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Abstract

In multiway data, each sample is measured
by multiple sets of correlated attributes. We
develop a probabilistic framework for model-
ing structural dependency from partially ob-
served multi-dimensional array data, known
as pTucker. Latent components associated
with individual array dimensions are jointly
retrieved while the core tensor is integrated
out. The resulting algorithm is capable of
handling large-scale data sets. We verify
the usefulness of this approach by compar-
ing against classical models on applications
to modeling amino acid fluorescence, collab-
orative filtering and a number of benchmark
multiway array data.

1 Introduction

Exploratory data analysis techniques, like factor anal-
ysis and principal component analysis (PCA), are
widely used for extracting hidden structures and cap-
turing underlying correlations between variables in ob-
servational matrices. Usually the observational matrix
represents observations independently collected over a
set of samples, in which each row records an observa-
tion vector that is composed of multiple measurements
related to one sample while each column contains one
type of measurement on all samples. However, it has
been shown in many research areas, such as computer
vision, neuroscience and process analysis, that the ob-
servational data can also naturally come in the form
of multi-dimensional arrays. For example, in typical
neuroimaging studies the generation of data that in-
volves series of fMRI experiments on multiple subjects
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over a set of different sessions can be represented in
three-way format with dimensions subjects × spatial
processes × sessions. Similarly in personalized Web
search, the clickthrough data is essentially multi-way
and highly sparse, which associates with at least three
types of objects, users × queries × web pages. The
multiway arrays could be flattened into two-way ma-
trices for two-way analysis techniques, however direct
transformation may result in information loss and con-
sequently misinterpretation of the content. Multiway
data analysis methods (Coppi & Bolasco, 1989) are
developed by generalizing the idea of bilinear factor
models. The well-known models include the Tucker
family (Tucker, 1966), the PARAFAC family (Carroll
& Chang, 1970; Harshman, 1972) and Higher-Order
Singular Value Decomposition (HOSVD) (Lathauwer
et al., 2000). These models consist of two parts: a
parametric part with multiple factors describing the
data structure and a residual part relating to measure-
ment noise. Multiway models are mainly optimized in
the sense of least squares by iterative algorithms, such
as alternating least squares (ALS) which estimates one
factor at a time keeping the estimates of other compo-
nents fixed. One of the attractive capacities of multi-
way models is that they can capture correlated factors
along multiple array dimensions.

Multiway data analysis has been widely applied to var-
ious areas, e.g. image processing and data mining.
Wang and Ahuja (2005) presented an efficient tensor
approximation of arbitrary rank on reduced dimen-
sionality representation of image ensembles. Costan-
tini et al. (2008) showed that tensor decomposition
on a dynamic texture yields a compact multiple-
dimensional signal in the spatial, temporal and chro-
matic domains. Omberg et al. (2007) applied high-
order tensor decomposition to integrative analysis of
DNA microarray data from series of experiments and
discovered biologically meaningful results. Sun et
al. (2006) proposed an incremental algorithm for ten-
sor dimensionality reduction, known as dynamic tensor
analysis, which is scalable for semi-infinite streams.
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However, most of the multiway models are developed
for completely observed arrays, such as in video and
microarray. The issues of missing entries haven’t been
well studied in literature. In the presence of missing
entries in the observational array, latent factor infer-
ence is ill-conditioned. Truncated tensor decomposi-
tion of low rank alleviates the overfitting problem to
some extent, whereas regularization is still crucial in
solving the ill-posed problems. In this paper, we de-
velop a latent variable model to learn rich dependency
structure from partially observed multiway array data,
known as pTucker. Our approach is to develop a prob-
abilistic framework for the Tucker family, where im-
portantly, the core tensor is integrated out and miss-
ing values are handled in a principled manner. As we
will show later, the algorithm scales well on very large
data sets.

The paper is organized as follows: we first briefly re-
view multiway data analysis in Section 2; in Section
3, we develop a probabilistic framework for partially
observed three-way arrays; We review related work in
Section 4 and in Section 5 we compare against classical
models on a number of benchmark datasets; We dis-
cuss several related issues, including complexity anal-
ysis and kernelized versions in Section 6; we conclude
the paper in Section 7.

Notation: Throughout this paper, we denote a ma-
trix by a boldface uppercase letter, e.g. Y ∈ Rn×m,
and by Y ∈ Rn×m×d a three-way array. Yijk indi-
cates the (i, j, k)-th element in the array and then Yij·
means [Yij1 . . .Yijd]

> a column vector of length d.
We also define a vec-operator on matrices that stacks
columns of a matrix into a vector, denoted by vec(Y),
and a vec-operator on three dimensional arrays that
stacks an array into a vector by applying the matrix
vec-operator twice, denoted by vec(Y). X⊗Z denotes
the Kronecker product of an n × k matrix X and an
m× l matrix Z, which results in an nm× kl matrix,

X⊗ Z =




X11Z X12Z . . . X1kZ
X21Z X22Z . . . X2kZ

...
...

. . .
...

Xn1Z Xn2Z . . . XnkZ


 ,

where Xij denotes the ij-th entry of X. We follow the
notations as in (Gupta & Nagar, 2000) to denote by
y ∼ N (b,Σ) a vector y with a multi-variate Gaussian
distribution of mean b and covariance matrix Σ.

2 Multiway Data Analysis

A three-way array, Y ∈ Rn×m×d as in Figure 1(a),
may record observations associated with a pair of di-
mensions of interest. For instance, the vector Yij·

could be messages sent from the i-th user to the j-
th user in social network analysis, or in collaborative
filtering the ratings on the j-th movie given by the i-th
customer, with the third index capturing the dates the
ratings were given. The Tucker family is an extension
of bilinear factor analysis to high-order datasets. The
most commonly-used formulation for three-way arrays
is the Tucker-3 models, defined as follows,

Fijr =
k∑

p=1

l∑
q=1

s∑
u=1

TpquXipZjqVru (1)

where T is the core tensor of size k × l × s, and X, Z
and V are the matrices of latent factors of the three
modes respectively. F represents the true array of the
underlying model. Such a model represents the three
modes by k, l and s components respectively and then
these components are interacting through the core ten-
sor T to reconstruct the observational array. Given an
observed three-way array Y, the optimal solution in a
least squares sense is obtained as

arg min
T,X,Z,V

‖Y − F‖2 (2)

where the norm ‖C‖ is defined as
√∑

ijr C2
ijr with an

index ijr running over all observed entries. The Al-
ternative Least Squares (ALS) algorithm is employed
here to find an (local) optimal solution of eq(2). In
each step only one of the matrices is optimized, while
keeping others intact, refer to (Acar & Yener, 2007)
for more details.

The PARAFAC family (Carroll & Chang, 1970; Harsh-
man, 1972) can be considered as constrained versions
of the Tucker models, which restricts the core tensor
T to be a super-diagonal array with k = l = s, and
the model is defined as

Fijr =
∑k

u=1 λuXiuZjuVru

where λu ≥ 0. It means the u-th component in the
first array dimension X can only interact with the u-th
component in the second dimension Z and the third di-
mension V. Compared with SVD which decomposes a
matrix as a sum of rank-1 matrices, PARAFAC can be
considered as a generalization of SVD to higher order
arrays since PARAFAC decomposition represents an
array as a sum of rank-1 tensors, though orthogonality
constraints on the component matrices in general can-
not be satisfied. Zhang and Golub (2001) have shown
that the popular ALS algorithm for the PARAFAC
family is of a local linear convergence rate.

Lathauwer et al. (2000) proposed another important
variant, Higher-Order Singular Value Decomposition
(HOSVD), which is a Tucker-3 model with orthogo-
nality constraints on the components. HOSVD can be
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Figure 1: Model diagrams. (a) shows the Tucker-2 model, where Y··r ≈ XW··rZ
> for r = 1, . . . , d where 3D

shading represents repetition across d. (b) shows the Tucker-2 model after unfolding, where the two dichotomous
spaces X and Z are represented by a new space Z⊗X. (c) shows a nonlinear model we propose, where vectors
Yijr of length c are mapped into a high-dimensional feature space and the projection ΦΓ along this array
dimension are vectors in the feature space.

simply computed by flattening the tensor in each mode
and calculating the singular vectors corresponding to
that mode. Given the singular vectors, a core tensor
can be computed as in the ALS algorithm. HOSVD
has been widely applied to various applications, e.g.
(Omberg et al., 2007) on microarray analysis, (Wang
& Ahuja, 2005) on image ensemble and (Sun et al.,
2005) on personalized search.

As a special case of the Tucker-3 models, the Tucker-2
model for a three-way array is defined as follows,

Fijr =
k∑

p=1

l∑
q=1

WpqrXipZjq ∀r (3)

where W··r is a k × l weight matrix. In matrix form,
the Tucker-2 models can be rewritten as

Fijr = x>i W··rzj = vec(W··r)
>(zj ⊗ xi)

where xi and zj are vectors of length k and l containing
the components {Xip}k

p=1 and {Zjq}l
q=1 respectively.

It is equivalent to a bilinear model with input vectors
zj ⊗ xi and a weight matrix of size kl × d, see Fig-
ure 1(b) for a diagram. Like in the Tucker-3 models,
the latent components are extracted by minimizing the
loss function as defined in eq(2).

3 Probabilistic Framework

The Tucker models are more flexible due to the full
core tensor which is helpful for us to explore the struc-
tural information embedded in multiway arrays. In
this section, we explore the corresponding probabilis-
tic models, known as pTucker.

Let us consider the Tucker-3 model as in eq(1) first.
By applying tensor transformation as in Figure 1(b)
twice, we represent the true value by

Fijr = vec(T)>(vr ⊗ zj ⊗ xi)

where T is the core tensor of size k × l × s. We spec-
ify independent Gaussian distributions over the entries

in T as a priori, Tkls ∼ N (0, 1) ∀ kls, and assume
the observations are measured independently too, i.e.
Yijr|T ∼ N (Fijr, σ

2) ∀ ijr.

By integrating the core tensor T out from the joint∏
ijr p(Yijr|T)

∏
kls p(Tkls), the distribution over the

observational array is still a Gaussian, which can be
written as

vec(Y) ∼ N (0,UU> + σ2I), (4)

where vec(Y) is a column vector of size nmd flattened
from the multiway array Y, U = V ⊗ Z ⊗ X and
σ2 is the noise level. Bias terms can be introduced
appropriately that allow the model to have non-zero
mean. Correlations within each array dimension are
completely maintained by their latent variables sepa-
rately.

On incomplete observational arrays, the unfolding as
illustrated in Figure 1(b) is applied to observed entries
only. The covariance matrix in the likelihood eq(4) is
composed of the Kronecker products of latent factors
associated with observed entries only. U is composed
of row vectors {vr ⊗ zj ⊗ xi} with size L× kls, where
the index ijr runs over observed entries in Y and L
is the number of observed entries in the observational
array.

The standard multiway models (Andersson & Bro,
2000) usually apply EM algorithms coupled with
ALS to update missing values iteratively, whereas in
pTucker the missing values are not involved in training
at all. This results in dramatic speedups for sparsely
observed data.

We also specify Gaussian distributions with zero mean
and unit variance as priors for latent components X, Z
and V. The negative logarithm of the joint probability
becomes,

L(X,Z,V) = 1
2vec(Y)>(UU> + σ2I)−1vec(Y)

+ 1
2 log det(UU> + σ2I) + 1

2vec(X)>vec(X)
+ 1

2vec(Z)>vec(Z) + 1
2vec(V)>vec(V).

Although the matrix inverse is of size L À kls, the
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Woodbury identity can be applied here that reduces
the problem size from L to kls. By ignoring terms
unrelated to latent components, the above objective
function can be equivalently rewritten as,

L(X,Z,V) = −σ−2

2 vec(Y)>UK−1U>vec(Y)
+ 1

2 log det(K) + 1
2vec(X)>vec(X)

+ 1
2vec(Z)>vec(Z) + 1

2vec(V)>vec(V),

where K = U>U+ σ2I is of size kls× kls. The latent
components can then be extracted as

arg min
X,Z,V

L(X,Z,V).

The gradients of the joint probability w.r.t. the latent
components can be derived analytically, e.g. regarding
a component in X,

∂L
∂Xip

= trace
(

∂L
∂U

∂U>

∂Xip

)
+ Xip

where ∂L
∂U = U(K−1 + σ−2ββ>) − σ−2vec(Y)β>,

β = K−1U>vec(Y) and trace(K) =
∑

i Kii . The
gradients w.r.t the components in Z and V can be
computed analogously. Then we employ a gradient-
descent package to find a local optimal solution.

As a special case of the Tucker-3 models, the corre-
sponding likelihood of the observational matrices in
the Tucker-2 models becomes,

vec(Y··r) ∼ N (0, (Z⊗X)(Z⊗X)> + σ2I) ∀r. (5)

Note that matrix samples along the third array dimen-
sion are independently collected given latent factors X
and Z.

4 Related Work

pTucker is closely related to the scenarios considered
in factor analysis, e.g. probabilistic PCA (Roweis &
Ghahramani, 1999; Tipping & Bishop, 1999). Com-
pared with the probabilistic model we derived as in
eq(4), the fundamental difference is in correlations in
the two dimensions in the observation matrix. Prob-
abilistic PCA (Roweis & Ghahramani, 1999; Tipping
& Bishop, 1999) extracts latent factors for the row-
side only and assumes independency between columns
given the representations of rows. However, the prob-
abilistic Tucker-2 model as in eq(5) aims at extract-
ing latent representations for both sides of an obser-
vational matrix. Two sets of latent factors are con-
structed in two dichotomous spaces. The correlation
between rows or columns is represented by the corre-
sponding set of latent factors separately.

The Tucker-2 models for observational matrices as in
eq(3) have been well studied. Tenenbaum and Free-
man (2000) presented a bilinear model with expressive

factor representations to separate “style” and “con-
tent” using efficient algorithms based on SVD and
expectation-maximization (EM). Stochastic relational
models (Yu & Chu, 2008) describes a Gaussian process
model for two-dimensional relational matrices with
applications to link prediction and transfer learning.
Along the direction of SVD decomposition, Srebro and
Jaakkola (2003) studied the weighted low-rank approx-
imation problems on incomplete observational matri-
ces. Salakhutdinov and Mnih (2008) presented a prob-
abilistic model for matrix factorization which performs
well on sparse and very imbalanced collaborative filter-
ing datasets. These two models extract aligned com-
ponents, i.e. no interaction between components as in
the PARAFAC family, in a single factor space. The
tucker models we discussed construct latent compo-
nents from dichotomous spaces, which may result in
compact representations.

Non-negative tensor decomposition has also been ex-
ploited in sparse image coding, e.g. Shashua and
Hazan (2005) and Kim and Choi (2007). Missaoui
et al. (2007) applied non-negative array analysis tech-
niques to data compression and query approximation.
Multi-HDP (Porteous et al., 2008), is a probabilistic
model of non-negative tensor factorization, which cap-
tures hidden structure for both entities jointly, e.g.
users and movies in collaborative filtering. As another
probabilistic matrix factorization method, Meeds et
al. (2007) treated two modalities symmetrically and
represented objects by a diverse set of binary latent
factors.

GPLVM (Lawrence, 2005) developed a natural exten-
sion of nonlinear mapping from latent space to the ob-
servational space through the introduction of a nonlin-
ear covariance function over latent factors, which lead
to the following formulation

vec(Y) ∼ N (0, I⊗Σ) ,

where I is an identity matrix and Σ is a Gram matrix
of the latent factors X, e.g. the ij-th element defined
by a RBF kernel function. In contrast to the nonlinear
latent factor analysis, pTucker as in eq(5) endeavors to
jointly learn correlated linear factors along both sides
of the observational matrix. Bonilla et al. (2008) devel-
oped Gaussian process models for multi-task learning,
which learns a shared covariance function on input-
dependent features and another covariance matrix for
inter-task dependencies. The observational matrix is
modeled as

vec(Y) ∼ N (0,Ω⊗Σ) ,

where Σ is a Gram matrix representing the correlation
between input samples and Ω is a “free-form” Gram
matrix representing dependencies between tasks. The



         93

Chu, Ghahramani

Figure 2: The five samples in the Amino Acid Fluorescence data set.
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Figure 3: (a)-(d): a comparison on the five components inferred by the Tucker and pTucker model. (e) presents
generalization performance in RMSE on different component sizes.

pTucker model as in eq(5) is a special case of the stan-
dard GP models, as there is no input attribute. The
entire covariance matrix would be learnt from obser-
vations as a low-rank decomposition spanned by the
latent components.

5 Experiments

The classical PARAFAC and Tucker models were im-
plemented in the N-way Toolbox for MATLAB (An-
dersson & Bro, 2000),1 which were coupled with built-
in EM iterations to handle missing values. The max-
imal number of iterations allowed in the toolbox of
the PARAFAC and Tucker models was set at the de-
fault value 2500. The noise level in pTucker, σ2, was
decided by validation on the grid [0.001, 0.01, 0.1, 1].
Nine three-way data sets were downloaded from the
repository for multi-way data analysis.2 Their names
and data sizes are listed in the first two columns of Ta-
ble 2. We carried out a series of experiments to verify
the generalization capacity of pTucker and then show
scalability on more than 2 million training samples us-
ing the EachMovie data.

Demonstration We started with the Amino Acid
Fluorescence data (Bro, 1998) as an illustration. This
data set consists of five laboratory-made samples.
Each sample contains different amounts of tyrosine,
tryptophan and phenylalanine dissolved in phosphate
buffered water. The samples were measured by fluores-
cence (excitation 240-300 nm, emission 250-450 nm, 1
nm intervals) on a PE LS50B spectrofluorometer with

1The toolbox is available at
http://www.models.kvl.dk/source/nwaytoolbox.

2The data sets and their descriptions are accessible via
the website http://www.models.kvl.dk/research/data/.

excitation slit-width of 2.5 nm, an emission slit-width
of 10 nm and a scan-speed of 1500 nm/s. The array
to be decomposed is hence 5 samples × 61 excitation
levels × 201 emission levels. Figure 2 shows the five
samples. Each sample is represented as a full rank
matrix of size 61 × 201. We applied the N-way Tool-
box to train a Tucker model with 5 components on the
whole array. The inferred components on the array di-
mensions of excitation and emission are presented in
Figure 3(a) and (b) respectively. We run the gradient
descent algorithm, as discussed in Section 3, with a
linear model to infer 5 components too, and presented
the corresponding results in Figure 3(c) and (d) for
comparison. Comparing with our results, we noticed
there are many zigzags in the 5-th component of the
Tucker model, although the source data is smooth. To
further investigate the influence of factor numbers to
the two models, we varied the component number from
1 to 10 and trained both models on partially observed
arrays. Half of entries in the matrices were randomly
selected for training, and the remainder was used as
test cases. We repeated this partition 10 times. Figure
3(e) presents test performance in root mean squared
error (RMSE) averaged over the 10 trials. pTucker
yields stable estimates when the component number is
greater than 3, while the Tucker model is very sensitive
to the size of component on this case. It shows pTucker
possesses a superior capacity of factor inference with
the Bayesian treatment on the core tensor.

Collaborative Filtering We used the EachMovie
data to demonstrate scalability. The Compaq Sys-
tem Research Center ran the EachMovie service for
18 months. 61265 users entered a total of 2811718
distinct numeric ratings on 1623 movies, i.e. about
2.83% are rated by zero-to-five star. This is a spe-
cial case of two-way data, users × movies, with only
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Table 1: Test results on the EachMovie data averaged over 20 trials, along with standard deviation. The number
in bracket indicates the number of components we applied, i.e. k = l = 6.

Methods Movie Mean User Mean RSVD (6) EM (6) MAP (6)
MAE 1.1026 ± 0.0010 1.1405 ± 0.0009 0.8695 ± 0.0011 0.8733 ± 0.0025 0.8664 ± 0.0010
RMSE 1.3866 ± 0.0013 1.4251 ± 0.0011 1.1359 ± 0.0012 1.1507 ± 0.0029 1.1370 ± 0.0010

Table 2: Test results on the benchmark data in RMSE, averaged over 100 trials along with standard deviation.
“Factor” indicates the number of factors we applied in the three models. The array size means samples ×
measurements I × measurements II.

Dataset Array Size Factor PARAFAC Tucker pTucker
Amino acids 5× 201× 61 4 0.0297 ± 0.0003 0.0259 ± 0.0003 0.0253 ± 0.0004
Flow injection 12× 100× 89 5 0.0621 ± 0.0009 0.0536 ± 0.0032 0.0303 ± 0.0021
Bread sensory 10× 11× 8 5 3.4812 ± 1.2161 1.2241 ± 0.0897 1.0720 ± 0.0855
Sugar process 7× 268× 571 4 0.3323 ± 0.0010 0.3303 ± 0.0009 0.2242 ± 0.0009
Dorrit 27× 551× 24 5 0.5556 ± 0.0075 0.5286 ± 0.0050 0.4239 ± 0.0074
Electronic nose 18× 241× 12 1 0.0651 ± 0.0113 0.0662 ± 0.0113 0.0649 ± 0.0212
Fermentation 338× 15× 15 5 1.9776 ± 0.6910 0.9342 ± 0.1069 0.6244 ± 0.1401
Kinetic SW-NIR 8× 301× 240 3 0.0629 ± 0.0047 0.1184 ± 0.0161 0.0244 ± 0.0021
Kinetic UV-VIS 10× 401× 271 2 0.0177 ± 0.0001 0.0177 ± 0.0001 0.0172 ± 0.0002

a single sample matrix. We randomly selected 80% of
each user’s ratings for training and used the remaining
20% as test cases. The random selection was carried
out 20 times independently. In each partition, we also
held 25% training samples out as validation set to de-
termine model parameters. Since missing values are
unevenly distributed in the matrix, we specified Gaus-
sian distributions on X and Z respectively as a priori,
i.e. vec(X) ∼ N (0, αI) and vec(Z) ∼ N (0, βI) where
α and β are two model parameters, while fixing the
noise level. The two model parameters were validated
on the grid [5,2.5,1,0.75,0.5,0.25,0.1]. We tried two
approaches with the linear kernel on this experiment,
the EM algorithm describes in Section 6 and the opti-
mization approach as in Section 3 via gradient descent
(MAP). For comparison purpose, we also implemented
the regularized SVD algorithm (RSVD) described in
(Salakhutdinov et al., 2007) which yields very strong
performance on this application. We applied 6 com-
ponents in the three models. The baseline was setup
by the naive prediction using empirical movie-specific
mean or user-specific mean. Table 1 presents the test
results over the 20 trials in RMSE and mean absolute
error (MAE). The EM algorithm yields comparable
result in this experiment, while the MAP estimate is
very competitive with the RSVD method. Better re-
sults could be achieved by using more components. On
this particular application, since there are only 6 tar-
get values in observations, the kernel matrix contains
only 6 × 6 blocks. This structure helps to reduce the
computational cost related to any kernel matrix from
O(m2n2kl) to O(6mnkl), and then the algorithm com-
plexity becomes O(mnl2 +6mnkl). In this experiment
with about 2.24 million training points, it took about
0.5 hour to complete 100 iterations of the EM algo-
rithm on an AMD Opteron 2.6GHz processor.

Benchmark Data Sets In the nine three-way data
sets, each sample was recorded as a matrix. We ran-
domly selected half of the entries of the matrices for
training. The rest was used for test. The partition
was repeated 100 times independently. For fair com-
parison, we used the linear model too. The appropri-
ate component numbers in the third column of Table 2
were determined by the routine tucktest in the N-way
Toolbox, in order to achieve the best performance for
the Tucker models. As demonstrated on the Amino
Acid Fluorescence data, pTucker is not prone to over-
fitting even if using a larger component number. In
Table 2 we reported the test RMSE results averaged
over the 100 trials, along with the standard deviation.
On all the nine cases, our algorithm yields consistently
better results than both PARAFAC and Tucker mod-
els. PARAFAC failed on two data sets, Bread Sensory
and Fermentation, due to the existence of highly corre-
lated components. Only on the Electronic Nose data,
with a single component, the improvement is not sta-
tistically significant. The improvements is attributed
to the probabilistic modeling as in eq(4), integrating
out the core tensor, along with an appropriate prior
(or regularization) on the latent variables that approx-
imate the covariance matrices with low rank.

6 Discussion

In this section, we discuss several related issues and
interesting extensions.

On Multiway Arrays The probabilistic framework
of three-way arrays can be generalized for data arrays
of higher order in a straightforward manner. For exam-
ple, a four dimensional array can be transformed into
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three dimensional array by applying tensor manipula-
tion along the forth dimension, while the definition of
U now becomes S ⊗ V ⊗ Z ⊗ X where S represents
latent factors of the forth dimension. The probabilis-
tic framework is still applicable, but the computation
becomes more complicated.

The covariance matrix as in eq(1) could be general-
ized by introducing a nonlinear function of these la-
tent variables U rather than a linear product only, as
suggested in GPLVM (Lawrence, 2005) to extract non-
linear latent factors. However any covariance matrix
of full rank will boost computational complexity to be
cubic in the problem size.

Kernelization Inspired by various innovations of
nonlinear factor models, e.g. kernel PCA (Schölkopf
et al., 1998; Tipping, 2001), we can introduce non-
linear mapping into a probabilistic approach to cap-
turing non-trivial structures embedded in three-way
array. Note that we intend to consider nonlinear rela-
tionships between observations rather than to extract
nonlinear factors for entities, which is fundamentally
different from GPLVM (Lawrence, 2005).

Regarding the model as in eq(1), let us assume that
each observed entry Yijr is a vector of c attributes. We
explicitly map the observed entries into a reproducing
kernel Hilbert space (RKHS) via a nonlinear function
φ(·) : Rc 7→ Rh, where h could be infinite, see Figure
1(c) for a diagram. The inner products are defined by
a reproducing kernel function:

K(Yijr,Yi′j′r′) = 〈φ(Yijr) · φ(Yi′j′r′)〉.

Let us denote by Φ the h × L matrix whose columns
consist of {φ(Yijr)} associated with observed entries.
In the RKHS space, we represent each vector by the
following linear projection

φ(Yijr) = ΦΓ(vr ⊗ zj ⊗ xi), ∀ijr,

where Γ is an L × kls weight matrix. The projec-
tion quality ‖φ(Yijr) − ΦΓ (vr ⊗ zj ⊗ xi)‖RKHS

is measured by a Gaussian distribution, and
then we reach a joint distribution proportional to∏
{ijr} exp

{− 1
2σ2 ‖φ(Yijr)−ΦΓ (vr ⊗ zj ⊗ xi)‖2RKHS

}
where the index ijr runs over the L observed entries.
Its logarithm can be written as follows,

− 1
2σ2

trace
(
K− 2KΓU> + UΓ>KΓU>)

,

where K = Φ>Φ is the kernel matrix of observed en-
tries and U = V⊗Z⊗X is of size L×kls. It is shown
in (Roweis & Ghahramani, 1999; Tipping & Bishop,
1999) that as the noise level becomes infinitesimal the
distribution then becomes a delta function and the EM

algorithm is effectively a least squares projection. Fol-
lowing the derivation in (Rosipal & Girolami, 2001),
we have

E-step: Γnew = (UU>)−1U

M-step: Unew = KΓ(Γ>KΓ)−1

We can guarantee positive definiteness by adding ar-
bitrary small positive values on the diagonal. Given
Unew, the latent factors X, Z and V can be updated
iteratively in the manner of ALS. Note that the kernel-
ized version does consider nonlinearity in observations,
but doesn’t constitute a strictly probabilistic model in
an infinite dimensional feature space.

Complexity Analysis Let us focus on the mod-
els for two-way data to simplify the analysis. In
this model as in eq(5), the most expensive compu-
tational step lies in computing the kl × kl matrix
(Z ⊗ X)>(Z ⊗ X). By making use of tensor struc-
tures, the computation costs O(mnl2 + mk2l2) or
O(mnk2+nk2l2) without caching intermediate blocks.
With missing values, the term mn will reduce to the
number of observed entries. The matrix inverse costs
O(k3l3), but it is insignificant since usually m À kl
and n À kl. In the EM algorithm in the kernelized
version, the bottleneck lies in computing KΓ, which
costs O(m2n2kl), while only O(mnkl) for linear ker-
nels. It generally costs O(m2n2) to prepare a kernel
matrix. In many applications, the kernel matrix may
have blocks containing the same values, e.g. in collab-
orative filtering problems. This property will reduce
the term mn to the number of blocks. Overall, the
complexity of our algorithm is linear with the number
of observations for linear models, while quadratic for
indecomposable kernels, such as the Gaussian kernel,
on general cases.

7 Conclusion

We proposed a probabilistic framework based on the
Tucker family for multiway data analysis which ex-
tracts latent factors from structured observations. La-
tent components associated with individual array di-
mensions are learnt by maximizing the marginal likeli-
hood of the partially observed array, while integrating
out the core tensor. The resulting algorithm for multi-
way arrays scales linearly with the number of observed
entries using linear kernels or kernels with block struc-
ture. We verified the generalization capacity of our ap-
proach by comparing against classical models on nine
public data sets, and tested the scalability on trials
with more than 2 million training samples. As future
work, it would be interesting to develop approximate
inference algorithms that learn model parameters au-
tomatically and to evaluate the effectiveness of nonlin-
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ear modeling on fMRI data and time series.
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