negative logarithm of the likelihood in prediction. We use the bold face
to indicate the cases in which the average value is the lowest mean zero-one error of the
four algorithms. The symbols? are used to indicate the cases in which the indicated entry
is significantly worse than the winning entry; A p-value threshold of 0.01 in Wilcoxon
rank sum test was used to decide statistical significance.

For these data sets, the overall training time of MAP and EP approaches wassubstantially less
than that of the SVM approach. This is because the MAP and EP approaches can tune the model
parameters by gradient descent that usually required evidence evaluations at tens of different settings
of θ, whereas k-fold cross validation for the SVM approach required evaluations at 130 different
nodes ofθ on the grid for every fold. For larger data sets, the SVM approach may stillhave an
advantage on training time due to the sparseness property in its computation.

1030



GAUSSIAN PROCESSES FORORDINAL REGRESSION

6.3 Collaborative Filtering

Collaborative filtering exploits correlations between ratings across a population of users. The goal
is to predict a person’s rating on new items given the person’s past ratings on similar items and the
ratings of other people on all the items (including the new item). The ratings are ordered, making
collaborative filtering an ordinal regression problem. We carried out ordinal regression on a subset
of the EachMovie data (Compaq, 2001).10 The rates given by the user with ID number “52647”
on 449 movies were used as the targets, in which the numbers of zero-to-five star are 40, 20, 57,
113, 145 and 74 respectively. We selected 1500 users who contributedthe most ratings on these
449 movies as the input features. The ratings given by the 1500 users oneach movie were used as
the input vector accordingly. In the 449×1500 input matrix, about 40% elements were observed.
We randomly selected a subset with size{50,100, . . . ,300} of the 449 movies for training, and
then tested on the remaining movies. At each size, the random selection was carried out 20 times
independently.

Pearson correlation coefficient is the most popular correlation measure (Basilico and Hofmann,
2004), which corresponds to a dot product between normalized rating vectors. For instance, if
applied to the movies, we can define the so-calledz-scores as

z(v,u) =
r(v,u)−µ(v)

σ(v)

whereu indexes users,v indexes movies, andr(v,u) is the rating on the moviev given by the user
u. µ(v) andσ(v) are the movie-specific mean and standard deviation respectively. This correlation
coefficient, defined as

K (v,v′) = ∑
u

z(v,u)z(v′,u)

where∑u denotes summing over all the users, was used as the covariance/kernel function in our
experiments for the three algorithms. As not all ratings are observed in the input vectors, we con-
sider twoad hocstrategies to deal with missing values: mean imputation and weighted low-rank
approximation. In the first case, unobserved values are identified with themean value, that means
their correspondingz-score is zero. In the second case, we applied the EM procedure described
by Srebro and Jaakkola (2003) to fill in the missing data with the estimate. In the input matrix,
observed elements were weighted by one and missing data were given weight zero. The low rank
was fixed at 2. In Figure 3, we present the test results of the two cases at different training data
size. Using mean imputation, SVM produced a bit more accurate results than Gaussian processes
on mean absolute error. In the cases with low rank approximation as preprocessing, the performance
of the three algorithms are highly competitive, and more interestingly, we observed about 0.08 im-
provement on mean absolute error for all the three algorithms. A serious treatment on the missing
data could be an interesting research topic for future work.

6.4 Gene Expression Analysis

Singh et al. (2002) carried out microarray expression analysis on 12600 genes to identify genes
that might anticipate the clinical behavior of prostate cancer. Fifty-two samples of prostate tumor
were investigated. For each sample, the Gleason score ranging from 6 to 10, was given by the

10. The Compaq System Research Center ran the EachMovie service for 18 months. 72916 users entered a total of
2811983 numeric ratings on 1628 movies, i.e. about 2.4% are rated by zero-to-five star.
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Figure 3: The test results of the three algorithms on the subset of EachMovie data over 20 trials.
The grouped boxes represent the results of SVM (left), MAP (middle) and EP (right)
respectively at different training data size. The notched-boxes havelines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending from each
end of the box to the most extreme data value within 1.5·IQR(Interquartile Range) of the
box. Outliers are data with values beyond the ends of the whiskers, which are displayed by
dots. The higher graphs are for the results of mean absolute error and thelower graphs are
for mean zero-one error. The cases of mean imputation are presented in the left graphs,
and the cases with weighted low-rank approximation as preprocessing arepresented in
the right graphs.
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Figure 4: The test results of the three algorithms using a linear kernel on theprostate cancer data of
selected genes. The horizonal axes are indexed on log2 scale. The rungs in these boxes
indicate the mean values, and the heights of these vertical boxes indicate the standard
deviations over the 20 trials.
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pathologist reflecting the level of differentiation of the glands in the prostatetumor. Predicting the
Gleason score from the gene expression data is thus a typical ordinal regression problem. Since
only 6 samples had a score greater than 7, we merged them as the top level, leading to three levels
{= 6,= 7,≥ 8} with 26, 20 and 6 samples respectively. We randomly partitioned the data into 2
folds for training and test and repeated this partitioning 20 times independently. An ARD linear
kernel K (xi ,x j) = ∑d

ς=1 κςx
ς
i x

ς
j was used to evaluate feature relevance. These ARD parameters

{κς} were optimized by evidence maximization. According to the optimal values of theseARD
parameters, the genes were ranked from irrelevant to relevant. We thenremoved the irrelevant
genes gradually based on the rank list. The gene number was reduced from 12600 to 1. At each
number of selected genes, a linear kernelK (xi ,x j) = ∑d

ς=1xς
i x

ς
j was used in the three algorithms for

a fair comparison. Figure 4 presents the test results of the three algorithms for different numbers of
selected genes. We observed great and steady improvement using the subset of genes selected by
the ARD technique. The best validation output is achieved around 40 top-ranked features. In this
case, with only 26 training samples, the Bayesian approaches perform much better than the SVM,
and the EP approach is generally better than the MAP approach but the difference is not statistically
significant.

7. Conclusion

Ordinal regression is an important supervised learning problem with properties of both metric re-
gression and classification. In this paper, we proposed a simple yet novel nonparametric Bayesian
approach to ordinal regression based on a generalization of theprobit likelihood function for Gaus-
sian processes. Two approximate inference procedures were derived in detail for evidence evalua-
tion and model adaptation. The approach intrinsically incorporates ARD feature selection and pro-
vides probabilistic prediction. The existent fast algorithms for Gaussian processes can be adapted
directly to tackle relatively large data sets. Experiments on benchmark and real-world data sets show
that the generalization performance is competitive and often better than support vector methods.
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Appendix A. Gradient Formulae for Evidence Maximization

Evidence maximization is equivalent to finding the minimizer of the negative logarithm of the evi-
dence which can be written in an explicit expression as follows

− lnP (D|θ) ≈
n

∑
i=1

`(yi , fMAP(xi))+
1
2

f T
MAPΣ−1 f MAP +

1
2

ln |I +ΣΛMAP|.
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Initialization choose a favorite gradient-descent optimization package
select the starting pointθ for the optimization package

Looping while the optimization package requests evidence/gradient evaluation atθ
1. find the MAP estimate by solving the convex programming problem (9)
2. evaluate the negative logarithm of the evidence (18) at the MAP
3. calculate the gradients with respect toθ (18)–(18)
4. feed the evidence and gradients to the optimization package

Exit Return the optimalθ found by the optimization package

Table 5: The outline of our algorithm for model adaptation using the MAP approach with Laplace
approximation.

We usually collect{lnκ, lnσ,b1, ln∆2, . . . , ln∆r−1} as the set of variables to tune. This definition of
tunable variables is helpful to convert the constrained optimization problem into an unconstrained
optimization problem. The outline of our algorithm for model adaptation is described in Table 5.

The derivatives of− lnP (D|θ) with respect to these variables can be derived as follows:

∂− lnP (D|θ)

∂ lnκ
=

κ
2

trace

[

(Λ−1
MAP +Σ)−1∂Σ

∂κ

]

− κ
2

f T
MAPΣ−1∂Σ

∂κ
Σ−1 f MAP

+
κ
2

trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂κ

]

;

∂− lnP (D|θ)

∂ lnσ
= σ

n

∑
i=1

∂`(yi , fMAP(xi))

∂σ
+

σ
2

trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂σ

]

;

∂− lnP (D|θ)

∂b1
=

n

∑
i=1

∂`(yi , fMAP(xi))

∂b1
+

1
2

trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂b1

]

;

∂− lnP (D|θ)

∂ ln∆ι
= ∆ι

n

∑
i=1

∂`(yi , fMAP(xi))

∂∆ι
+

∆ι

2
trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂∆ι

]

.

Note that at the MAP estimateΣ−1 f MAP = −∑n
i=1

∂`(yi , f (xi))
∂ f

∣

∣

∣

f= f MAP

. For more details, let us define

sρ =
(zi

1)
ρN (zi

1;0,1)

Φ(zi
1)−Φ(zi

2)

and

vρ =
(zi

1)
ρN (zi

1;0,1)− (zi
2)

ρN (zi
2;0,1)

Φ(zi
1)−Φ(zi

2)

whereρ runs from 0 to 3,zi
1 =

byi− f (xi)

σ andzi
2 =

byi−1− f (xi)

σ . Theii -th entry of the diagonal matrixΛ
is denoted asΛii , which is defined as in (7), i.e.Λii = 1

σ2 (v0)
2 + 1

σ2 v1. The detailed derivatives are
given in the following:

• ∂Λii
∂κ = ∂Λii

∂ f T
∂ f
∂κ .

• ∂Λii
∂ f (xi)

= 1
σ3 (2(v0)

3 +3v0v1 +v2−v0).
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• ∂ f
∂κ = Λ−1(Λ−1 +Σ)−1 ∂Σ

∂κ Σ−1 f .

• ∂`(yi , f (xi))
∂σ = v1

σ .

• ∂Λii
∂σ = − 2

σ Λii +
1

σ3 (2v0v2 +2(v0)
2v1−v1 +(v1)

2 +v3)+ ∂Λii

∂ f T
∂ f
∂σ .

• ∂ f
∂σ = Λ−1(Λ−1+Σ)−1Σψσ, whereψσ is a column vector whosei-th element is1

σ2 (v0−v0v1−
v2).

• ∂Λii
∂b1

= − ∂Λii
∂ f (xi)

+ ∂Λii

∂ f T
∂ f
∂b1

.

• ∂ f
∂b1

= Λ−1(Λ−1 +Σ)−1Σψb, whereψb is a column vector whosei-th element isΛii .

• ∂`(yi , f (xi))
∂∆ι

=







− v0
σ if yi > ι;

− s0
σ if yi = ι;

0 otherwise.

• ∂Λii
∂∆ι

=















− ∂Λii
∂ f (xi)

+ ∂Λii

∂ f T
∂ f
∂∆ι

if yi > ι;

ϕi +
∂Λii
∂ f

∂ f T

∂∆ι
if yi = ι;

∂Λii
∂ f

∂ f T

∂∆ι
otherwise.

• ϕi = ∂Λii
∂∆ι

= 1
σ3 (s0−2v0s1−2(v0)

2s0−s2−v1s0).

• ∂ f
∂∆ι

= Λ−1(Λ−1 + Σ)−1Σψ∆, whereψ∆ is a column vector whosei-th element is defined as

ψi
∆ =







Λii i.e. 1
σ2 ((v0)

2 +v1) if yi > ι;
1

σ2 (v0s0 +s1) if yi = ι;
0 otherwise.

Appendix B. Approximate Posterior Distribution by EP

The expectation propagation algorithm attempts to approximateP ( f |D) in form of a product of
Gaussian distributionsQ( f ) = ∏n

i=1 t̃( f (xi))P ( f ) wheret̃( f (xi)) = si exp(−1
2 pi( f (xi)−mi)

2). The
updating scheme is given as follows.

The initial states:

• individual meanmi = 0 ∀i ;

• individual inverse variancepi = 0 ∀i ;

• individual amplitudesi = 1 ∀i ;

• posterior covarianceA = (Σ−1 +Π)−1, whereΠ = diag(p1, p2, . . . , pn) ;

• posterior meanh = AΠm, wherem= [m1,m2, . . . ,mn]
T .

Looping i from 1 ton until there is no significant change in{mi , pi ,si}n
i=1:

• t̃( f (xi)) is removed fromQ( f ) to get a leave-one-out posterior distributionQ\i( f ) having
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– variance off (xi): λ\i
i = Aii

1−Aii pi
;

– mean off (xi): h\i
i = hi +λ\i

i pi(hi −mi) ;

– others withj 6= i: λ\i
j = A j j andh\i

j = h j .

• t̃( f (xi)) in Q( f ) is updated by incorporating the messageP (yi | f (xi)) into Q\i( f ):

– Zi =
R

P (yi | f (xi))N ( f (xi);h
\i
i ,λ\i

i )d f(xi) = Φ(z̃1)−Φ(z̃2)

wherez̃1 =
byi−h\i

i
√

λ\i
i +σ2

andz̃2 =
byi−1−h\i

i
√

λ\i
i +σ2

.

– βi = ∂ logZi

∂λ\i
i

= − 1
2(λ\i

i +σ2)

(

z̃1N (z̃1;0,1)−z̃2N (z̃2;0,1)
Φ(z̃1)−Φ(z̃2)

)

.

γi = ∂ logZi

∂h\i
i

= − 1
√

λ\i
i +σ2

(

N (z̃1;0,1)−N (z̃2;0,1)
Φ(z̃1)−Φ(z̃2)

)

. (18)

– υi = γ2
i −2βi .

– hnew
i = h\i

i +λ\i
i γi .

– pnew
i = υi

1−λ\i
i υi

.

– mnew
i = h\i

i + γi
υi

.

– snew
i = Zi

√

λ\i
i pnew

i +1exp
(

γ2
i

2υi

)

.

• Note thatpnew
i > 0 all the time, because 0< υi < 1

λ\i
i +σ2

and thenλ\i
i υi < 1.

• if pnew
i ≈ pi , skip this sample and this updating; otherwise update{pi ,mi ,si}, the posterior

meanh and covarianceA as follows:

– Anew= A −ρaiaT
i whereρ =

pnew
i −pi

1+(pnew
i −pi)Aii

andai is thei-th column ofA .

– hnew= h+ηai whereη = γi+pi(hi−mi)
1−Aii pi

andγi is defined as in (18).

As a byproduct, we can get the approximate evidenceP (D|θ) at the EP solution, which can be
written as

n

∏
i=1

si
det

1
2 (Π−1)

det
1
2 (Σ+Π−1)

exp

(

B
2

)

whereB = ∑i j Ai j (mi pi)(mj p j)−∑i pim2
i .

Appendix C. Gradient Formulae for Variational Bound

At the equilibrium ofQ( f ), the variational boundF (θ) can be analytically calculated as follows:

F (θ) =
n

∑
i=1

Z

N ( f (xi);hi ,Aii ) ln(P (yi | f (xi)))d f(xi)−
1
2

ln |I +ΣΠ|

−1
2

trace((I +ΣΠ)−1)− 1
2

mT(Σ+Π−1)−1Σ(Σ+Π−1)−1m+
n
2

.
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Note that(Σ + Π−1)−1m can be directly obtained by{γi} defined as in (18). The gradient ofF (θ)
with respect to the variables{lnκ, lnσ,b1, ln∆2, . . . , ln∆r−1} can be given in the following:

∂F (θ)
∂ lnκ = κ

Z

Q( f )
∂ logP ( f )

∂κ
d f

= −κ
2

trace

(

Σ−1 ∂Σ
∂κ

)

+
κ
2

hTΣ−1∂Σ
∂κ

Σ−1h+
κ
2

trace

(

Σ−1 ∂Σ
∂κ

Σ−1A

)

= −κ
2

trace

(

(Π−1 +Σ)−1∂Σ
∂κ

)

+
κ
2

mT(Π−1 +Σ)−1∂Σ
∂κ

(Π−1 +Σ)−1m ,

∂F (θ)
∂ lnσ = σ∑n

i=1
R

N ( f (xi);hi ,Aii )
∂ lnP (yi | f (xi))

∂σ d f(xi)

= −∑{1≤yi<r}
R

N
(

f (xi);
hiσ2+Aii byi

σ2+Aii
, σ2Aii

σ2+Aii

)

byi − f (xi )√
2π(σ2+Aii )

exp

(

− (hi−byi )
2

2(σ2+Aii )

)

P (yi | f (xi))
d f(xi)

+∑{1<yi≤r}
R

N
(

f (xi);
hiσ2+Aii byi−1

σ2+Aii
, σ2Aii

σ2+Aii

)

byi−1− f (xi )√
2π(σ2+Aii )

exp

(

−
(hi−byi−1)2

2(σ2+Aii )

)

P (yi | f (xi))
d f(xi) ,

∂F (θ)
∂b1

= ∑n
i=1

R

N ( f (xi);hi ,Aii )
∂ lnP (yi | f (xi))

∂b1
d f(xi)

= ∑{1≤yi<r}
R

N ( f (xi);
hiσ2+Aii byi

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii )

exp

(

− (hi−byi )
2

2(σ2+Aii )

)

P (yi | f (xi)
d f(xi)

−∑{1<yi≤r}
R

N ( f (xi);
hiσ2+Aii byi−1

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii )

exp

(

−
(hi−byi−1)2

2(σ2+Aii )

)

P (yi | f (xi))
d f(xi) ,

∂F (θ)
∂ ln∆ι

= ∆ι ∑n
i=1

R

N ( f (xi);hi ,Aii )
∂ lnP (yi | f (xi))

∂∆ι
d f(xi)

= ∆ι ∑{ι≤yi<r}
R

N ( f (xi);
hiσ2+Aii byi

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii )

exp

(

− (hi−byi )
2

2(σ2+Aii )

)

P (yi | f (xi)
d f(xi)

−∆ι ∑{ι<yi≤r}
R

N ( f (xi);
hiσ2+Aii byi−1

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii )

exp

(

−
(hi−byi−1)2

2(σ2+Aii )

)

P (yi | f (xi))
d f(xi) ,

where∑{ι<yi≤r} means summing over all the samples whose targets satisfyι < yi ≤ r, and these one-
dimensional integrals can be approximated using Gaussian quadrature or calculated by Romberg
integration at some appropriate accuracy.
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