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Abstract—In this paper, we develop a segmental semi-Markov model (SSMM) for protein secondary structure prediction which

incorporates multiple sequence alignment profiles with the purpose of improving the predictive performance. The segmental model is a

generalization of the hidden Markov model where a hidden state generates segments of various length and secondary structure type.

A novel parameterized model is proposed for the likelihood function that explicitly represents multiple sequence alignment profiles to

capture the segmental conformation. Numerical results on benchmark data sets show that incorporating the profiles results in

substantial improvements and the generalization performance is promising. By incorporating the information from long range

interactions in �-sheets, this model is also capable of carrying out inference on contact maps. This is an important advantage of

probabilistic generative models over the traditional discriminative approach to protein secondary structure prediction. The Web server

of our algorithm and supplementary materials are available at http://public.kgi.edu/~wild/bsm.html.

Index Terms—Bayesian segmental semi-Markov models, generative models, protein secondary structure, contact maps, multiple

sequence alignment profiles, parametric models.
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1 INTRODUCTION

PROTEIN secondary structure prediction remains an
important step on the way to full tertiary structure

prediction in both fold recognition (threading) and ab-initio
methods, as well as providing useful information for the
design of site directed mutagenesis experiments to elucidate
protein function. A variety of approaches have been
proposed to derive the secondary structure of a protein
from its amino acid sequence as a classification problem.
Beginning with the seminal work of Qian and Sejnowski [1],
many of these methods have utilized neural networks. A
major improvement in the prediction accuracy of these
methods was made by Rost and Sander [2], who proposed a
prediction scheme using multilayered neural networks,
known as PHD. The key novel aspect of this work was the
use of evolutionary information in the form of profiles
derived from multiple sequence alignments instead of
training the networks on single sequences. Another kind of
alignment profile, position-specific scoring matrices (PSSM),
derived by the iterative search procedure PSI-BLAST [3], has
been used in neural network prediction methods to achieve
further improvements in accuracy [4], [5].

All of the above approaches treat the secondary structure
prediction problem as a supervised discriminative classifi-
cation problem. An alternative approach is to treat the
problem from the perspective of generative models. One of
the first applications of hidden Markov models (HMMs) to
the secondary structure prediction problem was described
by Delcher et al. [6]. Generalized HMMs with explicit state
duration, also known as segmental semi-Markov models,
have been widely applied in the field of gene identification
[7], [8], [9], [10]. Recently, Schmidler [11] presented an
interesting statistical generative model for protein structure
prediction, based on a segmental semi-Markov model
(SSMM) [12] for sequence-structure relationships. The
SSMM is a generalization of hidden Markov models that
allows each hidden state to generate a variable length
sequence of observations. One advantage of such a
probabilistic framework is that it is possible to incorporate
varied sources of sequence information using a joint
sequence-structure probability distribution based on struc-
tural segments. Secondary structure prediction can then be
formulated as a general Bayesian inference problem.
However, the secondary structure prediction accuracy of
the SSMM as described by Schmidler [11] falls short of the
best contemporary discriminative methods. As suggested
by Schmidler [11], incorporation of multiple alignment
profiles into the model might be a plausible way to improve
the performance.

While we draw heavily on the work of Schmidler et al.
[11], [13], [14], our paper makes several original contribu-
tions to the SSMM model, which can be summarized as
follows:
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1. We incorporate evolutionary information in the form
of multiple sequence alignment profiles into the
SSMM model. We observed that this extension
results in substantial improvements in performance
(� 7%) over Schmidler’s original model [11] and
makes the SSMM approach competitive with other
contemporary methods for secondary structure
prediction. We believe that this is a significant result
given the interest in improving structure prediction
techniques in the field.

2. We propose a novel parameterized model as the
likelihood function for the SSMM model in order to
exploit the information provided by the multiple
sequence alignment profiles. Schmidler et al. [13]
used lookup tables for conditional discrete random
variables in the SSMM model. This limits the
dependency modeling since the number of para-
meters of the lookup table grows exponentially with
the length of the dependency window. The number
of parameters in the model we propose (see (8))
grows linearly with the length of the dependency
window. We also apply the concept of a “product of
experts” [15] to combine contributions from the
segmental dependency and helical capping signals
in the likelihood evaluation (see (4)).

3. We propose a novel definition of beta sheet contact
space that allows for efficient sampling of long-range
contacts under the realistic constraint that one amino
acid can have at most two hydrogen bonds and
unpaired beta strands are not possible. This ability to
infer contact maps is one of the principal advantages
of a probabilistic modelling approach over the
traditional discriminative approach to protein sec-
ondary structure prediction.

The paper is organized as follows: We describe the
Bayesian framework of the SSMM in Section 2. In Section 3,
we extend the model to incorporate long range interactions,
and point out the capability to infer contact maps. In
Section 4, we discuss the issue of parameter estimation in
detail. In Section 5, we describe a general sampling scheme
for prediction. In Section 6, we present the results of
numerical experiments and conclude in Section 7.

2 BAYESIAN MODELING FRAMEWORK

The key concept underlying our modeling approach is the
notion of proteins as collections of local structural fragments,
or segments, which may be shared by unrelated proteins—an
approach which has gained increasing currency in the

protein modeling community in recent years [16], [17].

The modeling framework we adopt is that of the segmental

semi-Markov model (SSMM) [11], [12]—a generalization of

hidden Markov models that allows each hidden state to

generate a variable length sequence of the observations. For

uniformity, we follow the definitions first established by

Schmidler et al. [13] in the context of protein secondary

structure.
The observation sequence includes both a residue

sequence and a multiple alignment profile for each protein

chain and is denoted as O ¼ ½O1; O2; . . . ; Oi; . . . ; On�. The

associated secondary structure can be fully specified in

terms of segment locations and segment types. The segment

locations can be identified by the positions of the last

residue of these segments, denoted as e ¼ ½e1; e2; . . . ; em�,
where m is the number of segments. We use three

secondary structure types. The set of secondary structure

types is denoted as T ¼ fH;E;Cg, where H is used for

�-helix, E for �-strand, and C for coil. The sequence of

segment types can be denoted as T ¼ ½T1; T2; . . . ; Ti; . . . ; Tm�,
with Ti 2 T 8i. In Fig. 1, we present an illustration for the

specification of the secondary structure of an observed

sequence. Based on a set of protein chains with known

secondary structure, we learn an explicit probabilistic

model for sequence-structure relationships in the form of

a segmental semi-Markov model.
In this approach, the segment types are regarded as a set

of discrete variables, known as states. Each of the segment

types possesses an underlying generator, which generates a

variable-length sequence of observations, i.e., a segment. A

schematic depiction of the SSMM is presented in Fig. 2 from

the perspective of generative models. The variables ðm; e; T Þ
describe the secondary structure segmentation of the

sequence. In a Bayesian framework, the secondary structure

prediction problem then consists of computing the posterior

probability, Pðm; e; T jOÞ, for an observed sequence O. For

this purpose, we need to define the prior probability

Pðm; e; T Þ and the likelihood PðOjm; e; T Þ. This Bayesian

framework is described in more detail in the following

sections.

2.1 Multiple Alignment Profiles

In our model, each of the primary sequences of amino acid

residues we are given, denoted asR ¼ ½R1; R2; . . . ; Ri . . . ; Rn�
with Ri 2 A, where 1 � i � n and A, is the set of 20 amino

acids, is associated with a profile derived by multiple

sequence alignment [18] or PSI-BLAST [3].
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Fig. 1. Presentation of the secondary structure of a protein chain in terms of segments (adapted from Schmidler et al. [13]). The square blocks
denote our observations of these amino acid residues. The rectangular blocks with solid borders denote the segments. The model represents the
segment type T ¼ ½C;E;C;H; . . .� and the segmental endpoints e ¼ ½4; 7; 9; 14; . . .�. Capping positions specify the N and C-terminal positions within a
segment. Here, both the N-capping and C-capping length are fixed at 2 and then fN1; N2; Internal; C2; C1g are used to indicate the capping
positions within a segment.



. Multiple Sequence Alignment Profiles: For a se-
quence of amino acid residues, we employ the
techniques of pairwise sequence comparison to
search a nonredundant protein sequence database
for several other sequences which are similar
enough at the sequence level to be evolutionarily
related. These homologs are then aligned using
standard multiple sequence alignment techniques
[18]. Ideally, a row of aligned residues occupies
similar structural positions and all diverge from a
common ancestral residue. By counting the number
of occurrences of each amino acid at each location,
we obtain an alignment profile. Formally, the
alignment profile, M ¼ ½M1;M2; . . . ;Mi; . . . ;Mn�, is
a sequence of 20� 1 vectors, where Mi contains the
occurrence counts for the 20 amino acids at location i.

. Profiles from PSI-BLAST: PSI-BLAST [3] is a
gapped-version of BLAST that uses an effective
scheme for weighting the contribution of different
numbers of specific residues at each position in the
sequence via an intermediate sequence profile,
known as a position-specific score matrix (PSSM).
Jones [4] explored the idea of using this PSSM as a
direct input to a secondary structure prediction
method rather than extracting the homologous
sequences and then producing a multiple sequence
alignment. The PSSM from PSI-BLAST is a matrix
with 20� n elements, where n is the length of the
sequence and each element represents the log-
likelihood of the particular amino acid substitution
at that position. The profile matrix elements can be
mapped to relative occurrence counting by using the
standard logistic function: 1

1þexpð�xÞ.

2.2 Prior Distribution

The prior distribution for the variables describing second-

ary structure Pðm; e; T Þ is factored as

Pðm; e; T Þ ¼ PðmÞPðe; T jmÞ

¼ PðmÞ
Ym
i¼1

Pðeijei�1; TiÞPðTijTi�1Þ:
ð1Þ

The segment type depends on the nearest previous
neighbor in the sequence through the state transition
probabilities PðTijTi�1Þ, which are specified by a 3� 3
transition matrix. Pðeijei�1; TiÞ, more exactly, PðlijTiÞ, where
li ¼ ei � ei�1 is the segmental length distribution of the type
Ti.

1 Note that the prior on length implicitly defines a prior
on the number of segments m for a sequence of a given
length. A uniform prior can be assigned for m, i.e.,
PðmÞ / 1, as this does not have much effect on inference.

2.3 Likelihood Function

The likelihood is the probability of observing the sequence
of alignment profiles given the set of random variables
fm; e; Tg. Generally, the probability of the observations can
be evaluated as a product of the segments specified by
fm; e; Tg:

PðOjm; e; T Þ ¼
Ym
i¼1

PðSijS�i; TiÞ; ð2Þ

where Si ¼ O½ei�1þ1:ei� ¼ ½Oei�1þ1; Oei�1þ2; . . . ; Oei � is the ith
segment and S�i ¼ ½S1; S2; . . . ; Si�1�. The likelihood function
PðSijS�i; TiÞ for each segment can be further factorized as a
product of the conditional probabilities of individual
observations,

P SijS�i; Tið Þ ¼
Yei

k¼ei�1þ1

P OkjO½1:k�1�; Ti
� �

; ð3Þ

where Ok is the pair of fRk;Mkg. Rk is a column vector with
20 elements in which only one element is 1, indicating the
amino acid type of the kth residue, while others are 0, and
Mk is the count vector obtained from the alignment profile.
The likelihood function for each residue should be capable
of capturing the core features of the segmental composition
in the protein structure.

Schmidler et al. [13] proposed a helical segment model
with lookup tables to capture helical capping signals [19]
and hydrophobicity dependency [20] in segmental residues.
Aydin et al. [21] introduce an improved dependency model
by considering the statistically significant correlation
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1. e0 ¼ 0 is introduced as an auxiliary variable.

Fig. 2. The segmental semi-Markov model illustrated as generative processes. A variable-length segment of observations associated with random
length li is generated by the state Ti. The observations within a segment need not be fully correlated, while there might be dependencies between
the residues in adjacent segments. The dashed rectangle denotes the dependency window with length 5 for the observation On�1. In the enlarged
dependency window, �n�1 is a vector of latent variables that defines the multinomial distribution in which we observe Mn�1, while �n�1 is assumed to
be dependent on Mn�6; . . . ;Mn�2.



patterns at segment borders. The number of free parameters
in these approaches is exponential with the length of the
dependency window. To overcome this drawback, Chu et al.
[22] proposed an extended sigmoid belief network with
parameterization for likelihood evaluation in which the
parameter number grows linearly with the length of the
dependency window. However, these methods were de-
signed to use the primary sequence only and their
secondary structure prediction accuracy still falls short of
the best contemporary methods. Incorporation of multiple
alignment profiles into the model could be a plausible way
to improve the performance.

The plausibility of a protein structure should be
evaluated from various perspectives, such as segmental
dependency [20], helical capping signals [19], and steric
restrictions [23], etc. It is hard to incorporate all the relevant
perspectives by using a single model as the likelihood
function. Therefore, we adopt the concept of a “product of
experts” [15] for likelihood evaluation. In the present work,
we introduce two experts for the segmental dependency
and the helical capping signals, respectively. One is a novel
parameterized model for segmental dependency that
explicitly represents the multiple sequence alignment
profile; another is a set of discrete distributions that
captures helical capping signals. The conditional probabil-
ities of individual observations can be evaluated in the form
of a product of experts, i.e.,

PðOkjO½1:k�1�; TiÞ ¼ PðMkjM½1:k�1�; TiÞPðRkjR½1:k�1�; TiÞ: ð4Þ

More details are given in the following.

2.3.1 An Expert for Segmental Dependency

The existence of correlated side chain mutations in �-helices
has been well studied [20], [24]. These correlations in
nonadjacent sequence positions are induced by their spatial
proximity in the folded protein molecule and provide an
important source of information about the underlying
structure. We propose a novel parametric model to capture
the segmental dependency by exploiting the information in
the multiple sequence alignment profile.

Multinomial Distribution. We assume that Mk comes
from a multinomial distribution with 20 possible outcomes
and outcome probabilities �k, a 20� 1 vector. The outcomes
refer to the types of amino acids occurring at the current
residue position, while Mk is a 20� 1 vector counting the
occurrence of these outcomes. Thus, the probability of
getting Mk can be evaluated by

PðMkj�k; TiÞ ¼
�ð
P

a M
a
k þ 1ÞQ

a �ðMa
k þ 1Þ

Y
a2A
ð�akÞ

Ma
k ; ð5Þ

where A is the set of 20 amino acids, Ma
k is the element in

Mk for the amino acid a, and �ak denotes the probability of
the outcome a with the constraint

P
a �

a
k ¼ 1. �ð�Þ is the

Gamma function defined as �ðxÞ ¼
R1

0 tx�1 expð�tÞ dt.2
Dirichlet Prior. As shown in the dependency window of

Fig. 2, the multinomial distribution at the kth residue is

dependent upon preceding observations within the depen-

dency window, the segment type, and the current capping

position within the segment. The underlying causal impact

on the current multinomial distribution, where we observed

Mk, can be captured by a prior distribution over the latent

variables �k. A natural choice for the prior distribution over

�k is a Dirichlet, which has also been used to define priors

for protein family HMMs [25]. In our case, this can be

explicitly parameterized by weight matrices with positive

elements as follows:

Pð�kjM½1:k�1�; TiÞ ¼
�ð
P

a ��
a
kÞQ

a �ð��akÞ
Y
a2A
ð�akÞ

��a
k
�1; ð6Þ

where ��k is a 20� 1 vector defined as

��k ¼W 0 þ
X‘k
j¼1

Wj
intraMk�j þ

X‘
j¼‘kþ1

Wj
interMk�j; ð7Þ

with ‘ the length of dependency window, 3

‘k ¼ minðk� ei�1 � 1; ‘Þ,4 and a 20� 1 weight vector W 0

is used for local contributions. Weight matrices Wintra and

Winter of size 20� 20 are used to capture both intraseg-

mental and intersegmental dependency, respectively,

where the superscript denotes the residue interval. The

constraint �ak > 0 8a is guaranteed by constraining the

weight variables to have positive values. In total, we have

three sets of weights for � 2 T individually. For a

segment type � , we get the set of weight parameters,

WW� ¼ fW 0;W 1
intra; . . . ;W‘

intra;W
1
inter; . . . ;W‘

interg.
Dirichlet-Multinomial Distribution. The quantity of

interest, PðMkjM½1:k�1�; TiÞ in (3), can be finally obtained as

an integral over the space of the latent variables �k, which is

given by

PðMkjM½1:k�1�; TiÞ ¼
Z
�k

PðMkj�k; TiÞPð�kjM½1:k�1�; TiÞ d�k

¼ �ð
P

a ��
a
kÞ �
Q

a �ð��ak þMa
k Þ

�
P

að��ak þMa
k Þ

� �
�
Q

a �ð��akÞ
� �ð
P

a M
a
k þ 1ÞQ

a �ðMa
k þ 1Þ ;

ð8Þ

where �ð�Þ denotes the Gamma function, and ��k is defined
as in (7).

2.3.2 An Expert for Helical Capping Signals

Helical capping signals [19] refer to the preference for

particular amino acids at the N and C-terminal ends, which

terminate helices through side chain-backbone hydrogen

bonds or hydrophobic interactions. Thus, amino acid

distributions around the segment ends differ significantly

from those of the internal positions, which provide

important information for identifying �-helix segments in

protein sequences.
The component PðRkjR½1:k�1�; TiÞ in (3) can be simply

modeled as PðRkjTiÞ, which represents the probability of

observing Rk at the particular capping position in segments

with type Ti. The capping position of each residue within a

segment can be determined uniquely (see Fig. 1 for an

CHU ET AL.: BAYESIAN SEGMENTAL MODELS WITH MULTIPLE SEQUENCE ALIGNMENT PROFILES FOR PROTEIN SECONDARY... 101

2. Note that �ðxþ 1Þ ¼ x! for positive integers x.
3. The window length may be specified individually for segment types.
4. minða; bÞ means a if a � b, otherwise b.



illustration).5 The probability distribution of amino acids on a

specific capping position c in segments with type � , denoted

as PcðRj�Þ, can be directly estimated from the training data

set, where c 2 fN1; N2; . . . ; Internal; . . . ; C2; C1g, R 2 A and

� 2 T .
In summary, the segmental likelihood function we

proposed can be explicitly written as

PðOjm; e; T Þ ¼
Ym
i¼1

PðSijTi; S�iÞ

¼
Ym
i¼1

Yei
k¼ei�1þ1

PðMkjM½1:k�1�; TiÞPcðRkjTiÞ;
ð9Þ

where PðMkjM½1:k�1�; TiÞ is defined as in (8) and PcðRkjTiÞ is

the position-specific distribution of capping signals.
Winther and Krogh [26] have demonstrated that opti-

mized potential functions learned from training data can

provide very strong restrictions on the spatial arrangement

of protein folding. As a very promising direction for future

work, the introduction of an additional “steric expert” into

our likelihood function could provide global restrictions on

secondary structure and fulfill the potential of the Bayesian

segmental model for tertiary structure prediction.

2.4 Posterior Distribution

All inferences about the segmental variables ðm; e; T Þ
defining secondary structure are derived from the posterior

probability Pðm; e; T jOÞ. Using Bayes’ theorem,

Pðm; e; T jOÞ ¼ PðOjm; e; T ÞPðm; e; T ÞPðOÞ ; ð10Þ

where PðOÞ ¼
P
fm;e;Tg PðOjm; e; T ÞPðm; e; T Þ as the nor-

malizing factor. From the posterior distribution over

segmental variables Pðm; e; T jOÞ, we can obtain two

different ways of estimating the secondary structure of a

given sequence:

. The most probable segmental variables in the
posterior distribution: arg maxm;e;T Pðm; e; T jOÞ,
known as the MAP estimate.

. The posterior distribution of the segment type at
each residue: PðTOi

jOÞ, where we denote TOi
as

the segment type at the ith observation. The

marginal posterior mode estimate is defined as
arg maxT PðTOi

jOÞ.
The Viterbi and forward-backward algorithms for SSMM

[27], [13] can be employed for the MAP and marginal

posterior mode estimate, respectively.

3 INCORPORATING LONG RANGE INTERACTIONS IN

�-Sheets

We have set up a Bayesian framework to predict secondary

structure. However, secondary structure might be affected

not only by local sequence information, but also by long

range interactions between distal regions of the amino acid

sequence. This is particularly important in the case of

�-sheets, which are built up from several interacting regions

of �-strands. The strands align so that the NH groups on one

strand can form hydrogen bonds with the CO groups on the

distal strand and vice versa. The alignment can happen in

two ways: Either the direction of the polypeptide chain of

�-strands is identical, a parallel �-sheet, or the strand

alignment is in the alternative direction, an antiparallel

�-sheet. In Fig. 3, we present the two cases for a pair of

interacting segments, Si and Sj with i < j. A binary variable

is used to indicate alignment direction; dij ¼ þ1 for parallel

and dij ¼ �1 for antiparallel. A integer variable aij is used

to indicate the alignment position. The endpoint of Si,

known as ei, is used as the origin and then aij is defined as

the shift between ei and ej for parallel cases, while, for

antiparallel cases, it is the shift between ei and the

beginning point of Sj, i.e., ej�1 þ 1.6 The challenge for a

predictive approach is how to introduce these long range

interactions into the model. Incorporating these long-range

dependencies into the SSMM model was pioneered by

Schmidler et al. [11], [14]. In this section, we extend our

parametric model to incorporate information on long range

interactions in �-sheets.

3.1 Prior Specification for Distal Interactions

A set of random variables is introduced to describe the long

range interactions, collected as I ¼ ffSj $ Sj0 ; djj0 ; ajj0 grj¼1g,
where r is the number of interacting pairs and fSj $
Sj0 ; djj0 ; ajj0 g is a pair of interacting segments together with

their alignment information. We can expand the prior

probability as Pðm; e; T ; IÞ ¼ PðIjm; e; T ÞPðm; e; T Þ, where
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5. Note that we have used two sets of positioning indices for each
residue: a sequential number k, where 1 � k � n, and a capping position cap
where cap 2 fN1;N2; . . . ; Internal; . . . ;C2;C1g.

6. We assume interaction parts to be contiguous, e.g., excluding the case
of �-bulges.

Fig. 3. Antiparallel (top) and parallel (bottom) pairs of interacting segments, Si and Sj. dij is the binary variable for alignment direction and aij is the

integer variable for alignment position. A weight matrix Wsheet is introduced to capture the distal residue interactions.



Pðm; e; T Þ is defined as in (1) and the conditional
probability PðIjm; e; T Þ can be further factored as

PðIjm; e; T Þ ¼ PðrjkÞPðfSj $ Sj0 grj¼1ÞYr
j¼1

Pðdjj0 jSj $ Sj0 ÞPðajj0 jSj $ Sj0 ; djj0 Þ;
ð11Þ

where r is the number of interacting pairs, k is the number

of �-strands, and fSj $ Sj0 grj¼1 denotes a combination for

�-strands to form r interacting pairs. Various specifications

for these distributions in (11) are applicable provided that

they satisfy
P
I PðIjm; e; T Þ ¼ 1. In the present work, we

assumed a uniform distribution, PðfSj $ Sj0 grj¼1Þ ¼ 1
cðr;kÞ if

the combination is valid, where cðr; kÞ is the total number of

valid combinations, otherwise PðfSj $ Sj0 grj¼1Þ ¼ 0. A valid

combination requires that each �-strand interact with at least

one and at most two other strands. This constraint comes

from the chemical structure of amino acids, i.e., the CO and

NH groups. PðrjkÞ, Pðdjj0 jSj $ Sj0 Þ and Pðajj0 jSj $ Sj0 ; djj0 Þ
are discrete distributions depending on the distance

between the two �-strands and their lengths, which were

learned from training data by counting the relative

occurrence frequencies.

3.2 Joint Segmental Likelihood

It is straightforward to extend the parametric model (8) to
include long range interactions in �-sheets, which can be

regarded as an extension of the dependency window to
include the distal pairing partners. We introduce another

20� 20 weight matrix Wsheet to capture the correlation
between distal interacting pairs. The segmental likelihood

function (3) for the �-strands can be enhanced as

PðSijS�i; Ti ¼ E; IÞ

¼
Yei

k¼ei�1þ1

�ð
P

a ~��~��akÞ
Q

a �ð~��~��ak þMa
k Þ

�
P

að~��~��ak þMa
k Þ

� �Q
a �ð~��~��akÞ

�ð
P

a M
a
k þ 1ÞQ

a �ðMa
k þ 1Þ

PcðRkjTi ¼ EÞ;

ð12Þ

with ~��~��k ¼ ��k þ
P
fk�gWsheetMk� where ��k is defined as in (7)

and fk�g denotes the set of interacting residues of Ok that
can be determined by I .

3.3 �-Sheet Contact Maps

Contact maps represent the pairwise, interresidue contacts,

as a symmetrical, square, Boolean matrix. Pollastri and

Baldi [28] have previously applied ensembles of bidirec-

tional recurrent neural network architectures to the predic-

tion of such contact maps. In this section, we describe the

capability of this parametric SSMM model to carry out

inference on contact maps, which has also been explored by

Schmidler et al. [14], [11]. This capability is one of the

advantages of the probabilistic modeling approach over the

traditional discriminative approach (e.g., neural networks)

to protein secondary structure prediction. �-sheets are built

up from pairs of �-strands with hydrogen bonds, which are

prominent features in contact maps. The set of �-sheet

interactions is associated with a �-sheet contact map defined

by an n� n matrix, C, whose ijth entry, Cij, is defined as

CijðIÞ ¼ 1 if Oi and Oj are paired in I ;
0 otherwise:

�
ð13Þ

We may estimate the marginal predicted C from the

posterior distribution of Pðm; e; T ; IjOÞ, given by

PðCij ¼ 1jOÞ ¼
X

m;e;T ;I
CijðIÞ Pðm; e; T ; IjOÞ; ð14Þ

where the indicator function CijðIÞ is defined as in (13).

Using the samples we have collected from the distributions

Pðm; e; T jOÞ and PðIjm; e; T Þ (see Section 5 and Appendix A

for details), (14) can be estimated by

PðCij ¼ 1jOÞ ¼
X
m;e;T

X
I
CijðIÞPðm; e; T ; IjOÞ

� 1

N
X
fm;e;Tg

X
fIg
CijðIÞ PðOjm; e; T ; IÞP

fIg PðOjm; e; T ; IÞ
;

ð15Þ

where the samples fIg are collected from PðIjm; e; T Þ and

N samples of fm; e; Tg are from Pðm; e; T jOÞ.

4 PARAMETER ESTIMATION

The probabilistic model we describe above has five classes

of latent variables, parameters, and hyperparameters,

which are inferred or specified in different ways:

. Latent variables related to the location and length of
secondary structure elements fm; e; Tg:

- number of segments: m,
- the end points of each segment that specify the

segment lengths: e,
- secondary structure classes of each segment: T .

We infer these latent variables by sampling from the
posterior distribution Pðm; e; T jOÞ (see Section 5 for
details).

. Latent variables related to distal interactions in
�-sheets fIg:

- number of interacting pairs: r,
- the interacting pairs of �-strands: fSj $ Sj0 g,
- orientation indicators: fdjj0 g,
- the indicators of alignment positions: fajj0 g.
These interacting variables can be sampled in the
conditional distribution PðIjm; e; T Þ (see Section 5
and Appendix A for details).

. Parameters that specify discrete distributions:

- state transition probabilities for PðTijTi�1Þ as
defined in (1),7

- segmental length distributions Pðeijei�1; TiÞ as
defined in (1),

- position-specific distributions of amino acids
PcðRjTiÞ as defined in (9) for capping signals,
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7. The initial state probabilities PðT0Þ can simply be set to be equal.



- the conditional distribution of the number of
interacting pairs PðrjkÞ as defined in (11),

- the conditional distribution of the orientation
indicators Pðdjj0 jSj; Sj0 Þ as defined in (11),8

- the conditional distribution of the alignment
position Pðajj0 jSj; Sj0 ; djj0 Þ as defined in (11).

These parameters specifying discrete distributions
can be directly estimated by their relative frequency
of occurrence in the training data set.9 We present
the results of state transition probabilities and
segmental length distributions, estimated from our
training data, in Fig. 4 and Fig. 5, respectively, as an
illustration. PðfSj; Sj0 grj¼1Þ, defined as in (11), is
uniformly distributed.

. Weight parameters in the likelihood function for
segmental dependency (8) and (12) were estimated
by penalized maximum likelihood, where the
regularization factor can be estimated from the data
(see Section 4.1 below for details).

. Model parameters:

- N-capping and C-capping length for capping
signals.

The capping components result in amino acid
distributions at the end-segment positions,
which differ significantly from the overall
distribution. In Table 1, we present the Kull-
back-Leibler divergence between the overall
amino acid distribution and the distribution at
capping positions. We observed that N-capping
and C-capping with length 4 can include most of
the significant divergence and, so, we fix both
the N-capping and C-capping length to be 4.

- The length of dependency window in (7).
Crooks and Brenner [29] have examined the

entropy densities of protein primary and

secondary structure sequences and the local

intersequence mutual information density.

They found that the intersequence interactions

important to secondary structure prediction are

short-ranged, usually within five neighboring

residues and, so, we decide to fix the window

length at 5 in the present work.

4.1 Estimates on Weight Parameters

The weight parameters consist of three sets for different

segmental types, i.e., fWW�g for � 2 T . For each segment

type � , there are jAj2‘ parameters of Wintras, jAj2‘
parameters of Winters, and jAj parameters in the vector

W 0, where the types of amino acid residues jAj ¼ 20 and
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8. The distribution is actually only conditional on the distance between
the �-strand pair and the segment lengths of the two �-strands.

9. An appropriate prior might be used for smoothing.

Fig. 4. The distributions of segmental length for the three segment types, Pðeijei�1; TiÞ defined as in (1). Note that the three distributions are quite

different, as pointed by Schmidler et al. [13].

Fig. 5. The segment type transition probabilities, PðTijTi�1Þ defined as in

(1). The self-transitions are obtained from the annotations in the training

database.



the length of dependency window ‘ ¼ 5 in the present

work. Thus, the total number of weight parameters is 4,020.

�-strands have an additional jAj2 parameters in Wsheet if the

long-range interactions are incorporated.
The maximum a posteriori (MAP) estimate of its

associated weights WW� can be obtained as

arg max
WW�

PðfO;m; e; TgjWW� ÞPðWW�Þ ð16Þ

under the condition of positive elements, where PðWW�Þ is

the prior probability usually specified by PðWW�Þ /
expð� C

2 kWW�k2
2Þ with C 	 0, and PðfO;m; e; TgjWW�Þ is the

product of the joint probabilities over all protein chains in

training data set. The optimal WW� is therefore the minimizer

of the negative logarithm of (16), which can be obtained by

min
WW�

LðWW�Þ ¼ �
X
fOg

X
f�g

lnPðSijS�i; �Þ þ
C

2
kWW�k2

2; ð17Þ

subject to w > 0; 8w 2WW� , where
P
fOg means the sum over

all the protein chains,
P
f�g denotes the sum over all the

segments of type � , and PðSijS�i; �Þ is defined as in (3). A

set of auxiliary variables � ¼ lnw can be introduced to

convert the constrained optimization problem into an

unconstrained problem. The derivatives of LðWW� Þ with

respect to � are given as follows:

@LðWW� Þ
@�

¼ w
�X
fOg

X
f�g

Xei
k¼ei�1þ1

 Tk
@��k
@w
þ Cw

�
; ð18Þ

where ��k is defined as in (7) and  k ¼
@�lnPðMkjM½1:k�1�;�Þ

@��k
is a

20� 1 vector whose ath element is

 ak ¼ �ð��akÞ ��ð��ak þMa
k Þ þ�ð

X
a

ð��ak þMa
k ÞÞ ��ð

X
a

ð��akÞÞ;

where �ðxÞ ¼ d
dx lnð�ðxÞÞ is known as the digamma func-

tion. Then, standard gradient-based optimization methods
are employed to minimize (17).

The optimal value of the regularization factor C in the

regularized functional LðWW� Þ was determined by standard
k-fold cross validation [30], [31]. We carried out 7-fold cross

validation as follows: The original training data were
randomly partitioned into seven almost equal folds with
each fold having an almost equal percentage of different

segments and amino acid residues. Given a particular value
of C, one fold was left out as a validation set in turn, the

weight parameters were estimated by minimizing LðWW� Þ 8�
over the protein chains in the other six folds, and the
resulting model was tested on the leftout fold to obtain the

validation error. The average of the validation errors on the
seven leftout folds indicates the predictive performance of
the regularization factor C. We tried the set of C values:

C ¼ f10�3; 10�2; . . . ; 10þ2g, and found the best validation
performance was achieved when C ¼ 0:01. The optimal

weight parameters in the model were finally obtained by
optimizing on the whole training data set with the best
C value.

It is possible to specify different values of C for the

segment types, but this increases the computational cost of
cross validation massively. Approximate Bayesian techni-

ques could also be used to further specify different C values
on weight matrices individually, while the computational
difficulty lies in evaluating the integral over the high-

dimensional weight space. This is an interesting and
worthwhile issue for further investigation.

5 SAMPLING SCHEME FOR PREDICTION

Without the incorporation of long range interactions, the

quantities of the segmentation variables can be inferred
exactly by the Viterbi and forward-backward algorithms in

the segmental semi-Markov framework (see [27] or [13] for
details). Generally, the introduction of long range interac-
tions into the segmental model makes exact calculation of

posterior probabilities intractable. Markov Chain Monte
Carlo (MCMC) algorithms can be applied here to obtain
approximate inference. Schmidler [11] attempted to collect

samples from the joint posterior distribution Pðm; e; T ; IjOÞ,
although the dependency between ðm; e; T Þ and I makes it

complicated to maintain detailed balance for the Metropolis
proposals. However, the main Metropolis-Hastings scheme
is still applicable here. The main advantage of our approach

over Schmidler’s method is that we collect samples of long-
range contacts under the realistic constraint that one amino

acid can have at most two hydrogen bonds and unpaired
beta strands are not possible.

In our approach, the latent variables of segmentation
fm; e; Tg are sampled from the posterior distribution

Pðm; e; T jOÞ with MCMC, keeping the weight parameters
and the model parameters fixed. The posterior distribution

Pðm; e; T jOÞ is proportional to the joint distribution
Pðm; e; T ;OÞ. The joint distribution can be evaluated as
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TABLE 1
Kullback-Leibler Divergence between the Overall Amino Acid

Distribution and the Distribution at Capping Positions

The divergence between two distributions Q and P is evaluated byP
RQðRÞ logðQðRÞPðRÞÞ. Here, R 2 A, PðRÞ is the amino acid distribution at

capping positions, and QðRÞ is the overall segmental distribution. Bold

face was used to indicate differences above the cutoff 0.01.



Pðm; e; T ;OÞ ¼
Pðm; e; T Þ

Y
fSi:Ti 6¼Eg

PðSijS�i; TiÞ

X
I
PðIjm; e; T Þ

Y
fSi:Ti¼Eg

PðSijS�i; Ti; IÞ;
ð19Þ

where the individual terms (from left to right on the right-

hand side) are defined as in (1), (9), (11) and (12),

respectively. Note that only the �-strands are in the

interaction set I . Following Schmidler et al. [11], [14], we

define a set of Metropolis proposals for the construction of a

Markov chain on the space of segmentations V ¼ ðm; e; T Þ:

. Segment split: Propose V� ¼ ðm�; e�; T �Þ with m� ¼
mþ 1 by splitting segment Sk into two new
segments ðSk� ; Sk�þ1Þ with

k 
 Uniform½1 : m�;
ek� 
 Uniform½ek�1 þ 1 : ek � 1�;

ek�þ1 ¼ ek;
Tk� 
 Uniform½H;E;L�;

and Tk�þ1 
 Uniform½H;E;L�.10

. Segment merge: Propose V� ¼ ðm�; e�; T �Þ with m� ¼
m� 1 by merging the two segments Sk and Skþ1 into
one new segment Sk� with

k 
 Uniform½1 : m� 1�;
ek� ¼ ekþ1;

and Tk� 
 Uniform½H;E;L�.
. Type change: Propose V� ¼ ðm; e; T �Þ with

T � ¼ ½T1; . . . ; Tk�1; T
�
k ; Tkþ1; . . . ; Tm�, where

T �k 
 Uniform½H;E;L�:

. Endpoint change: Propose V� ¼ ðm; e�; T Þ with
e� ¼ ½e1; . . . ; ek�1; e

�
k; ekþ1; . . . ; em�, where

e�k 
 Uniform½ek�1 þ 1 : ekþ1 � 1�:

The acceptance probability for Type change and Endpoint

change depends on the ratio of likelihood PðV�;OÞ
PðV;OÞ , where the

likelihood is defined as in (19). Segment split and Segment

merge jumps between segmentations of different dimension

are accepted or rejected according to a reversible-jump

Metropolis criteria. According to the requirement of

detailed balance, the acceptance probability for a new

proposal V� should be �ðV;V�Þ ¼ PðV
�;OÞ

PðV;OÞ �
PðV V�Þ
PðV� VÞ . There-

fore, the acceptance probability for Segment split and

Segment merge should, respectively, be

�splitðkÞðV;V�Þ ¼
PðV�; OÞ
PðV; OÞ � jT j � ðek � ek�1 � 1Þ

�mergeðkÞðV;V�Þ ¼
PðV�; OÞ
PðV; OÞ �

1

jT j � ðekþ1 � ek�1 � 1Þ ;
ð20Þ

where PðV; OÞ is defined as in (19) and jT j ¼ 3 denotes the
number of segment types.

Due to the factorizations in (19), only the changed

segments require evaluation in computing the acceptance

probability for the new proposal V�. Once the �-strands

are changed in the new proposal, the interacting set I is

changed, too. The joint segmental likelihood of the

�-strands has to be calculated again, which is a sumP
I PðIjm; e; T Þ

Q
fSi:Ti¼Eg PðSijS�i; Ti; IÞ. Although the set

I is composed of finite elements, it might be too expensive

to enumerate all of them for the marginalization. We again

apply sampling methods here to approximate the sum by

randomly walking in the distribution PðIjm; e; T Þ that is

defined as in (11). A sampling scheme is described in

Appendix A for this purpose. These samples can be reused

to estimate the �-sheet contact map as in (15).
In the model training discussed in Section 4.1, we need to

solve three optimization problems to estimate the weight
parameters by gradient-descent methods. This is required
tens of times in cross validation.11 Once the optimal
regularization parameter is found, we solve the minimiza-
tion problems once more to get the final weight parameters.
The cost on counting the occurrence frequencies of these
discrete distributions is relatively negligible. With the
incorporation of long-range interactions, we employed the
sampling scheme described above to collect 10,000 samples
from the posterior distribution.12 To approximate the
marginalization over the interacting set, we randomly
collected 40 samples in the �-sheet space PðIjm; e; T Þ.

Ideally, the inference problem should be formulated as a
Bayesian hierarchical model and all quantities, which
includes the latent variables, parameters, and model
parameters, could be sampled from the joint posterior
distribution by MCMC methods [32]. However, the com-
putational cost could be prohibitively expensive since it
would involve sampling in several high-dimensional spaces
jointly. For example, the three spaces of the weight
parameters contain over 10,000 variables. Laplace approx-
imation could also be applied to carry out this integration,
despite the demanding requirement of inversion of large
matrices. Nevertheless, we believe that approximate Baye-
sian inference could achieve a genuine improvement, which
is well worth further investigation.

6 RESULTS AND DISCUSSION

We implemented the proposed algorithm in ANSI C. In this
implementation, the length of the dependency window was
fixed at 5 and the length of N and C-capping was fixed at 4,
and the regularization factor C was fixed at 0.01. We
normalized the Mi vectors so that

P
a M

a
i ¼ 1 for both the

multiple sequence alignment profile and the PSSM-based
profile. We used the following quantities as performance
measures:
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10. Here, 
 Uniform½H;E; L� denotes uniformly sampling in the set
fH;E; Lg.

11. In the present work, it is required 6� 7 times for 7-fold cross
validation on six different C values.

12. The first 1,000 samples in the Markov chain were discarded for “burn
in.”



. Overall 3-state Accuracy Q3,

. Sensitivity Qobs ¼ TruePositive
TruePositiveþFalseNegative ,

. Positive Predictive Value

Qpred ¼ TruePositive

TruePositiveþ FalsePositive ;

. Matthew’s correlation

C ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTP þ FP ÞðTN þ FP ÞðTN þ FP Þ

p ;

defined by Matthews [33],
. Segment Overlap Measure (SOV) as defined by

Zemla et al. [34].

6.1 Validation on CB513

The data set we used is CB513, a nonredundant set of
513 nonhomologous protein chains with structures deter-
mined to a resolution of � 2:5�A generated by Cuff and
Barton [35].13 This data set has been used as a common
benchmark for a number of different secondary structure
prediction algorithms. We used 3-state DSSP definitions of
secondary structure [36], calculated from the PDB files.14

We removed the proteins that are shorter than 30 residues
or longer than 550 residues, following [5], to leave
480 proteins for 7-fold cross validation. Seven folds were
created randomly and validation outputs were carried out
on the leftout fold while the weight parameters were
optimized on the other six folds with a fixed regularization
factor in turn. The optimal value of C was chosen as 0:01
after carrying out a 7-fold cross validation experiment on
the data set, as described in Section 4. In the following, we
report the validation results using C ¼ 0:01 in the 7-fold
cross validation experiment. We used two kinds of
alignment profiles: the multiple sequence alignment pro-
files (MSAP) used by Cuff and Barton [5] and position-
specific score matrices (PSSM) as in [4]. For comparison
purposes, we also implemented the algorithm proposed by
Schmidler et al. [13], which uses the single sequence
information only. The validation results are recorded in
Table 2. We also cite the results reported by Cuff and Barton
[5] in Table 3 for reference. The results obtained from our
model show a substantial improvement over those of
Schmidler et al. [13] on all evaluation criteria. Compared
with the performance of the neural network methods with
various alignment profiles as shown in Table 3, the
prediction accuracy of our model is also competitive.15

Due to small sample errors and the variation due to changes
in secondary structure assignment by different methods,
reported accuracies separated by less than about two
percentage points are unlikely to be statistically significant
[37], [38] and our results are comparable to many other
prediction methods which have been tested on this bench-
mark data. Crooks and Brenner [29] point out that this is
probably due to the fact that most contemporary methods for
secondary structure prediction all utilize local sequence
correlations, which contain only about one quarter of the total
information necessary to determine secondary structure.

We did observe that the marginal posterior mode is more

accurate than the MAP estimate, which shows that

averaging over all the possible segmentations helps.

According to the class definitions of the Structural

Classification of Proteins database (SCOP) [39], we divided

the 480 chains of CB513 into four groups: �, �, �=�, and

�þ �. The validation results of marginal posterior mode

estimate on these groups are recorded separately in Table 4.
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TABLE 2
Validation Results for Secondary Structure Prediction on

480 Protein Sequences from CB513

“Sequence Only” denotes the algorithm of Schmidler [13]; MSAP

denotes our approach using multiple sequence alignment profiles;

PSSM denotes our approach using position specific score matrices. Q3

denotes the overall accuracy. Qobs ¼ TruePositive
TruePositiveþFalseNegative and

Qpred ¼ TruePositive
TruePositiveþFalsePositive . C denotes Matthews’ correlation coeffi-

cient defined by Matthews [33]. SOV denotes the segment overlap

measure [34]. The subscripts denote the secondary structure type. MAP

denotes the most probable posterior estimate, while MARG denotes

marginal posterior mode estimate.

TABLE 3
The Results of 7-Fold Cross Validation on 480 Proteins of

CB513 Reported by [5], along with Our Results

Q3 denotes the overall accuracy.

13. The data set and the multiple sequence alignments profiles generated
by Cuff and Barton [5], can be accessed at http://www.compbio.dundee.
ac.uk/~www-jpred/data/.

14. In DSSP definitions, H and G were assigned as �-helix segments, E
and B were assigned as �-strands and the others were assigned as coil. The
segments with only one residue were also labeled as coil.

15. It is also possible to further improve performance by constructing
smoothers over current predictive outputs as Cuff and Barton [5] did in
their Jury networks.



We note that the performance on �=� and � proteins is
relatively better than that on �þ � and �.

Note that validation results of CB513 data set, reported
in Table 2, Table 3, and Table 4, are different from
predictive (blind) test results and could be slightly over-
optimistic estimates of the generalization performance. We
have included validation results so as to make a fair
comparison with the results of Cuff and Barton [5] and
Schmidler et al. [13], who also used this type of 7-fold cross
validation procedure (see Table III in [5]). Cuff and Barton’s
results [5] are based on the choice of many model
parameters (e.g., window size, number of hidden neurons,
a “conservation number,” etc.), although the procedure to
determine these parameters is unclear from their paper. In
order to have a truly unbiased estimate, we have also
carried out extensive predictive blind tests on the CASP
data sets in the next subsection.

6.2 Blind Test on CASP Targets

The meetings of Critical Assessment of Techniques for
Protein Structure Prediction (CASP) facilitate large-scale
experiments to assess protein structure prediction methods.
To perform a blind test experiment, we extracted protein
chains from the latest three meetings from the public web
page of the Protein Structure Prediction Center (accessible
at http://predictioncenter.llnl.gov). We used the model
parameters specified in Section 4 and fixed the regulariza-
tion factor C to the optimal value 0:01 obtained from the
cross validation experiments. Then, the weight parameters
of our model were optimized using all 480 chains from
CB513 and their PSSM profiles. We also prepared a larger
training data set using the CulledPDB list with the
percentage identity cutoff 25 percent, the resolution cutoff
1.8 Angstroms, and the R-factor cutoff 0.25.16 There are

2,147 chains in this expanded list. We used the same model
settings and optimized the weights parameters on the
subset of 1,814 chains.17 The predictive results of the
marginal posterior mode estimate of our two models on
these CASP target proteins are reported in Table 5, indexed
by meeting, along with the marginal posterior mode
estimate of Schmidler et al.’s algorithm [13]. The detailed
predictive results of CASP5 can be found on our supple-
mentary Webpage http://public.kgi.edu/~wild/bsm.html.
We also cite the average performance of the participants
from the CASP5 Website for comparative purposes.

The results of these blind tests indicate that our
algorithm based on generative modeling gives comparable
results to other contemporary methods.18 The perfor-
mances of Q3 and SOV on the target proteins of CASP5
are shown in Fig. 6. We found that the model trained on the
larger data set can achieve better generalization perfor-
mance, especially on SOV.

6.3 Prediction of Contact Maps

In the inference with long range interactions, we approxi-
mated the marginalization over the �-sheet space by
randomly collecting 40 samples in PðIjm; e; T Þ, as de-
scribed in Appendix A. We present the trace plot of 10 test
proteins in the MCMC sampling to show the convergence of
the Markov chains and compare the results to those without
long range interactions in Fig. 7. We found that the Markov
chains converge well after 6,000 samples in all cases.
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TABLE 4
Validation Results of Marginal Posterior Mode Estimate for Secondary Structure Prediction on 480 Protein Sequences from CB513,

Categorized by Structural Classes of Proteins (SCOP)

MSAP denotes our approach using multiple sequence alignment profiles; PSSM denotes our approach using position specific score matrices. Q3

denotes the overall accuracy. Qobs ¼ TruePositive
TruePositiveþFalseNegative and Qpred ¼ TruePositive

TruePositiveþFalsePositive . C denotes Matthews’ correlation coefficient defined by
Matthews [33]. SOV denotes the segment overlap measure [34]. The subscripts denote the secondary structures.

16. The protein list is accessible at http://dunbrack.fccc.edu/Guoli/
pisces_download.php.

17. The reduction was caused by removing the protein chains that are
shorter than 30 residues or longer than 550 residues, following [5].

18. The predictive results produced by other contemporary methods,
indexed by CASP meeting, are available at http://predictioncenter.llnl.gov



We prepared a data set with long range interaction

information specified by the Protein Data Bank (PDB) files.

The data set, a subset of CB513, is composed of 198 protein

chains along with �-sheet definitions.19 This reduction in

size was caused by the incompleteness in the long range

interaction information in many of the original PDB files. In
MCMC sampling, we collected 9,000 samples. Thirty-fold
cross validation was carried out on this subset. Surprisingly,
we have not yet observed significant improvement on
secondary structure prediction accuracy in the sampling

results over exact inference without long range interactions.
A potential reason might be the small size of the training
data set used in this set of experiments, which we will
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Fig. 6. The histogram of Q3 and SOV to visualize the marginal posterior mode estimate of our models on CASP5 data. One model was trained on the

CB513 data set and another was trained on the CulledPDB data set. The vertical axes are indexed by the number of proteins falling in the bins.

19. The list of these proteins can be found at http://public.kgi.edu/
~wild/bsm.html.

TABLE 5
Predictive Results of Marginal Posterior Mode Estimate of Our Algorithm Using PSSM on the Protein Data of CASP

CASP 3 has 36 chains, CASP 4 has 40 chains, and CASP 5 has 56 chains. “Sequence Only” denotes the algorithm of Schmidler [13]; “CB513 with
PSSM” denotes our model trained on the 480 chains from CB513 with PSSM profiles; “Culledpdb with PSSM” denotes our model trained on the
1,814 chains of Culledpdb data. Q3 denotes the overall accuracy. Qobs ¼ TruePositive

TruePositiveþFalseNegative and Qpred ¼ TruePositive
TruePositiveþFalsePositive . C denotes

Matthews’ correlation coefficient defined by Matthews [33]. SOV denotes the segment overlap measure [34].



investigate further by training the model on a larger data
set. However, this observation is consistent with the
findings of Cline et al. [40] and Crooks et al. [41], who
examined the mutual information content of interacting
amino acid residues distantly separated by sequence but
proximate in three-dimensional structure, and concluded
that, for the purposes of tertiary structure prediction,
these interactions were essentially uninformative. The
analysis of Cline et al. [40] and Crooks et al. [41] also
suggests that a modification to our method, which
captures distal interactions between secondary structure
elements rather than amino acid residues, should provide a
distinct improvement.

However, it is interesting that we can infer �-sheet

contacts based on the predicted secondary structure. We

present predicted contact maps in Fig. 8, as an example,

where the the gray scale indicates the probability

PðCij ¼ 1jOÞ. It can be seen that, in the case of 1PGA

(Protein G, see Fig. 9a), which contains two parallel and two

antiparallel �-strands, and 1DTX (�-dendrotoxin, see Fig. 9b),

which contains two antiparallel �-strands, the position and

direction of the �-strands are predicted correctly, but have a

shorter range than in the true contact maps. The false

positive predictions in the case of 1DTX (�-dendrotoxin) are
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Fig. 8. True �-sheet contact maps and predicted maps for protein chains 1PGA and 1DTX. The true contact maps were produced with a threshold of

7 �A. The gray scale indicates the probability PðCij ¼ 1jOÞ.

Fig. 7. The trace plot of 10 protein chains in MCMC sampling. “Entropy” denoted the average entropy of the posterior distribution on the chain, i.e.,

� 1
n

Pn
i¼1 PðTOi

jOÞ logPðTOi
jOÞ, where PðTOi

jOÞ is the predictive probability of the segment type on the ith amino acid of the protein chain. The

sampling results of the cases with/without long range interactions are presented, respectively.



due to errors in the prediction of which residues are in the

�-strands.
To assess the overall prediction accuracy, we have also

computed the area under the ROC curve (AUC) [42] for

�-sheet contact prediction. The average AUC over these

protein chains is 0:90� 0:10. The average ROC curves

categorized by SCOP classes are presented in Fig. 10. The

averaged AUC of 44 � proteins is 0:87� 0:07, the averaged

AUC of 64 �=� proteins is 0:93� 0:06, and the averaged

AUC of 37 �þ � proteins is 0:90� 0:10. Based on these ROC

curves, we find that this algorithm performs better on the

�=� class.

7 CONCLUSION

In this paper, we have described a novel parametric
Bayesian segmental semi-Markov model for proteins which
incorporates the information in multiple sequence align-
ment profiles. Long range interaction information in
�-sheets can be directly incorporated. The numerical results
show that the generalization performance of this generative
model is similar to other contemporary methods. However,
contact map prediction can also be carried out in the
Bayesian segmental framework, which represents a con-
siderable advantage over discriminative methods. More-
over, with the inclusion of potential functions with dihedral
angle information in the joint sequence-structure probabil-
ity distribution, this probabilistic model also has the
potential for tertiary structure prediction and this is the
focus of our current work.

APPENDIX A

A.1 Sampling in �-Sheet Space

Given a specific segmentation, i.e., a set of fm;S; Tg, there is
a corresponding �-sheet space defined by a set of interaction
variables I that specifies the interactions within these
�-strands. The total number of �-strands is known, denoted
as k. The distribution of the �-sheet space, PðIjm; e; T Þ, is
defined as in (11). There are four steps to collect a sample in
PðIjm; e; T Þ:

1. Generate a sample of r in PðrjkÞ.
2. Collect a valid combination of r pairs from the

k �-strands. The valid combination requires that each
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Fig. 10. The ROC curves of the proteins categorized by SCOP. The vertical lines bounded by bars in these graphs indicate the standard deviation at

those positions. For these four graphs, the horizontal axes are indexed by 1:0� specificity, evaluated by Number of False Positive
Number of Negative Samples, and the vertical axes

are of sensitivity, evaluated by Number of True Positive
Number of Positive Samples. For each of the structural classes, the average value and its standard deviation of AUC (the area

under the ROC curve) are given by the text in the corresponding graph.

Fig. 9. Structural cartoons of protein (a) 1PGA (Protein G) and (b) 1DTX

(�-dendrotoxin).



�-strand should be used at least once and at most
twice.

3. For each pair fSj; Sj0 g, generate the alignment
direction by Pðdjj0 jSj; Sj0 Þ.

4. For each pair fSj; Sj0 g, generate the alignment
position by Pðajj0 jSj; Sj0 Þ.
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