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ABSTRACT
Motivation: In clinical practice, pathological phenotypes are often
labelled with ordinal scales rather than binary, e.g. the Gleason
grading system for tumour cell differentiation. However, in the liter-
ature of microarray analysis, these ordinal labels have been rarely
treated in a principled way. This paper describes a gene selection
algorithm based on Gaussian processes to discover consistent gene
expression patterns associated with ordinal clinical phenotypes. The
technique of automatic relevance determination is applied to represent
the significance level of the genes in a Bayesian inference framework.
Results: The usefulness of the proposed algorithm for ordinal labels
is demonstrated by the gene expression signature associated with the
Gleason score for prostate cancer data. Our results demonstrate how
multi-gene markers that may be initially developed with a diagnostic or
prognostic application in mind are also useful as an investigative tool
to reveal associations between specific molecular and cellular events
and features of tumour physiology. Our algorithm can also be applied
to microarray data with binary labels with results comparable to other
methods in the literature.
Availability: The source code was written in ANSI C, which is
accessible at www.gatsby.ucl.ac.uk/∼chuwei/code/gpgenes.tar
Contact: wild@kgi.edu

1 INTRODUCTION
Microarray technologies now enable the simultaneous interrogation
of the expression level of thousands of genes to obtain a quantitat-
ive assessment of their differential activity in a given tissue or cell.
The development of these technologies has also motivated interest
of their use in clinical trials and diagnosis. For instance, a key aim of
many investigators is to identify genomic factors that are prognostic
for survival or relapse-free survival, and that predict those patients
who respond to treatment. Typically, such experiments investigate on
the order of dozens of samples from different patients. The samples
are usually labelled with some information about the disease. Many
studies have attempted to find subsets of genes that distinguish well
between samples with different labels. A minimal subset of these
relevant genes, often referred to as ‘biomarkers’, may be useful
in segregating patients in diagnosis, prognosis and for appropriate
therapeutic selection in clinical management.

The increasing use of gene expression profiles in these types of
study requires computational methods of high accuracy for solving

∗To whom correspondence should be addressed.

feature selection and classification problems associated with these
data. Although the cases of binary labels, e.g. healthy/diseased,
have been extensively studied in the literature (Alon et al., 1999;
Furey et al., 2000; Golub et al., 1999; Guyon et al., 2002; Li et al.,
2002; Shevade and Keerthi, 2003), the observed or measured labels
are often ordinal in routine clinical practice, such as the TNM sys-
tem for staging prostate cancer and the Gleason grading system for
tumour cell differentiation. These ordinal scales are discrete and
finite, differing from continuous variables, and metric distances
between the adjacent ordinal scales are not defined. In contrast to
the labels of multiple classes, ordinal scales are rank-ordered, e.g.
‘low’, ‘medium’ and ‘high’. The learning task of predicting ordinal
variables is known as ordinal regression. Interestingly, the popu-
lar binary label is a special case of the ordinal variable with only
two ranks. Singh et al. (2002) studied gene expression patterns that
are correlated with the Gleason score and built an expression-based
model to predict patients’ clinical outcome. However, the ordinal
nature of the Gleason score has not previously been treated in a
principled way.

In this paper, we propose a feature selection algorithm based on
Gaussian processes (Williams and Barber, 1998) to identify biomark-
ers for tasks with ordinal (or binary) labels. The important advantage
of Gaussian process models is the explicit probabilistic framework
that can efficiently take into account the uncertainty in microarray
data. The automatic relevance determination (ARD) parameters1 can
be embedded into the covariance function, which represents the cor-
relation between samples, to control the contribution from individual
features. After Bayesian inference, the optimal values of the ARD
parameters can be used as the indicator of the relevance level of a
particular gene. A relatively large ARD parameter indicates that the
associated gene is more correlated with the sample labels, while a
gene weighted with a very small ARD parameter implies that this
gene is irrelevant. Genes can then be sorted downwards from rel-
evant to irrelevant according to the optimal values of these ARD
parameters. A forward selection procedure can be further employed
to determine the minimal set of relevant genes as biomarkers. We
apply this ARD technique to the publicly available microarray gene
expression datasets. The usefulness of these biomarkers are validated
by reference to the biological literature.

1The techniques of ARD were originally proposed by MacKay (1994) and
Neal (1996) in the context of Bayesian neural networks as a hierarchical prior
over the weights.
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The paper is organized as follows. In Section 2, we describe the
Gaussian processes model for ordinal regression and then present our
algorithm in detail. The experimental results on three publicly access-
ible datasets are reported and discussed in Section 3. We conclude
in Section 4.

2 METHODOLOGY
Consider a gene expression dataset D composed of n samples from different
patients. Each sample is represented by the expression level of the d genes,
denoted as a column vector xi ∈ Rd , and labelled by an ordinal scale yi ∈ Y .
These labels are denoted as consecutive integers, Y = {1, 2, . . . , r}, that keep
the known ordering information.

2.1 Bayesian framework
The main idea is to assume an unobservable latent function f (xi) ∈ R asso-
ciated with a sample xi in a Gaussian process, and the label yi dependent
on the latent function f (xi) by modelling the ordinal scales as inter-
vals on the real line (Chu and Ghahramani, 2004, www.gatsby.ucl.ac.uk/
∼chuwei/paper/gpor.pdf).

2.1.1 Prior probability The values of the latent function {f (xi)} are
assumed to be the realizations of random variables in a zero-mean Gaussian
process. The covariance between the function values corresponding to the
inputs xi and xj can be defined as

Cov[f (xi), f (xj )] = K(xi , xj ) =
d∑

�=1

κ�x
�
i x

�
j , (1)

where κ� > 0. x�
i denotes the �-th gene expression level of the i-th sample

and κ� is the ARD variable for the �-th gene that controls the contribution of
this gene in the modelling. For simplicity, we have chosen the covariance (1)
that corresponds to a prior on functions, where f (x) is a linear function of x.
Many other covariance functions could be used (MacKay, 1998). The prior
probability of these latent function values {f (xi)} is a multivariate Gaussian,

P(f ) = 1

(2π)n/2|�|1/2
exp

(
− 1

2
f T�−1f

)
, (2)

where f = [f (x1), f (x2), . . . , f (xn)]T and � is the n×n covariance matrix
whose ij-th element is defined as in Equation (1). This covariance matrix is
positive semi-definite.

2.1.2 Ordinal likelihood The likelihood P(D|f ) is the joint prob-
ability of observing the sample labels given the the latent function values.
The likelihood can be evaluated as a product of the likelihood function on
individual observations:

P(D|f ) =
n∏

i=1

P(yi |f (xi)).

A standard likelihood function for ordinal labels is obtained from the
difference of two cumulative normals,

P(yi |f (xi)) = �
(
zi

1

) − �
(
zi

2

)
, (3)

where zi
1 = [byi

− f (xi)]/σ , zi
2 = [byi−1 − f (xi)]/σ and �(z) =∫ z

−∞ N (γ ; 0, 1) dγ . The noise level σ > 0 is unknown and reflects the meas-
urement noise in the microarray experiments. b0 = −∞ and br = +∞ are
defined as auxiliary variables, and we impose the inequality b1 < b2 < · · · <

br−1 on these thresholds. The role of the thresholds is to divide the real line
into r contiguous intervals, these intervals map the real function value f (xi)

into the discrete variable yi while enforcing the ordinal constraints. As a spe-
cial case with r = 2, the ordinal likelihood function (3) becomes the probit
function for binary classification.2

2For multi-label classification problems, the softmax function can be
employed as the likelihood function for multinomial labels, as discussed
by Williams and Barber (1998).

2.1.3 Model evidence The Bayesian framework described above is
conditional on the model parameters including the ARD parameters κ�

in the covariance function (1), the threshold parameters {b1, b2, . . . , br−1}
and the noise level σ in the likelihood function (3). All these paramet-
ers can be collected into θ , which is the model parameter vector. The
quantity P(D) = ∫

P(D|f )P(f ) df , more exactly P(D|θ), is known
as the evidence for θ , a yardstick for model selection. The optimal
values of the model parameters θ can be inferred by maximizing the
evidence P(D|θ).3

A popular idea for computing the evidence is to approximate the pos-
terior distribution P(f |D) ∝ P(D|f )P(f ) as a Gaussian by applying
the Laplace approximation at the maximum a posteriori (MAP) estimate
of f , and then the evidence can be calculated by an explicit formula.
The MAP estimate on the latent functions is the mode point of the pos-
terior distribution, i.e. f MAP = arg maxf P(f |D). This is a convex
programming problem that guarantees a unique solution. The Laplace
approximation refers to carrying out the Taylor expansion for P(f |D) at
the MAP point and retaining the terms up to the second order (MacKay,
1994). The evidence can then be approximated as an explicit expression
analytically:

P(D|θ) ≈ exp(−S(f MAP))|I + ��MAP|−1/2, (4)

where S(f ) = 1
2 f T�−1f − ∑n

i=1 ln P(yi |f (xi)), I is an n × n iden-
tity matrix and �MAP is a diagonal matrix whose ii-th entry is [∂2 −
ln P(yi |f (xi))]/[∂2f (xi)] at the MAP estimate.

The gradients of the approximate evidence (4) with respect to the model
parameters θ can be derived analytically [refer to Chu and Ghahramani
(2004) for detailed formulae]. Gradient-based optimization methods can
then be employed to search for the maximizer of the evidence, θ
 =
arg maxθ P(D|θ). Since there might be several local maxima on the curve of
P(D|θ), it is possible that the optimization problem may stick at local maxima
in the determination of θ . We can avoid poor local maxima by maximizing (4)
several times starting from several different initial states, and simply choosing
the one with the highest evidence as our preferred choice θ
.

2.2 Prediction
At the optimal model parameters θ
, let us take a test sample xt for which
the target yt is unknown. The correlations between the test case xt and the
training samples {xi} are defined by the covariance function K(xt , xi) as in
Equation (1). The predictive distribution over ordinal labels yt is

P(yt |xt , D, θ
) = �


 byt − µt√

σ 2 + σ 2
t


 − �


byt −1 − µt√

σ 2 + σ 2
t


 , (5)

where µt = kT�−1f MAP, σ 2
t = K(xt , xt ) − kT(� + �−1

MAP)−1k and k =
[K(xt , x1), K(xt , x2), . . . , K(xt , xn)]T. The predictive label is decided as

ŷt = arg max
i

P(yt = i|xt , D, θ
). (6)

2.3 Forward selection
The optimal values of κ�’s can be determined by the maximizer of the evidence
θ
, denoted as κ


� ’s, which indicates the relevance level of the genes to the
labels. Based on these values, κ


� ’s, we can sort the genes in descending order
from relevant to irrelevant accordingly.

It is desirable to further select a minimal subset of the top-ranked genes
as the biomarkers for modelling, denoted as M, while keeping the accur-
acy of the resulting model and reducing the computational overhead. For
this purpose, we need to define a quality criterion for the quality of a par-
ticular biomarker set. The leave-one-out (LOO) validation error is popularly

3Monte Carlo sampling methods can provide a good approximation to the
posterior distribution of θ , but might be prohibitively expensive to use for
high-dimensional problems.
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Table 1. The outline of our algorithm for gene selection

Initialize Generate k folds of the dataset and i = 1
Loop While i ≤ k, leave the i-th fold out

(1) Maximize evidence on the remaining k − 1 folds
optimization package returns the optimal θ


(2) Sort the genes by the optimal values of ARD parameters
(3) Run forward selection to compute the LOO error (7)
(4) Identify the minimal gene set Mi

(5) i = i + 1
Ranking Rank the genes by the number of hits in the sets {Mi}ki=1
Selection Run forward selection to compute quality criteria

identify the minimal gene set M


Exit Return the set of selected genes M


used4, which is evaluated as

LOO error =
∑

t

δ(ŷt �= yt ), (7)

where
∑

t means the sum over all LOO validation cases, ŷt is defined as in
Equation (6) and δ(s) is 1 if s is true, otherwise 0.

We can carry out LOO validation on a progressively larger biomarker set,
adding one gene at a time as ordered by the gene ranking. Here a linear covari-
ance function, defined as

∑d
�=1 x�

i x
�
j without ARD parameters, is employed

in the Gaussian process modelling. The inclusion of a relevant gene should
result in a decrease of the LOO error criterion (7). The gene set M that yields
the minimal LOO error is identified as the set of biomarkers that contain the
most informative genes for predicting target labels.

2.4 Algorithm
The optimal values of ARD parameters are estimated by maximizing the
approximate evidence, which is also known as Type-II maximum-likelihood
estimate. Qi et al. (2004) have shown that the evidence optimization can lead
to overfitting by picking one from numerous linear classifiers that can cor-
rectly classify the limited training data. This potential difficulty becomes
more serious on gene expression datasets with only dozens of samples.
To address this problem, we propose a resampling procedure as the outer
loop of our algorithm. The outline of our algorithm is given in Table 1.
We found this algorithm to be robust both to overfitting and local minima
problems.

Given a gene expression dataset, we randomly generated k folds after
pre-processing. One fold was left out in turn and evidence optimization was
carried out using the samples in the remaining k − 1 folds. We maximized
the evidence (4) several times starting from different initial states, and simply
chose the one with the highest evidence as the optimal θ
. Based on the
optimal values of the ARD parameters, the genes were sorted in the descend-
ing order from relevant to irrelevant, accordingly. In forward selection, we
added one top-ranked gene each time into the gene subset Mi and then carried
out LOO cross-validation using the linear covariance function

∑d
�=1 x�

i x
�
j on

the training samples in the remaining k − 1 folds. The minimal subset that
yielded the minimal LOO error was identified as Mi . This procedure was
repeated k times, and k subsets {Mi} were obtained. The number of times
each gene was selected in the k subsets {Mi} was used as the final criterion
for gene ranking, which we refer to as number of hits. Genes with same
number of hits are further ranked by the average ARD values. We carried out

4For the microarray datasets with dozens of samples, this might result in
the same LOO error for multiple biomarker sets, which makes it difficult
to discern the difference in performance. It is acceptable to employ other
quality criteria such as the predictive probability of misclassifications in LOO,
which is defined as

∑
t :ŷt �=yt

− ln P(yt |xt , D, θ
), where P(yt |xt , D, θ
) is
computed as in Equation (5) and ŷt is defined as in Equation (6).

forward selection again based on the final gene rank to identify the minimal
subset of relevant genes M
.

3 RESULTS AND DISCUSSION
Three publicly accessible gene expression datasets, related to colon,
leukaemia and prostate cancer, were analysed using our algorithm. In
all the cases, the expression levels of each sample were first normal-
ized to zero-mean and unit variance and then the expression levels of
each gene were again normalized to zero-mean and unit variance over
all the samples. We tackled two kinds of tasks with our algorithm,
i.e. normal versus tumour (binary classification) and Gleason score
prediction (ordinal regression).

3.1 Normal versus tumour
Many popular gene ranking methods employ the t-statistic as a cri-
terion to measure the variance of the expression levels in different
classes for each gene (Alon et al., 1999; Furey et al., 2000). Vari-
ants of the t-statistic, such as the measure of correlation proposed
by Golub et al. (1999) and Fisher’s discriminant criterion adapted
by Pavlidis et al. (2001), have also been extensively applied. The t-
statistic-like methods make the assumption that the data are described
by a Gaussian distribution. However, according to Deng et al. (2004)
and others, the normality condition often cannot be met in real gene
expression datasets with very limited samples. Non-parametric tests,
e.g. the Wilcoxon rank sum test, are superior to the t-test in this case.

As a pre-processing step, we used the Wilcoxon rank sum test
on the normalized expression data to remove the most uninform-
ative genes. The significance level was fixed at P = 0.01, and
the P -values were calculated using all the samples.5 We then gen-
erated 10 folds of the whole dataset for the resampling step in
Table 1. The detailed results on these three datasets are reported in the
following.

The colon cancer dataset, originally analysed by Alon et al. (1999),
contains expression levels of d = 2000 genes from 40 tumour and
22 normal colon tissues (http://microarray.princeton.edu/oncology/
affydata/index.html). There are 373 genes significantly differentially
expressed in the rank sum test at the significance level of P = 0.01.

The leukaemia dataset, originally studied by Golub et al. (1999)
(http://www.genome.wi.mit.edu/MPR), contains expression values
of d = 7129 genes from 47 samples of acute myeloid leukaemia
(AML) and 25 samples of acute lymphoblastic leukaemia (ALL).
There are 1169 genes significantly differentially expressed at the
significance level of P = 0.01.

Singh et al. (2002) carried out microarray expression analysis on
12 600 genes to identify genes that are correlated with the distinc-
tion of prostate tumour from the normal (the dataset is available at
http://www.genome.wi.mit.edu/MPR/prostate). Fifty-two samples
of prostate tumour and fifty samples of normal cells were invest-
igated. There are 2717 genes significantly differentially expressed at
the significance level P = 0.01.

The left part of Figure 1 represents the results of the LOO error for
the 50 top-ranked genes sorted by the number of hits of our algorithm,
along with those for the genes ranked by the P -values of the rank
sum test in the right part. A lower LOO error can be achieved using
the gene rank of our algorithm, although this may involve the use of

5Since we are using the ranking by P -value as a pre-processing step, it
was unnecessary for us to apply any correction for multiple testing or false
discovery rate.
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Fig. 1. The leave-one-out error using the top-ranked genes of the three datasets. The top-ranked 50 genes are progressively used in the modelling and the
corresponding LOO error (7) are shown as circles. In the left-hand figures the genes are ranked by the number of hits of our algorithm, while in the right-hand
figures the genes are ranked by their P -values of the Wilcoxon rank sum test. The closed circles indicate the set of selected genes with minimal LOO error.

more genes than when using the P -value rankings on the colon and
leukaemia data.

The selected genes are listed in Tables 2–4 with more descriptions.
From Table 2, we found that all the eight genes selected by Shevade
and Keerthi (2003) and six of the seven genes selected by Guyon et al.
(2002) are also in our list. In Table 3, eight of the nine genes selected
by Shevade and Keerthi (2003) are also selected by our algorithm.
The six genes in boldface were also identified by Golub et al. (1999)
as being part of their 50 gene signature that distinguished AML from
ALL. The gene selections are further visualized in Figure 2 by repres-
enting the covariance matrices in grey scale. The covariance matrices
turn out to be clearly blocked using the selected genes. The samples
in the same class are generally positively correlated, whereas the
samples in different classes are negatively correlated.

To estimate the predictive accuracy of our algorithm, we report in
Table 5 the test error rates of a 10-fold cross-validation experiment.
One fold was left out for test in turn, and a Gaussian process model
was trained on the remaining nine folds using a gene subset selected

by the rank sum test or the proposed algorithm separately. Note that
the gene selection was carried out by using the samples in the nine
training folds only, and then tested on the unused fold. We observed
that the validation results using hundreds of genes selected by rank
sum test are always better than those using all the original genes.
The improvement is especially significant on the leukaemia dataset.
Our algorithm can further reduce the number of selected genes to
<50, and yields competitive performance on the colon and leukaemia
datasets and much better results on the prostate dataset.

3.2 Gleason score prediction
The Gleason score is based exclusively on the architectural pattern of
the glands of the prostate tumour. It evaluates how effectively the cells
of any particular cancer are able to structure themselves into glands
resembling those of the normal prostate. The ability of a tumour
to mimic a normal gland architecture is called its differentiation.
The Gleason grading from very well differentiated (grade 1) to very
poorly differentiated (grade 5) is usually done for most parts by
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Table 2. The selected 26 genes in colon cancer data

Index GAN Description Hits Rank SLR (8) RFE (7)

377 Z50753 Homo sapiens mRNA for gcap-II/uroguanylin precursor 10 1 1 —
1772 H08393 Collagen alpha 2(xi) chain (H.sapiens) 9 10 2 7

576 D14812 Human mRNA for ORF, complete CDs 9 232 7 —
792 R88740 ATP synthase coupling factor 6, mitochondrial precursor 9 183 5 3

1924 H64807 Placental folate transporter (H.sapiens) 9 98 4 1
493 R87126 Myosin heavy chain, non-muscle (Gallus gallus) 8 2 3 —
732 R67343 Immediate-early regulatory protein IE-N 8 120 — —

1843 H06524 Gelsolin precursor, plasma (human) 7 9 6 —
1473 R54097 Translational initiation factor 2 beta subunit (human) 7 90 — —
1231 H49870 Mad protein (H.sapiens) 7 64 — —

14 H20709 Myosin light chain alkali, smooth-muscle isoform (human) 7 32 — —
1346 T62947 60S ribosomal protein l24 (Arabidopsis thaliana) 6 191 8 2
1360 H09719 Tubulin alpha-6 chain (Mus musculus) 6 291 — —
1549 H11084 Vascular endothelial growth factor (Cavia porcellus) 6 117 — —
1210 R55310 Mitochondrial processing peptidase 6 212 — —

663 Z17227 H.sapiens mRNA for transmenbrane receptor protein 6 277 — —
1668 M82919 Human gamma amino butyric acid (GABA A) receptor beta-3 subunit mRNA 6 189 — —
1555 L38929 H.sapiens protein tyrosine phosphatase delta mRNA, complete CDs 6 288 — —
1579 M31516 Human decay-accelerating factor mRNA 5 370 — —
1920 J04102 Human erythroblastosis virus oncogene homolog 2 (ETS-2) mRNA 5 218 — —
1570 H81558 Procyclic form specific polypeptide B1-alpha precursor 5 289 — 4

211 T47424 Insulin receptor substrate-1 (H.sapiens) 5 267 — —
1400 M59040 Human cell adhesion molecule (CD44) mRNA, complete CDs 4 343 — 6
1221 R62549 Putative serine/threonine-protein kinase b0464.5 in chromosome III 4 244 — —
1935 X62048 H.sapiens WEE1 hu gene 3 202 — —
1916 T41204 p14780 92 kDa Type V collagenase precursor 3 357 — —

Index denotes the serial number of the selected gene in the original data. Hits is the number of hits criterion used in our algorithm. Rank denotes the rank in the P -values of Wilcoxon
rank sum test. SLR (8) denotes the rank in the eight genes selected by the sparse logistic regression algorithm by Shevade and Keerthi (2003). RFE (7) denotes the rank in the seven
genes selected by recursive feature elimination using the support vector machines by Guyon et al. (2002).

Table 3. The selected 14 genes in the leukaemia data

Index GAN Description Hits Rank SLR(9)

4951 Y07604 NDP kinase 10 93 2
4847 X95735 Zyxin 10 4 3
1779 M19507 MPO myeloperoxidase 10 29 1
1834 M23197 CD33 antigen 9 1 6
6184 M26708 PTMA prothymosin alpha 9 133 5
4196 X17042 PRG1 Proteoglycan 1 9 32 —
2288 M84526 DF (adipsin) 8 15 —
1829 M22960 PPGB (galactosialidosis) 8 28 —
6283 M65214 TCF3 transcription factor 3 7 46 —
1882 M27891 CST3 Cystatin C 7 3 8
3252 U46499 Glutathione S-transferase 6 6 —
3847 U82759 HoxA9 6 74 4
6169 M13690 C1NH 6 212 9
6041 L09209 APLP2 6 5 —

Index denotes the serial no. of the selected gene. Hits is the number of hits used in
our algorithm. Rank denotes the P -value rank in the Wilcoxon rank sum test. SLR (9)
denotes the rank in the nine genes selected by Shevade and Keerthi (2003). The boldfaced
genes were selected in the 50 gene signature by Golub et al. (1999).

viewing a low magnification microscopic image of the tumour. There
are two types of Gleason scores, type I and type II, both of which
have five scales. Hereafter, Gleason score refers to the sum of the
grades of the two types.

Table 4. The selected 13 genes in the prostate cancer data

Index Description Hits Rank

6185 X07732: hepatoma mRNA for serine protease
hepsin

10 1

10234 AF055376: transcription factor C-MAF mRNA 10 163
11871 U21689: human glutathione S-transferase-P1c gene 10 97

5890 AJ001625: Homo sapiens mRNA for Pex3 protein 10 38
5045 AL080150: cDNA DKFZp434D174 10 85
7623 X51345: human jun-B mRNA for JUN-B protein 10 386
9172 AI207842: ao89h09.x1 H.sapiens cDNA, 3′ end 10 6
6390 AI093155: qa97g04.x1 H.sapiens cDNA, 3′ end 9 917
7539 X04297: human mRNA for Na,K-ATPase

alpha-subunit
9 287

12495 M98539: human prostaglandin D2 synthase gene 9 129
4438 AI275081: ql65b10.x1 H.sapiens cDNA, 3′ end 8 512

11942 D00017: humlic H.sapiens mRNA for lipocortin II 8 45
7139 AF025887: H.sapiens GSTA4 mRNA 8 1062

Index denotes the serial no. of the selected gene in the original data. Hits denotes the
number of hits of our algorithm. Rank denotes the P -value rank in Wilcoxon rank
sum test.

Singh et al. (2002) investigated 52 samples of prostate tumour
to identify a subset of the 12 600 genes correlated with pathological
features. For each sample, the Gleason score given by the pathologist
ranges from 6 to 10. Singh et al. (2002) treated the Gleason scores
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Fig. 2. The covariance matrices for the binary classification tasks. The covariance matrix is the n × n covariance matrix whose ij-th elements are defined by
the linear covariance function

∑d
�=1 x�

i x
�
j . In the left-hand figures the covariance matrices were evaluated over all the original genes, whereas in the right-hand

figures the covariance matrices were evaluated over the genes selected by our algorithm. The samples have been grouped by their labels. The pairs in rows
from top to bottom are for the colon, leukaemia and prostate datasets, accordingly. Arrows are used to indicate the range of the blocks.

Table 5. Test error rates in the 10-fold cross-validation experiments

Dataset All Genes Rank Sum Test Biomarkers

Colon 22.38 ± 19.12% (14) 16.19 ± 17.60% (10) 16.19 ± 13.65% (10)
Leukaemia 17.44 ± 8.02% (13) 7.08 ± 9.63 (5) 6.67 ± 9.25% (5)
Prostate 14.73 ± 12.67% (15) 12.82 ± 10.66 (13) 8.81 ± 9.74% (9)

The Wilcoxon rank sum test and the proposed algorithm were applied to select the gene
subset for modelling separately using the training samples in 9 folds only, and then tested
on the unused fold. All Genes denotes that all the genes were used in modelling, Rank
Sum Test denotes that the subset of genes with P -values lower than 0.01 in the Wilcoxon
rank sum test were used, and Biomarkers denotes that the gene subset selected by our
algorithm was used. Test error rates that averaged over the 10 folds are reported along
with the standard deviation. The integers in the parantheses is the total test error number
over the 10 folds.

as continuous variables in their analysis. We argue that the Gleason
score are ordinal variables in nature rather than continuous variables,
as the grades are ordered as ranks, and the metric distances between
the adjacent grades are not defined. Predicting the Gleason score from
the gene expression data is thus a typical ordinal regression problem.
In our experiments, as only six samples had a score >7, we merged
them as the top level, leading to three levels {=6, =7, ≥8} with 26, 20
and 6 samples, respectively. We generated six folds in the resampling
procedure, and presented the quality criteria for the top 50 genes
ranked by the number of hits as given in Figure 3a. The minimal
LOO error number was observed when the top 21 genes were used.
The selected 21 genes are listed in Table 6 with detailed descriptions.
We further visualized the selected genes, as given in Figure 4, by
presenting the covariance matrices in grey scale. We observed three
clearly blocked regions for the three ordinal scales in the covariance

3390

 at U
niversity of C

am
bridge on June 9, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


Biomarker discovery with Gaussian processes

Fig. 3. The leave-one-out error for the task of predicting the Gleason score, using the top-ranked gene sets of the prostate dataset. The top-ranked genes are
progressively used in the modelling and the corresponding LOO error numbers are presented in the graphs (a) and (b), respectively.

Table 6. The selected 21 genes in the prostate cancer data for predicting the Gleason score

# Index Description Functional role Hits Cuzick

1 583 AJ010232: H.sapiens mRNA for RET finger protein-like 3 Oncogene related 6 1
2 7714 AA630312: ac08f05.s1 H.sapiens cDNA Not annotated 5 440
3 9264 X57025: human IGF1 mRNA for insulin-like growth factor I Tumour supressor-like 5 534
4 6118 AW043690: wy80b07.x1 H.sapiens cDNA Not annotated 4 10
5 11213 D84361 human mRNA for p52 and p64 isoforms of N-Shc Secretion and signalling 4 82
6 7049 X74262: H.sapiens RbAp48 mRNA encoding retinoblastoma binding protein Tumour supressor-like 4 1329
7 8424 AF022375: H.sapiens vascular endothelial growth factor mRNA Vascularization 4 5586
8 10617 AW007029: ws49c09.x1 H.sapiens cDNA Not annotated 3 367
9 6897 AB029821: H.sapiens mRNA for phosphatidylethanolamine N -methyltransferase Tumour supressor-like 3 507

10 8484 U81561: human protein tyrosine phosphatase receptor pi (PTPRP) mRNA Signalling 3 41
11 4681 S68271: cyclic AMP-responsive element modulator (CREM) Tumour supressor-like 3 208
12 4325 AF104942: H.sapiens ABC transporter MOAT-C (MOAT-C) mRNA Transport drug resistance 3 4445
13 5837 U24389: human lysyl oxidase-like protein gene Tumour supressor-like 3 5
14 7076 AF017307: H.sapiens ETS-related transcription factor (ERT) mRNA Oncogene related 3 85
15 9878 U90028: H.sapiens bicaudal-D (BICD) mRNA Migration and motility 3 562
16 10787 HSU83661: H.sapiens multidrug resistance protein 5 (MRP5) mRNA Transport drug resistance 3 1103
17 11233 HUMRPTK: H.sapiens receptor protein-tyrosine kinase (HEK11) mRNA Migration and motility 3 36
18 6749 AB028978: H.sapiens mRNA for KIAA1055 protein Not annotated 3 400
19 10764 AF024710: H.sapiens vascular endothelial growth factor (VEGF) mRNA Vascularization 3 1934
20 5809 J02931: human placental tissue factor (two forms) mRNA Vascularization 3 376
21 8878 J03507: human complement protein component C7 mRNA Complement 2 86

# denotes the serial number in the list. Hits denotes the number of hits criterion used in our algorithm. Cuzick denotes the rank in the P -values of the Cuzick test for trend.

matrices using the selected genes. Moreover, the samples of the level
6 are strongly negatively correlated to the samples of level ≥8.

Cuzick’s test is a Wilcoxon-like test for trend across ordered groups
(Lehmann, 1998). The informative genes can be selected based on
the P -values of the Cuzick test. The LOO error numbers using the
100 top-ranked genes are presented in Figure 3b. When more than
80 genes are used in modelling, the LOO error becomes smaller
than that obtained using the top-ranked gene only. A much lower
LOO error was obtained by our algorithm using the top 21 ranked
genes. We also tried the Kruskal–Wallis rank sum test, which is
designed for the case of multiple categories (Lehmann, 1998). Since
this test is insensitive to the ordering information among the ordinal
scales, the LOO errors are always greater than that using the first top-
ranked gene. This observation also implies that multi-classification
methods should not be generally applied to tackle ordinal regression
problems.

3.3 Discussion
The models we have developed to discriminate between normal and
tumour tissues (prostate and colon cancer datasets) and between
AML and ALL are very promising and reflect to some degree about
what is known of the biology of these systems. A representative case
is hepsin in Table 4 (a gene selected in the signature discriminat-
ing between normal and tumour prostate samples). Hepsin is a cell
surface serine protease that is known to be markedly upregulated in
human prostate cancer. Overexpression of hepsin in a mouse model
of non-metastasizing prostate cancer has no impact on cell prolif-
eration, but causes disorganization of the basement membrane and
promotes primary prostate cancer progression and metastasis to liver,
lung and bone (Klezovitch et al., 2004).

Of particular interest are the models linking the degree of differ-
entiation of prostate tumour (Gleason score) to the molecular state
of tumour cells. In their original attempt Singh et al. (2002) have
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Fig. 4. The covariance matrices for the task of predicting Gleason score. As in Figure 2, the left graph represents the covariance matrix evaluated over all the
original genes, while the right graph represents the matrix evaluated over the selected genes by our proposed algorithm. The samples have been grouped by
their ordinal scales, and arrows are used to indicate the range of the blocks.

identified genes whose expression was correlated to this patholo-
gical variable. There are two major limitations in their approach.
First, genes are selected individually rather than in combination.
The second limitation is that the Gleason score is not a continuous
variable but a categorical one, as mentioned earlier.

Our approach significantly improves on the previous study by
providing a statistical model representing the Gleason score as
an ordered categorical variable. The molecular signature we have
developed is robust and has good explanatory power. Although the
signature we have identified does not include any of the genes origin-
ally selected by Singh et al. (2002) we have observed some degree of
functional overlap. Both signatures, in fact, include genes involved
in insulin response [IGF1 in our model, i.e. no. 3 in Table 6, and
Insulin-like growth factor binding protein 3 in the model developed
by Singh et al. (2002)] and contain members of the complement
component pathway (complement component 2 in the original ana-
lysis and complement component 7 in our model, i.e. no. 21 in
Table 6). Interestingly, the large majority of the genes in the mod-
els we have developed to explain the degree of differentiation of
the tumour are known to be associated with tumour physiology or
are related to molecular functions that are highly informative of
the molecular events underlying the pathology. Table 6 shows a
functional classification of the selected genes. The most striking fea-
ture of our model is that seven genes are either tumour suppressor
genes or oncogenes and therefore are known to be directly involved
in the neoplastic process. Our signature contains five genes with
tumour-suppressor activity. Of these, three have a demonstrated
function in prostate cancer. The expression of the lysyl oxidase-
like protein (LLP) (no. 13 in Table 6) gene has been reported to be
progressively lost in primary prostate cancer and associated meta-
static lesions (Ren et al., 1998) and is inactivated by methylation
and loss-of-heterozygosity in human gastric cancers (Kaneda et al.,
2004). These observations are strongly supportive of the role of
LLP as a tumour suppressor gene in solid tumours. The expres-
sion of IGF1 is also decreased in human prostate cancer. A clear
tumour-suppressive activity in prostate cancer has been demonstrated
through an apoptotic mechanism (Mutaguchi et al., 2003). Another
gene selected in our model with a demonstrated tumour suppress-
ive activity in prostate cancer is the inducible cAMP early repressor
(CREM/ICER, no. 11). This gene is an important mediator of cAMP

antiproliferative activity that specifically affects the tumorigenicity
of prostate cancer cells without affecting their growth (Memin et al.,
2002). Phosphatidylethanolamine N -methyltransferase (PEMT, no.
9) is an enzyme in liver that catalyses the stepwise methylation
of phosphatidylethanolamine to phosphatidylcholine. PEMT pro-
tein decreased in pre-neoplastic nodules and virtually disappeared
in hepatocellular carcinoma induced by aflatoxin B1. Transfection
experiments demonstrated that the loss of PEMT function may con-
tribute to malignant transformation of hepatocytes (Tessitore et al.,
2000). This enzyme is expressed at similar levels in liver and pro-
state cells (estimated by looking at the frequency of expressed
sequence tags in the Unigene database) and, therefore, it is reas-
onable to hypothesize that a similar role may be shared in these
different organs. Last of the tumour suppressor genes included in
the model is the RbAp48 gene (no. 6). The protein encoded by
this gene has been demonstrated to mediate the retinoblastoma pro-
tein tumour suppressor activity (Qian et al., 1993). RbA would, in
fact, be a component of the histone deacetylase complex that is
associated with the retinoblastoma protein (Nicolas et al., 2000).
Two genes encoding proteins with oncogenic activity have also
been selected in the model. These are ERT (no. 14) and RET
(no. 1). The proteins of the ETS family are transcription factors
involved in signal transduction, cell cycle progression and differenti-
ation. It has been demonstrated that cell neoplastic transformation is
associated with a dramatic increase in ETS transcriptional activity (de
Nigris et al., 2001). The RET proto-oncogene encodes a protein that
belongs to the tyrosine kinase growth factor receptor family. The RET
proto-oncogene is expressed in human prostate cancer xenografts and
prostate cancer cell lines (Dawson et al., 1998).

Angiogenesis is another important process in the development
of the tumour and it is represented in our model by two genes.
These are vascular endothelial cell growth factor (VEGF) (no. 19)
and one of its main regulators, the gene encoding for tissue factor
(TF) (no. 20). VEGF is the only mitogen that specifically acts on
endothelial cells and its function is key to the development of tumour
angiogenesis in vivo (Affara and Robertson, 2004). TF, when pro-
duced by tumour cells, has been implicated in the regulation of new
blood vessels formation through its ability to concurrently induce
the expression of angiogenic molecules such as VEGF, while inhib-
iting the expression of anti-angiogenic molecules. The expression
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of TF has been directly linked to vascularization in prostate cancer
(Abdulkadir et al., 2000). Another molecular function represented in
our model and with great relevance in tumour physiology is the abil-
ity to develop drug resistance. MRP5/MOAT-C (represented twice in
the model we have developed, i.e. no. 16 and no. 12 in Table 6) is a
drug resistant gene that has been implicated in the transport of cyclic
nucleotides from cultured cells or isolated tissues (Wielinga et al.,
2003).

Our model representing the degree of tumour differentiation is par-
ticularly interesting since most of the genes are directly linked to the
molecular events underlying tumour progression (tumour suppressor
genes, oncogenes and vascularization markers) or are related to cel-
lular function relevant to cancer physiology (motility and secretion).
The function of genes represented in our models suggests that the
ability of tumour cells to aggregate into glandular structures may be
correlated to the regulation of proliferation and survival. Of interest
is also the link between vascularization and the degree of tumour
differentiation. This link is strongly supported by our model (both
VEGF and one of its activators have been selected). Ultimately, the
ability to develop resistance to anticancer drugs could also be linked
to the degree of differentiation of the tumour. Our results demonstrate
how the multi-gene markers that may be initially developed with a
diagnostic or prognostic application in mind are also useful as an
investigative tool to reveal associations between specific molecular
and cellular events, and features of tumour physiology.

4 CONCLUSIONS
We have presented a feature selection algorithm based on Gaussian
processes for biomarker discovery associated with ordinal (includ-
ing binary) clinical phenotypes. This algorithm is clearly superior to
the simple ranking method using the rank sum test. Our results on
the three microarray datasets are very promising and supported by
existing biological knowledge. Moreover, our algorithm can be dir-
ectly applied for biomarker discovery in large-scale proteomics and
metabolomics datasets and this would be a focus of our future work.
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