
ARTICLE IN PRESS

Neurocomputing 72 (2009) 1508–1524
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

Trumpi

E-m
journal homepage: www.elsevier.com/locate/neucom
Gaussian process dynamic programming
Marc Peter Deisenroth a,b,�, Carl Edward Rasmussen a,c, Jan Peters c,d

a Department of Engineering, University of Cambridge, Cambridge, UK
b Faculty of Informatics, Universität Karlsruhe (TH), Germany
c Max Planck Institute for Biological Cybernetics, Tübingen, Germany
d University of Southern California, Los Angeles, CA, USA
a r t i c l e i n f o

Available online 12 January 2009

Keywords:

Reinforcement learning

Optimal control

Dynamic programming

Gaussian processes

Bayesian active learning

Policy learning
12/$ - see front matter & 2009 Elsevier B.V. A

016/j.neucom.2008.12.019

esponding author at: Department of Engineer

ngton Street, Cambridge, UK.

ail address: mpd37@cam.ac.uk (M.P. Deisenro
a b s t r a c t

Reinforcement learning (RL) and optimal control of systems with continuous states and actions require

approximation techniques in most interesting cases. In this article, we introduce Gaussian process

dynamic programming (GPDP), an approximate value function-based RL algorithm. We consider both a

classic optimal control problem, where problem-specific prior knowledge is available, and a classic RL

problem, where only very general priors can be used. For the classic optimal control problem, GPDP

models the unknown value functions with Gaussian processes and generalizes dynamic programming

to continuous-valued states and actions. For the RL problem, GPDP starts from a given initial state and

explores the state space using Bayesian active learning. To design a fast learner, available data have to be

used efficiently. Hence, we propose to learn probabilistic models of the a priori unknown transition

dynamics and the value functions on the fly. In both cases, we successfully apply the resulting

continuous-valued controllers to the under-actuated pendulum swing up and analyze the performances

of the suggested algorithms. It turns out that GPDP uses data very efficiently and can be applied to

problems, where classic dynamic programming would be cumbersome.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Reinforcement learning (RL) is based on the principle of
experience-based, goal-directed learning. In contrast to super-
vised learning, where labels are provided from an external
supervisor, an RL algorithm must be able to learn from experience
collected through interaction with the surrounding world. The
objective in RL is to find a strategy, which optimizes a long-term
performance measure, such as cumulative reward or cost. RL is
similar to the field of optimal control although the fields are
traditionally separate. In contrast to optimal control, RL does not
necessarily assume problem-specific prior knowledge or an
intricate understanding of the world. However, if we call the RL
algorithm ‘‘controller’’ and identify actions with the ‘‘control
signal’’ we have a one-to-one mapping from RL to optimal control
if the surrounding world is fully known. In a general setting,
however, an RL algorithm has to explore the world and collect
information about it. Since RL is inherently based on collected
experience, it provides an intuitive setup for sequential decision-
making under uncertainty in autonomous learning.
ll rights reserved.

ing, University of Cambridge,

th).
The RL setup requires to automatically extract information
and to learn structure from collected data. Learning is important
when data sets are very complex or simply too large to find an
underlying structure by hand. The learned structure is captured in
the form of a statistical model that compactly represents the data.
Bayesian data analysis aims to make inferences for quantities
about which we wish to learn by using probabilistic models for
quantities we observe. The essential characteristic of Bayesian
methods is their explicit use of probability theory for quantifying
uncertainty in inferences based on statistical data analysis.
Without any notion of uncertainty, the RL algorithm would be
too confident and claim exact knowledge, which it actually does
not have. Representation and incorporation of uncertainties in RL
is particularly important in the early stages of learning when the
data set is still very sparse. Algorithms based on over-confident
models can fail to yield good results due to model bias as reported
by Atkeson and Santamarı́a [2] and Atkeson and Schaal [3]. Hence,
it is important to quantify current knowledge appropriately.
However, a major drawback of Bayesian methods is that they are
computationally costly and the posterior distribution is often not
analytically tractable.

Dynamic programming (DP) is a general and efficient method
of solving sequential optimization problems under uncertainty.
Due to the work of Bellman [4], Howard [19], Kalman [22], and
many others, DP became a standard approach to solve optimal
control problems. However, only in case of linear systems with

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.12.019
mailto:mpd37@cam.ac.uk


ARTICLE IN PRESS

1 The successor state x0 only depends on the current state–action pair ðx;uÞ.

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1509
quadratic cost and Gaussian noise, exact global solutions are
known [5]. Similarly, many RL algorithms are based on DP
techniques comprising value iteration and policy iteration
methods, details of which are given by Sutton and Barto [53],
Bertsekas and Tsitsiklis [7]. However, solving a nonlinear optimal
control or RL problem for continuous-valued states and actions is
challenging and requires approximation techniques in general.

In continuous-valued state and action domains, discretization
is commonly used for approximations if required computations
are no longer analytically tractable. However, the number of cells
in a discretized space does not only depend on the dimensionality
and the difficulty of the problem, but also on the time-sampling
frequency. The higher the sampling rate, the smaller the size and
the larger the number of cells required. Therefore, even low-
dimensional problems can be infeasible to solve in discretized
spaces. Function approximators address discretization problems
and generalize to continuous-valued domains as described for
instance by Bertsekas and Tsitsiklis [7] or Sutton and Barto [53].
The key idea is to model the DP value function in a function space
rather than representing this function as a table of values at
discrete input locations. Parametric function approximators, such
as polynomials or radial basis function networks often used for
this purpose, but they are only capable of modeling the unknown
function within their corresponding model classes. A fundamental
problem of parametric function approximators is that the model
class is fixed before having observed any data. Often, it is hard to
know ahead of time which class of functions will be appropriate.
In general, the restriction to a wrong class of functions may result
in diverging RL algorithms as shown by Gordon [18], Ormoneit
and Sen [38]. Non-parametric regression techniques are generally
more flexible than parametric models. ‘‘Non-parametric’’ does not
imply that the model is parameter-free, but that the number and
nature of the parameters are flexible and not fixed in advance.

Gaussian processes (GPs) combine both flexible non-para-
metric modeling and tractable Bayesian inference as described by
Rasmussen and Williams [48]. The basic idea of non-parametric
inference is to use data to infer an unknown quantity based on
general prior assumptions. Often, this means using statistical
models that are infinite dimensional [55]. Matheron [33] and
others introduced GPs to geostatistics decades ago under the
name kriging. They became popular in the machine learning
community in the 1990s through work by Williams and
Rasmussen [56] and the thesis by Rasmussen [44]. Recently they
got introduced to the control community by Murray-Smith and
Sbarbaro [35], Murray-Smith et al. [36] or Kocijan et al. [26], for
instance.

GP regression allows for an appropriate uncertainty treatment
in RL when approximating unknown functions. For value function
and model learning the use of GPs in RL has for instance been
discussed for model-free policy iteration by Engel et al. [13,14], for
model-based control by Rasmussen and Kuss [47], Murray-Smith
and Sbarbaro [35], Rasmussen and Deisenroth [45], and model-
based value iteration by Deisenroth et al. [10,11]. Furthermore
Ghavamzadeh and Engel [16] discussed GPs in the context of
actor-critic methods.

In this article, we introduce and analyze the Gaussian process
dynamic programming (GPDP) algorithm. GPDP is a value
function-based RL algorithm that generalizes DP to continuous
state and action spaces and which belongs to the family of fitted
value iteration algorithms [18]. The central idea of GPDP is to
utilize non-parametric, Bayesian GP models to describe the value
functions in the DP recursion. We will consider both a classic
optimal control problem, where much problem-specific prior
knowledge is available, and a classic RL problem, where only very
general assumptions can be made a priori. In particular, the
transition dynamics will be unknown. To solve the RL problem, we
will introduce a novel online algorithm that interleaves dynamics
learning and value function learning. Moreover, Bayesian active
learning is used to deal with the exploration–exploitation trade-
off.

The structure of this article is as follows. Section 2 briefly
introduces optimal control, RL, and GPs. In Section 3, GPDP is
introduced in the context of an optimal control setting, where the
transition dynamics are fully known. Furthermore, it will be
discussed how a discontinuous, globally optimal policy can be
learned if sufficient problem-specific knowledge is available.
GPDP will be applied to the illustrative under-actuated pendulum
swing up, a nonlinear optimal control problem introduced by
Atkeson [1]. In Section 4, we consider a general RL setting, where
only very general priors are available. We introduce a very data-
efficient, fast learning RL algorithm, which builds probabilistic
models of the transition dynamics and value functions on the fly.
Bayesian active learning is utilized to efficiently explore the state
space. We compare this novel algorithm to the neural fitted Q

(NFQ) iteration by Riedmiller [50]. Section 5 summarizes the
article.
2. Background

Throughout this article, we consider discrete-time systems

xkþ1 ¼ f ðxk;ukÞ þw, (1)

where x denotes the state, u the control signal (action), and
w�Nð0;RwÞ a Gaussian distributed noise random variable, where
Rw is diagonal. Moreover, k is a discrete-time index. The transition
function f mapping a state–action pair to a successor state is
assumed to evolve smoothly over time.

2.1. Optimal control and RL

Both optimal control and RL aim to find a policy that optimizes
a long-term performance measure. A policy p is a mapping from a
state space Rnx into a control space Rnu that assigns a control
signal to each state. In many cases, the performance measure is
defined as the expected cumulative cost over a certain time
interval. For an initial state x0 2 R

nx and a policy p, the
(discounted) expected cumulative cost of a finite N-step optimi-
zation horizon is

Vp
ðx0Þ:¼E gNgtermðxNÞ þ

XN�1

k¼0

gkgðxk;ukÞ

" #
, (2)

where k indexes discrete time. Here, u:¼pðxÞ is the control signal
assigned by policy p. The function gterm is a control-independent
terminal cost that incurs at the last time step N. The immediate
cost is denoted by gðxk;ukÞ. The discount factor g 2 ð0;1� weights
future cost. An optimal policy p� for the N-step problem
minimizes Eq. (2) for any initial state x0. The associated state-
value function V� satisfies Bellman’s equation

V�ðxÞ ¼min
u
ðgðx;uÞ þ gEx0 ½V

�
ðx0Þjx;u�Þ (3)

for all states x. The successor state for a given state–action pair
ðx;uÞ is denoted by x0. The state–action value function Q� is
defined by

Q�ðx;uÞ ¼ gðx;uÞ þ gEx0 ½V
�
ðx0Þjx;u�, (4)

such that V�ðxÞ ¼ minu Q�ðx;uÞ for all x. In general, finding an
optimal policy p� that leads to Eq. (3) is hard. Assuming time-
additive cost and Markovian transitions,1 the minimal expected



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241510
cumulative cost can be calculated by DP. DP determines the
optimal state-value function V� by the DP recursion

V�kðxÞ ¼min
u
ðgðx;uÞ þ gE½V�kþ1ðx

0Þjx;u�Þ (5)

for all states x and k ¼ N � 1; . . . ;0. The state-value function V�kðxÞ
is the minimal expected cost over an N � k step optimization
horizon starting from state x at time step k. Analogously to Eq. (5),
a recursive approximation of Q� by Q�k can be defined.

The classic DP algorithm is given in Algorithm 1. For known
transition dynamics f, a finite set of actions UDP, and a finite set of
states XDP, DP recursively computes the optimal controls p�ðXDPÞ.
Starting from the terminal time N, DP exploits Bellman’s
optimality principle to determine the value function V�0ðXDPÞ and
the corresponding optimal controls p�0ðXDPÞ. The value function V�N
is initialized by the terminal cost gterm. The Q�-values are
computed recursively for any state–action pair ðxi;ujÞ in line 6
of Algorithm 1. For deterministic transition dynamics, the
expectation over all successor states in line 6 is not required.
The optimal control p�kðxiÞ of the current recursion step is the
minimizing argument of the Q�-values for a particular state xi,
and the value function V�kðxiÞ at xi is the corresponding minimum
value.

Algorithm 1. Classic DP, known transition dynamics f .
1: input: f ;XDP ;UDP
2: V�NðXDPÞ ¼ gtermðXDPÞ
 . terminal cost
3: for k ¼ N � 1 to 0 do
 . recursively
4: for all xi 2 XDP do
 . for all states
5: for all uj 2 UDP do
 . for all actions
6: Q�kðxi ;ujÞ ¼ gðxi ;ujÞ þ gExkþ1
½V�kþ1ðxkþ1Þjxi ;uj; f �
7: end for
8: p�kðxiÞ 2 arg minu2UDP
Q�kðxi ;uÞ
9: V�kðxiÞ ¼ Q�kðxi ;p�kðxiÞÞ
10: end for

11: end for

12: return p�ðXDPÞ:¼p�0ðXDPÞ
 . return optimal controls for XDP
In contrast to optimal control, RL usually does not assume a
priori known transition dynamics and cost. Hence, general RL
algorithms have to treat these quantities as random variables.
However, if RL algorithms are applied to a fully known Markov
decision process (MDP), the RL problem can be considered
equivalent to optimal control. The DP recursion and, therefore,
all related algorithms can be used to solve this problem. Both RL
and optimal control aim to find a solution to an optimization
problem, where the effect of the current decision can be delayed.
As an example, we can consider a chess game. The current move
will influence all subsequent situations, moves, and decisions, but
only at the very end it becomes clear if the match was won or not.

For further details on optimal control, DP, and RL, we refer to
the books by Bryson and Ho [8], Bertsekas [5], Bertsekas [6],
Bertsekas and Tsitsiklis [7], Sutton and Barto [53].
2 We set the mean function to 0 everywhere, if not stated elsewhere.
3 Rasmussen and Williams [48] call this marginal likelihood optimization or

maximum likelihood type II estimate.
2.2. Gaussian processes

In the following, a brief introduction to GPs will be given based
on the books by MacKay [31] and Rasmussen and Williams [48].

Given a data set fX; yg consisting of input vectors xi and
corresponding observations yi ¼ hðxiÞ þ e, e�Nð0;s2

e Þ, we want to
infer a model of the (unknown) function h that generated the data.
Here, X ¼ ½x1; . . . ;xn� is the matrix of training inputs, y ¼
½y1; . . . ; yn�

> is the vector of corresponding training targets
(observations). Within a Bayesian framework, the inference of h
is described by the posterior probability

pðhjX; yÞ ¼
pðyjh;XÞpðhÞ

pðyjXÞ
,

where pðyjh;XÞ is the likelihood and pðhÞ is a prior on functions
assumed by the model. The term pðyjXÞ is called the evidence or
the marginal likelihood. When modeling with GPs, we place a GP
prior pðhÞ directly in the space of functions without the necessity
to consider an explicit parameterization of the function h. This
prior typically reflects assumptions on the smoothness of h.
Similar to a Gaussian distribution, which is fully specified by a
mean vector and a covariance matrix, a GP is specified by a mean
function mð�Þ and a covariance function kð�; �Þ, also called a kernel.2

A GP can be considered a distribution over functions. However,
regarding a function as an infinitely long vector, all necessary
computations for inference and prediction can be broken down to
manipulating well-known Gaussian distributions. We write
h�GPðm; kÞ if the latent function h is GP distributed.

Given a GP model of the latent function h, we are interested in
predicting function values for an arbitrary input x�. The predictive
(marginal) distribution of the function value h� ¼ hðx�Þ for a test
input x� is Gaussian distributed with mean and variance given by

Eh½h�� ¼ kðx�;XÞðKþ s2
e IÞ�1y, (6)

varh½h�� ¼ kðx�;x�Þ � kðx�;XÞðKþ s2
e IÞ�1kðX;x�Þ, (7)

where K 2 Rn�n is the kernel matrix with Kij ¼ kðxi;xjÞ.
A common covariance function k is the squared exponential

(SE)

kSEðx;x
0Þ:¼a2 expð�1

2ðx� x0Þ>K�1
ðx� x0ÞÞ (8)

with K ¼ diagð½‘2
1; . . . ; ‘

2
nx
�Þ and ‘k; k ¼ 1; . . . ;nx; being the char-

acteristic length-scales. The parameter a2 describes the variability
of the latent function h. The parameters of the covariance function
are the hyperparameters of the GP and collected within the vector h.
We optimize them by evidence maximization3 as recommended
by MacKay [30]. The log-evidence is given by

log pðyjX;hÞ ¼ log

Z
pðyjhðXÞ;X; hÞpðhðXÞjX;hÞdh

¼ �
1

2
y>ðKh þ s2

e IÞ�1y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
data fit term

�
1

2
log jðKh þ s2

e IÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complexity penalty

�
nx

2
logð2pÞ. (9)

Here, hðXÞ:¼½hðx1Þ; . . . ;hðxnÞ�, where n is the number of training
points. We made the dependency of K on the hyperparameters h

explicit by writing Kh. Evidence maximization yields a model that
(a) rewards the data-fit and (b) rewards simplicity of the model.
Hence, it automatically implements Occam’s razor.

Maximizing the evidence is a nonlinear, unconstrained
optimization problem. Depending on the data set, this can be
hard. However, after optimizing the hyperparameters, the GP
model can always explain the data although a global optimum has
not necessarily been found.

Training a GP requires Oðn3Þ operations, where n is the number
of training examples. The computational complexity is due to the
inversion of the kernel matrix. After training, the predictive mean
(6) requires OðnÞ operations to compute, the predictive variance
(7) requires Oðn2Þ operations.



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1511
3. Gaussian process dynamic programming

GPDP is a generalization of DP/value iteration to continuous
state and action spaces using fully probabilistic GP models [10].

In this section, we consider a discrete-time optimal control
problem, where the transition function f in Eq. (1) is exactly
known. To determine a solution for continuous-valued state and
action spaces, GPDP describes the value functions V�k and Q�k
directly in function space by representing them by fully
probabilistic GP models. GP models for this purpose make
intuitive sense as they use available data to determine the
underlying structure of the value functions, which is often
unknown. Moreover, they provide information about the model
confidence. Similar to classic DP (see Algorithm 1), we choose
finite sets X of states and U of actions. However, instead of
representing the state and action spaces, these sets are the support

points (training inputs) for two value function GP models

V�kð�Þ�GPvðmv; kvÞ,

Q�kðx; �Þ�GPqðmq; kqÞ,

respectively. The training targets (observations) are recursively
determined by GPDP itself. A sketch of the GPDP algorithm for
known deterministic transition dynamics f is given in Algorithm
2. The advantage of modeling the state-value function V�k by GPv

is that the GP provides a predictive distribution of V�kðx�Þ for any

state x� through Eqs. (6) and (7). This property is exploited in the
computation of the Q�-value (line 7): due to the generalization
property of GPv, we are not restricted to a finite set of successor
states when determining EV ½V

�
kþ1ðf ðx;uÞÞ�. However, although we

consider a deterministic system, we have to take an expecta-
tion—with respect to the latent function V�kþ1, which is probabil-
istically modeled by GPv. Thus, EV ½V

�
kþ1ðf ðx;uÞÞ� is simply

mvðf ðx;uÞÞ, the predictive mean of V�kðf ðx;uÞÞ given by Eq. (6).
The GP model of Q�k in line 9 generalizes the Q�-function to
continuous-valued action domains. The immediate reward g in
line 7 is assumed to be measured with additive independent,
Gaussian noise wg�Nð0;s2

g Þ with a priori unknown variance s2
g .

The GP model for Q�k takes this variance as additional hyperpara-
meter to be optimized. Note that GPq models a function of u only

since xi is fixed. Therefore, minu Q�kðxi;uÞ � minu mqðuÞ, the
minimum of the mean function of GPq. The minimizing control
p�kðxiÞ in line 10 is not restricted to the finite set U, but can be
selected from the continuous-valued control domain Rnu since for
arbitrary controls a predictive distribution of the corresponding
Q�-value is provided by GPq. To minimize Q�k we have to utilize
numerical methods.

Algorithm 2. GPDP, known deterministic system dynamics.
1: input: f ;X;U
2: V�NðXÞ ¼ gtermðXÞ þwg
 . terminal cost
3: V�Nð�Þ�GPv
 . GP model for V�N

4: for k ¼ N � 1 to 0 do
 . recursively
5: for all xi 2 X do
 . for all support states
6: for all uj 2 U do
 . for all support actions
7: Q�kðxi ;ujÞ ¼ gðxi ;ujÞ þwg þ gEV ½V
�
kþ1ðf ðxi ;ujÞÞ�
8: end for
9: Q�kðxi; �Þ�GPq
 . GP model for Q�k

10: p�kðxiÞ 2 argminu2Rnu Q�kðxi ;uÞ
11: V�kðxiÞ ¼ Q�kðxi ;p�kðxiÞÞ
12: end for
13: V�kð�Þ�GPv
 . GP model for V�k

14: end for

15: return GPv ;X;p�ðXÞ:¼p�0ðXÞ
4 Other function approximators can be employed as well. We use GPs to stay

in the same class of function approximators throughout this article.
Note that for all xi 2 X independent GP models for Q�kðxi; �Þ are
used rather than modeling Q�kð�; �Þ in joint state–action space. This
idea is largely based on three observations. First, we are finally
only interested in the values V�kðxiÞ, the minimal expected
cumulative cost at a support point for the V�-function GP.
Therefore, a model of Q�k in joint state–action space is not
necessary. Second, a good model of Q�k in joint state–action space
requires substantially more training points and makes standard
GP models computationally very expensive. Third, the Q�-function
can be discontinuous in x as well as in u. We eliminate one
possible source of discontinuity by treating Q�kðxi; �Þ and Q�kðxj; �Þ

independently.
Summarizing, the generalization of DP to continuous actions is

achieved by the Q�-function model, the generalization to
continuous states is achieved by the V�-function model.
3.1. Computational and memory requirements

GPDP as described in Algorithm 2 requires OðjXjjUj3 þ jXj3Þ
computations per time step since training a GP scales cubically in
the number of training points, see Section 2.2. Classic DP for
deterministic settings requires OðjXDPjjUDPjÞ computations: the
Q�-value for any state–action pair ðxi;ujÞ has to be computed.
Note that the sets of states XDP and actions UDP used by
DP usually contain substantially more elements than their
counterparts in GPDP. Thus, GPDP can use data more efficiently
than discretized DP.

In terms of memory requirements, the most demanding part of
GPDP is the storage of the inverse kernel matrices K�1

v and K�1
q ,

which contain jXj2 and jUj2 elements, respectively.
In contrast to classic DP, GPDP is independent of the time-

sampling frequency since the set X contains support points of the
GP value function models rather than representations of the state
space. Higher time-sampling frequency will require an increase in
the number and a decrease in the size of cells in a classic DP
setting, where the state space itself is defined by X.
3.2. Policy learning

To learn an optimal, continuous-valued policy on the entire
state space, we have to model the policy based on a finite number
of evaluations. We regard the policy as a deterministic map from
states to actions. Although any function approximator can be used
for policy modeling purposes, we approximate the policy with a
GP, the policy GP.4

We interpret the optimal controls p�ðXÞ (line 15 of Algorithm 2)
returned by GPDP as noisy measurements of an optimal policy.
We assume noisy measurements to account for model errors
and the noisy immediate cost function g. To generalize that finite
set of optimal controls to a continuous-valued, globally optimal
policy p� on the entire state space, we have to solve a regression
problem. The training inputs for the proposed policy GP are
the locations X, that is, the training input locations of the value
function GP. The training targets are the values p�ðXÞ. If we lack
problem-specific priors, this general approach is applicable.

Let us consider an example, where this problem-specific prior
knowledge is available and discuss a way of learning a discontin-
uous optimal policy. Discontinuous policies often appear in
under-actuated systems. Traditional policy learning methods
as discussed by Peters and Schaal [39–41] or standard GP models
with smoothness favoring covariance functions, which have
been used for instance by Rasmussen and Deisenroth [45], are
inappropriate to model discontinuities.



ARTICLE IN PRESS

π*(�)

π+ (�)* π−(�)*

GP+ GP−

π+
* π−

*

x*

π*(x*)

select policy model

classifier

Fig. 1. Learning a discontinuous policy by switching between GP models. The

optimal controls p�ðXÞ are split into two groups: positive and negative control

signals. Two GPs are trained independently on either of the subsets to guarantee

local smoothness. A classifier selects greedily one GP to predict an optimal control

for a test input x� . The resulting policy can be discontinuous along the decision

boundary.

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241512
In the following, we assume that there exists a near-optimal
policy that is piecewise smooth with possible discontinuities at
certain states, where the sign of the control signal changes. Due to
these considerations, we attempt to model the policy p� by
switching between two GPs. The main idea of this step is depicted
in Fig. 1. The set of optimal controls p�ðXÞ returned by GPDP is
split into two subsets of training targets: controls with positive
sign and controls with negative sign. One GP is trained solely on
the subset p�þðXÞ 	 p�ðXÞ of positive controls and the correspond-
ing input locations, the other GP uses the remaining set denoted
by p��ðXÞ. As the training inputs of either GP model is restricted to
a part of the entire training set, we call them ‘‘locally trained’’. We
denote the corresponding GPs by GPþ and GP�, respectively.
Note that the values p�ðXÞ are known from the GPDP algorithm.
Both GP models play the role of local experts in the region of their
training sets. After training, it remains to select a single GP model
given a test input x�. In the considered case, this decision is made
by a binary (GP) classifier that selects the most likely local GP
model to predict the optimal control.5 The training inputs of the
classifier are the states X and the corresponding targets are the
labels ‘‘þ’’ or ‘‘�’’, depending on the values p�ðXÞ. This classifier
plays a similar role as the gating network in a mixture-of-experts
setting introduced by Jacobs et al. [20]. In contrast to the work by
Jacobs et al. [20], we greedily choose the GP model with higher
class probability to predict the optimal control to be applied in a
state. We always apply the predicted mean of the locally trained
GP policy model although we obtain distributions over the
policies pðp�þÞ and pðp��Þ, respectively. Note that convex combina-
tion of the predictions of GPþ and GP� according to the
corresponding class probabilities will not yield the desired
discontinuous policy. Instead, the policy will be smoothed out
along the decision boundary.

Binary classification maps outcomes of a latent function f into
two different classes. In GP classification (GPC) a GP prior is placed
over f , which is squashed through a sigmoid function to obtain a
prior over the class labels. In contrast to GP regression, the
likelihood pðcijf ðxiÞÞ in GPC is not Gaussian. The class label of f ðxiÞ

is ci 2 f�1;þ1g. The integral that yields the posterior distribution
of the class labels for test inputs is not analytically computable.
5 It is not required that the classifier is a GP classifier. Other binary classifiers,

such as SVMs, can be utilized as well.
The expectation propagation (EP) algorithm approximates the
non-Gaussian likelihood to obtain an approximate Gaussian
posterior. We refer to the work by Minka [34] or the book by
Rasmussen and Williams [48] for further details.

Combining GPDP with a policy learning method yields the full
RL algorithm (Algorithm 3) that is dealt with in this article. The
algorithm determines a continuous-valued (probabilistic) value
function model and a continuous-valued policy model.

Algorithm 3. Full RL algorithm.
1: ðV� , X, p�ðXÞÞ ¼ GPDP
 . learn value function
2: p� ¼ learn_policyðX;p�ðXÞÞ
 . learn policy
3.3. Evaluations

We analyze GPDP by applying it to a comprehensible, but still
challenging, nonlinear control problem, the under-actuated
pendulum swing up. The algorithms are implemented using the
gpml toolbox from the book by Rasmussen and Williams [48]. At
http://mlg.eng.cam.ac.uk/marc/, additional code will be publicly
available.

3.3.1. General setup

We consider a discrete-time approximation of the continuous-
time pendulum dynamics governed by the ODE

€jðtÞ ¼ �m
_jðtÞ þmgl sinðjðtÞÞ þ uðtÞ

ml2
;

goal position

umax

where m ¼ 0:05 kg m2=s is the coefficient of friction, l ¼ 1 m is the
pendulum length, m ¼ 1 kg is the pendulum mass, and g ¼

9:81 m=s2 the gravitational constant. The applied torque is
restricted to u 2 ½�5;5�N m and is not sufficient for a direct swing
up. The characteristic pendulum frequency is approximately
0.5 Hz. Angle and angular velocity are denoted by j and _j,
respectively. The control signal is piecewise constant and can be
modified every 200 ms. Starting from an arbitrary state, the task is
to swing the pendulum up and to balance it in the inverted
position around the goal state ½0;0�>. Atkeson and Schaal [3] show
that this task is not trivial. Moreover, discretization can become
prohibitively expensive despite the low dimensionality as shown
by Doya [12]. To avoid discretization, we apply GPDP to work
directly in function space and minimize the undiscounted
expected total cost (2) over a horizon of 2 s. We choose the
saturating immediate cost function g

gðx;uÞ ¼ 1� expð�x>diagð½1;0:2�ÞxÞ 2 ½0;1�, (10)

which does not penalize the applied action but only the state. The
immediate cost (10) is affected by additive Gaussian noise wg with
standard deviation sw ¼ 0:001, which has to be accounted for by
GPq and is not a priori known to the controller.

For both value function models GPv and GPq we choose the
covariance function

kðxi;xjÞ:¼kSEðxi;xjÞ þ knðxi;xjÞ,

where kSE is the SE kernel defined in Eq. (8). The noise kernel

knðxi;xjÞ:¼s2
e dij

http://mlg.eng.cam.ac.uk/marc/


ARTICLE IN PRESS

−2 0 2
−5

0

5

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

2

4

6

8

−2 0 2
−5

0

5

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

−2

0

2

4

6

8

Fig. 2. Optimal and learned value functions. Note that the angle has wrap-around boundary conditions. (a) Optimal DP value function. (b) Mean of value function model

(GPDP).

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

high pos.

low pos.

neutral

low neg.

high neg.

Fig. 3. Mean function of policy model. White circles are the inputs for GP�, black

crosses are the input locations for GPþ. Due to this separation, a GP policy model

with discontinuities is determined. The colors encode the strength of the force to

be applied (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.).

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1513
smooths model errors of previous computations out. Here, dij is
the Kronecker delta.6 We randomly select 400 states7 as the set of
support points X for GPv in the state space hypercube
½�p;p�> rad� ½�7;7�> rad=s. At the kth iteration, we define the
prior mean functions mv:¼k¼:mq as constant. This makes states far
away from the training set X unfavorable. This setup is reasonable
as we assume that the relevant part of the state space is
sufficiently covered with support points for the value function
GP, GPv.

For GPq, a linear grid of 25 actions in the admissible range
[5,5] N m defines the training inputs U of GPq for any particular
state x 2 X. The training targets are the Q�-values determined in
line 7 of Algorithms 2.

We model the discontinuous policy by switching between two
GP models as described in Section 3.2. Since we assume a locally
smooth latent near-optimal policy, we use smoothness favoring SE
kernels to train the policy models GPþ and GP�, respectively.8

The prior mean functions for GPþ and GP� are set to zero
everywhere. Although we do not expect that the positive or
negative policies are in average zero, we want the policy to be
conservative ‘‘in doubt’’. If the predictive distribution of the
optimal control signal has high variance, a conservative policy will
not add more energy to the system.

As it is assumed that the deterministic transition dynamics f

are a priori known, the considered learning problem almost
corresponds to a classic optimal control problem. The only
difference is that noisy immediate cost (10) are perceived. To
evaluate the quality of the learned policy, we compare it against
an optimal solution. In general, an optimal policy for continuous-
valued state and control domains cannot be determined. Thus, we
rely on classic DP with cumbersome state and control space
discretization to design the benchmark controller. Here, we used
regular grids of approximately 6:2� 105 states and 121 possible
control values. We consider this DP controller optimal.

3.3.2. Value function and policy models

Fig. 2(a) shows the optimal value function determined by DP.
The axes define the phase space, that is, angle and angular velocity
of the pendulum. Since the pendulum system is under-actuated,
the value function is discontinuous around the central diagonal
6 In this article, we restrict ourselves to reporting results with the SE kernel for

simplicity reasons. We also analyzed the results for kq being the Matérn kernel,

which gave slightly better results.
7 We successfully tested the algorithm for 200–600 data points.
8 Results with the rational quadratic kernel are similar.
band. The borders are given by states where the applicable torque
is just strong enough to perform the swing up, which causes little
total cost. In the neighboring state, the pendulum will fall over
independent of the torque applied incurring high cumulative cost.
The goal state is in the center of the figure at ½0;0�>.

The mean function of the value function model determined by
GPDP is given in Fig. 2(b). Although the mean of the value function
model GPv in the origin is negative, its shape corresponds to the
shape of the optimal value function in Fig. 2(a). The discontinuous
border is smoothed out, though. Apart from the small negative
region in the model, the values are very close to the values of the
optimal value function in Fig. 2(a).

The mean of the resulting learned policy is given in Fig. 3. We
can model the discontinuous borders of the policy due to the
selection of the corresponding locally trained GP as explained in
Section 3.2. The white circles in Fig. 3 are the training input
locations of GP�, the black crosses are the training input
locations of GPþ. The colors in the plot encode the strengths of
the mean predicted torques to be applied. Although some
predicted torques can exceed the admissible range of ½�5;5�N m,
we only apply the maximum admissible torque when interacting
with the pendulum system.

3.3.3. Performance analysis

Example trajectories of state and applied controls are given in
Fig. 4. In the considered particular trajectory, the total cost of the
GPDP controller is approximately 9% higher than the total cost



ARTICLE IN PRESS

2.5

5

−π/2

0

− π

π/2

GPDP
DP

0 1 2 3 4 5

0

2

4

an
g.

ve
l.

GPDP
DP

0 1 2 3 4 5
−5

0

5

time in s

ac
tio

n GPDP
DP

Fig. 4. Example trajectories for the states and the corresponding applied control signals of the under-actuated pendulum swing up for the DP (red, dashed) and GPDP (blue,

solid) controllers starting from ½�p;0�> . The left panel is a polar plot of the angle trajectories (in radians) when applying the optimal DP controller (red, dashed) and the

GPDP controller (blue, solid). The radius of any graph increases linearly with the time step: at time step zero (initial state ½�p;0�>), the trajectories start in the origin of the

figure. Every time step, the radius becomes larger and moves toward the boundary of the polar plot, which it finally reaches at the last time step after 5 s. Both trajectories

are close to each other. While the GPDP controller brings the angle more rapidly to the upright position, the DP controller is less aggressive, which is revealed in the angular

velocities shown in the right upper panel. The corresponding actions are shown in the right lower panel (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

time in s

im
m

ed
ia

te
 c

os
ts

GPDP

DP

Fig. 5. Immediate cost. Initially, both the DP and the GPDP controller cause full

immediate cost. After about 1.5 s, the DP controller starts incurring less cost,

whereas the GPDP controller requires another time step to follow. The trajectories

of both controllers are approximately cost-free after about 2.4 s as the controllers

stabilize the pendulum in the inverted position.

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241514
incurring when applying the DP controller. The corresponding
incurring immediate cost are shown in Fig. 5.

One thousand initial states ½j0; _j0�
> 2 ½�p;p�> rad�

½�7;7�> rad=s are selected randomly to analyze the global
performance of the learned policy. The normalized root mean
squared error (NRMSE) is 0.0566 and quantifies the expected error
introduced by GPDP compared to the cumbersome optimal DP
solution. The average total cost is about 4.6 units for DP and
5.3 units for GPDP. Both controllers are often very similar as for
instance shown in Fig. 4, but in rare cases the GPDP controller
causes substantially more total cost when it needs an additional
pump to swing the pendulum up. However, GPDP always solved
the task, the maximum total cost incurred was 13.6.
3.3.4. Single GP policy

Thus far, we modeled the policy by switching between
locally trained GP models. This problem-specific approach is only
applicable if sufficient prior knowledge about a good solution
is available. Otherwise, a more general approach is to model
the policy with a single GP. The global performance of the single
policy is close to the performance we reported for the case of
switching between two locally trained GP models. The NRMSE for
the single GP policy is 0.0686 (0.0566 for switching GPs), whereas
the average cost over 5 s is 5.5 (5.3 for switching GPs). Although
the global performances are almost identical, it can happen that
the single GP policy performs poorly even when the policy
modeled by switching GPs performs well. In particular, this
happens if the state trajectory hits a boundary of discontinuity.
Such an example is depicted in Fig. 6, where the initial state lies
close to such a boundary.
3.4. Discussion

Training GPq scales cubically in the number of actions used for
training. If the action space cannot easily be covered with training
points, subsampling actions is possible to speed up training:
assume that the most relevant part of the Q�k-function (line 7 of
Algorithm 2) is the one close to the optimum and choose those
M actions that yield the lowest expected cost in state xi. These
M actions define U and are the training inputs of GPq in
Algorithm 2. Then, we obtain more training points in the part of
the action space which results in a good approximation perfor-
mance of the GP model around the optimum of Q�k. A similar
perspective to this kind of local function approximation is
mentioned by Martinez-Cantin et al. [32].

In line 10 of Algorithm 2, we minimize the mean function of
GPq, that is, we do not take the variance of GPq into account.
Instead of simply minimizing the predictive mean function, it is
possible to add a fraction of the predictive variance. This approach
will favor actions that yield little expected predictive cost, but will
penalize uncertain predictions.

The suggested approach for learning a discontinuous policy
by using two different GPs seems applicable to many dynamic
systems and more effective than training a single GP with a
problem-specific kernel. Although problem-specific kernels may
perform better, they are difficult to determine. However, select-
ing the switching criterion can vary from case to case. In the
considered case, the distinction between positive and negative



ARTICLE IN PRESS

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

high pos.

low pos.

neutral

low neg.

high neg.

2.5

5

−π/2π/2

0

−π
switch policies
single policy

Fig. 6. The effect of smoothing out discontinuities in the policy is displayed: when starting from the state ½�0:77;1�> , which is close to the boundary where the pendulum

falls over, the discontinuous policy (blue) still can go straight toward the target state, whereas the smoothed policy (green) lets the pendulum fall over. (a) Learned policy

using a single GP. The initial state (black cross) is located close to the discontinuity, which has been smoothed by single GP policy model. For comparison, see Fig. 3, where

the discontinuities are modeled by switching between two GP models. (b) Angle trajectories for controllers using switching GPs (blue) and a single GP (green) to model the

policy (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1515
makes sense for intuitive and practical reasons. A point to be
discussed in future is the scalability to high-dimensional inputs.

Finding a globally optimal policy is very difficult in general.
Moreover, it requires many data points, particularly in higher
dimensions. In practical applications, a globally optimal policy is
not required, but rather a policy that can solve a particular task.
Thus far, we have placed the support points X for the value
function model GPv randomly in the state space. We consider this
a suboptimal strategy, which can be highly data-inefficient. In the
next section, we will describe how to combine both issues, solving
a particular task and using data efficiently.

3.5. Summary

We introduced GPDP. Based on noisy measurements of the
immediate cost, GPs were used to model value functions to
generalize DP to continuous-valued state and control domains.
Modeling the value functions directly in function space allowed us
to avoid discretization problems. Moreover, we proposed to learn
a continuous-valued optimal policy on the entire state space.

For a particular problem, in which problem-specific prior
knowledge was available, we switched between two locally
trained GPs to model discontinuities in the policy. The application
of the concept to a nonlinear problem, the under-actuated
pendulum swing up, yielded a policy that achieved the task with
slightly higher cumulative cost than an almost optimal bench-
mark controller.
9 In this section, we aim at maximizing rewards instead of minimizing cost.

Although both approaches are equivalent in their original form, we prefer rewards

in this online setting as they can be intuitively combined with information-based

rewards.
4. Online learning

A central issue for RL algorithms is the speed of learning, that
is, the number of trials necessary to learn a task. Many learning
algorithms require a huge number of trials to succeed. In practice,
however, the number of actual trials is very limited due to time or
physical constraints. In the following, we discuss an RL algorithm
in detail, which aims to speed up learning in a general way.

There are broadly two types of approaches to speed up learning
of artificial systems. One approach is to constrain the task in
various ways to simplify learning. The issue with this approach is
that it is highly problem dependent and relies on an a priori
understanding of the characteristics of the task. Alternatively, one
can speed up learning by extracting more useful information from
available experience. This effect can be achieved by carefully
modeling the observations. In a practical application, one would
typically combine these two approaches. In the following, we are
concerned solely with the second approach: How can we learn as
fast as possible, given only very limited prior understanding of a
task?

In the sequel, we will generalize the assumptions made in the
previous section and assume that the transition dynamics f in
Eq. (1) are a priori unknown and that we perceive noisy
immediate rewards.9 The objective is to find an optimal policy
leading the system from an initial state to the goal state requiring
only a small number of interactions with the real system. This
constraint also implies that Monte Carlo sampling, and therefore
classical model-free RL algorithms, are often infeasible. Hence, it
seems worth building a dynamics model since model-based
methods often make better use of available information as
described by Bertsekas and Tsitsiklis [7, p. 378]. As discussed by
Rasmussen and Deisenroth [45], probabilistic models appropri-
ately quantify knowledge, alleviate model bias, and can lead to
very data-efficient solutions.

In the sequel, we will build a probabilistic model of the
transition dynamics and incorporate it into the GPDP algorithm.
We distinguish between training the model offline or online.
Training the model offline, that is, prior to the entire planning
algorithm in which an optimal policy is determined, requires
either a good cover of the state space or sufficiently good prior
knowledge of the task, such that we can restrict the state space to
a dynamically relevant part. We followed this approach in our
previous work [11]. In this article, we will take a more general
approach and train the dynamics model online. With ‘‘online’’ we
mean that dynamics model and value function models are being
built alternately. Solely based on gathered experience, the idea is
to explore a relevant region of the state space automatically while
using only general prior assumptions. Solving the described
problem within a generalized DP framework demands treatments
of the exploration–exploitation tradeoff, online dynamics learn-
ing, and one-step ahead predictions. We will address all these
issues in this section.

To perform a particular task, we will adapt GPDP (Algorithm 2)
such that only a relevant part of the state space will be explored.



ARTICLE IN PRESS

initial state
goal state

final path

training set

relevant region

Fig. 7. Starting from an initial state, the algorithm iteratively finds a solution to the

RL problem without searching the entire state space, but by placing the training set

in relevant regions (shaded area) of the state space only.

Table 1
Solutions to integral (11).

Known det. f GPf

Known V� V�ðf ðx;uÞÞ
R

V�ðf ðx;uÞÞpðf Þdf

GPv mvðf ðx;uÞÞ b>l

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241516
Fig. 7 gives an impression how such a solution can be found.
Starting from an initial state, training inputs for the involved
GP models are placed only in a relevant part of the state space
(shaded area). The algorithm finds a solution leading the system
through this relevant region to the goal state. GP models of the
transition dynamics and the value functions will be built on the
fly. The resulting algorithm replaces GPDP in line 1 of Algorithm 3.
The policy learning part is not affected. By utilizing Bayesian
active learning, we will determine a set of optimal future
experiments (interactions with the real system) to use data
efficiently.
10 This is not true for classic DP.
4.1. Learning the dynamics

We attempt to model short-term transition dynamics based
on interactions with the real dynamic system. We assume that
the dynamics evolve smoothly over time. Moreover, we implicitly
assume time-invariant (stationary) dynamics. We utilize a GP model,
the dynamics GP, to describe the dynamics f�GPf . For each output
dimension i we train a separate GP model

xi
kþ1 � xi

k�GPðmf ; kf Þ.

This model implies that the output dimensions are conditionally
independent given the inputs. Note that the correlation between
the state variables is implicitly considered when we observe pairs
of states and successor states. The training inputs to the dynamics
GP are state–action pairs, the targets are the differences between
the successor state and the state in which the action was applied.
For any test input ðx�;u�Þ the predictive distribution of f ðx�;u�Þ is
Gaussian distributed with mean vector l

�
and covariance matrix

R�. The posterior dynamics GP reveals the remaining uncertainty
about the underlying latent function f . For a deterministic system,
where the noise term w in Eq. (1) is considered measurement
noise, the uncertainty about the latent transition function f tends
to zero in the limit of infinite data, and the dynamics GP converges
to the deterministic transition function, such that GPf 
 f . For a
stochastic system, the noise term w in the system equation (1) is
process noise. In this case, we obtain a dynamics model GPf

of the underlying stochastic transition function f that contains
two sources of uncertainty. First, as in the deterministic case,
the uncertainty about the underlying system function itself,
and second the uncertainty induced by the process noise. In the
limit of infinite data the first source of uncertainty tends to zero,
whereas stochasticity due to the process noise w is always
present. This means that only the uncertainty about the model
vanishes.

In practice, a deterministic GP model contains only one source
of uncertainty as the additive measurement noise can be sub-
tracted from the total uncertainty (measurement noise plus
uncertainty about latent function). In the stochastic case, the
process noise can never be subtracted as it is part of the transition
dynamics.

In the following, we solely consider the case of unknown
deterministic transition dynamics with additive measurement
noise. Stochastic dynamics with additive process noise can be
treated analogously.10

4.2. One-step ahead predictions

Let us revisit the GPDP algorithm (Algorithm 2). In a general RL
setting, the deterministic transition dynamics f are no longer
known, but rather modeled by the dynamics GP. Assume for a
moment that this model is known. The only place where the
dynamics come into play is when the Q�-values are determined.
Here, the expected value of V� at a successor state distribution
(line 7 of Algorithm 2),

EV ;f ½Vkþ1ðxkþ1Þjxi;uj;GPf � ¼

ZZ
Vðf ðxi;ujÞÞpðV jf Þpðf ðxi;ujÞÞdf dV

(11)

has to be computed for any state–action pair ðxi;ujÞ 2 X�U. Both
the system function f and the value function V� are latent and
modeled by GPf and GPv, respectively. Explicitly incorporating
the uncertainty of the dynamics model in Eq. (11) is important in
the context of robust and adaptive control as discussed by
Murray-Smith and Sbarbaro [35]. In a Bayesian way, we take the
uncertainties about both latent functions into account by
averaging over f and V�. Hence, we have to predict the value of
V� for uncertain inputs f ðxi;ujÞ. We use the Bayesian Monte Carlo
method described by Rasmussen and Ghahramani [46] and
O’Hagan [37]. In short, the mean and variance of the predictive
distribution of V�ðf ðxi;ujÞÞ can be computed analytically. The
mean is given byZ

mvðf ðxi;ujÞÞpðf ðxi;ujÞÞdf ¼ b>l (12)

with b:¼ðKþ s2
wIÞ�1y and where

li ¼

Z
kvðxi; f ðxi;ujÞÞpðf ðxi;ujÞÞdf ðxi;ujÞ

is an expectation of kvðxi; f ðxi;ujÞÞ with respect to f ðxi;ujÞ. Here, y
are the training targets for GPv. Further details including the final
expression for kv being the SE covariance function and the
corresponding expressions for the predictive variance are given in
the paper by Girard et al. [17] and in Appendix A.

Table 1 summarizes four cases of how to solve the integral in
Eq. (11) for deterministic dynamics depending on which functions
are known. All unknown functions are assumed to be modeled by
GPs. To improve readability, we omit the indices i and j in x and u,
respectively. In the first case, we assume that the value function
V� and the dynamics f are deterministic and known. That is,
pðx0jx;uÞ ¼ dðx0 ¼ f ðx;uÞÞ is a Dirac delta, and the solution to (11)
is simply given by V�ðf ðx;uÞÞ. In the second case, we consider a
known value function, but unknown dynamics f . The dynamics
are modeled by GPf , and we obtain Gaussian predictions pðf ðx;uÞÞ
since x0 ¼ f ðx;uÞ is Gaussian distributed for any input pair ðx;uÞ.
Mean and variance are given by Eqs. (6) and (7), respectively. In
combination with nonlinear value functions, the integral in



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1517
Eq. (11) is only in special cases analytically solvable, even if the
value function is exactly known. In the third case, we assume that
the dynamics are deterministic and known, but the value function
is unknown and modeled by GPv. This case corresponds to the
standard GPDP setting (Algorithm 2) we have proposed in
previous work [10]. The expectation with respect to x0 vanishes.
However, the expectation has to be taken with respect to the value
function V� to average over the uncertainty of the value function
model. Hence, the solution of Eq. (11) is given by mvðf ðx;uÞÞ, the
evaluation of the mean function of GPv at f ðx;uÞ. In the fourth
case, neither the value function nor the dynamics are exactly
known but modeled by GPv and GPf , respectively. Therefore, we
have to average over both the uncertainty about the value
function and the uncertainty about the dynamics. Due to theses-
ources of uncertainty, solving the integral (11) corresponds to
GP prediction with uncertain inputs f ðx;uÞ. The solution is given
by Eq. (12).
Table 2
Training sets of GP models involved in Algorithm 4.

GPf GPv GPq
4.3. Bayesian active learning

It remains to discuss two open problems: How can we learn the
transition dynamics online and how do we attack the explor-
ation–exploitation dilemma? We utilize Bayesian active learning
(optimal design) to answer both questions.

Active learning can be seen as a strategy for optimal data
selection to make learning more efficient. In our case, training
data are selected according to a utility function. The utility
function often rates outcomes or information gain of an experi-
ment. Before running an actual experiment, these quantities are
uncertain. Hence, in Bayesian active learning, the expected utility
is considered by averaging over possible outcomes.11 Information-
based criteria as proposed by MacKay [29], Krause et al. [27] and
Pfingsten [42], for example, or their combination with expected
outcomes as discussed by Verdinelli and Kadane [54] and
Chaloner and Verdinelli [9] are commonly used to define utility
functions. Solely maximizing an expected information gain tends
to select states far away from the current state set. MacKay [29]
calls this phenomenon the ‘‘Achilles’ heel’’ of these methods if the
hypotheses space is inappropriate.

To find an optimal policy guiding the system from an initial
state to the goal state, we will incorporate Bayesian active
learning into GPDP such that only a relevant part of the state
space will be explored. GP models of the transition dynamics and
the value functions will be built on the fly. A priori it is unclear,
which parts of the state space are relevant. Hence, ‘‘relevance’’ is
rated by a utility function within a Bayesian active learning
framework in which the posterior distributions of the value
function model GPv will play a central role. This novel online
algorithm largely exploits information, which is already computed
within GPDP. The combination of active learning and GPDP will be
called ALGPDP in the sequel. Instead of a globally, sufficiently
accurate value function model, ALGPDP aims to find a locally
appropriate value function model in the vicinity of most
promising trajectories from the initial states to the goal state.

In RL, the natural setting is that the final objective is to gain
both information and high reward. Therefore, we combine the
desiderata of expected information gain and expected total
rewards to find promising states in the state space that model
the value functions well. In a parametric setting, such a utility
function has been discussed by Verdinelli and Kadane [54]. We
will discuss a non-parametric case in this article.
11 Note that the utility function in this context does not necessarily depend on

the RL reward function.
4.4. ALGPDP

Algorithm 4 describes the entire ALGPDP algorithm. In contrast
to GPDP in Algorithm 2, the sets X, are time variant. Therefore, we
will denote them by Xk, k ¼ N; . . . ;0, in the following, where N is
the length of the optimization horizon. ALGPDP starts from a
small set of initial input locations XN . Using Bayesian active
learning (line 5), new locations (states) are added to the current
set Xk at any time step k. The sets Xk serve as training input
locations for both the dynamics GP and the value function GP. At
each time step, the dynamics model GPf is updated (line 6) to
incorporate most recent information. Furthermore, the GP models
of the dynamics f and the value functions V� and Q� are updated.
Table 2 gives an overview of the respective training sets, where
xi 2 Xk and uj 2U. Here, x0 denotes an observed successor state of
the state–action pair ðx;uÞ.

Algorithm 4. Online learning with GPDP.
Training inputs ðxi ;uiÞ xi

Training targets x0i � xi maxu2Rnu
1: train GPf around initial states XN
 . initialize dynamics model
2: V�NðXNÞ ¼ gtermðXNÞ þwg
 . terminal cost
3: V�Nð�Þ�GPv
 . GP model for V�N

4: for k ¼ N � 1 to 0 do
 . DP recursion (in time)
5: determine Xk through Bayesian active learning
6: update GPf
 . GP transition model
7: for allxi 2 Xk do
 . for all support states
8: for all uj 2 U do
 . for all support actions
9: Q�kðxi ;ujÞ ¼ gðxi ;ujÞ þwg þ gE½V�kþ1ðxkþ1Þjxi;uj;GPf �
10: end for
11: Q�kðxi ; �Þ�GPq
 . GP model for Q�k

12: p�kðxiÞ 2 arg maxu2Rnu Q�kðxi ;uÞ
13: V�kðxiÞ ¼ Q�kðxi ;p�kðxiÞÞ
14: end for
15: V�kð�Þ�GPv
 . GP model for V�k

16: end for

17: return GPv;X;p�ðX0Þ:¼p�0ðX0Þ
4.5. Augmentation of the training sets

ALGPDP starts from a small set of initial input locations XN . In
the following, we define criteria and describe the procedure
according to which the training input locations Xk,
k ¼ N � 1; . . . ;0, are found. Let us assume that in each iteration
of Algorithm 4, l new states are added to the current input
locations Xk. Note that Xk are the training inputs of the value
function GP. The new states are added (line 5 in Algorithm 4) right
after training GPv.

4.5.1. Utility function

Consider a given set X̃ of possible input locations, which could
be added. For efficiency reasons, only the best candidates shall be
added to Xk. In RL, we naturally expect from a ‘‘good’’ state x̃ 2 X̃
to gain both information about the latent value function and high
reward. Hence, we choose a utility function U that captures both
objectives to rate the quality of candidate states. We aim to find
the most promising state x̃� that maximizes the utility function.
Due to the probabilistic value function GP model, we consider the
expected utility requiring Bayesian averaging. In the context of
uj

Q�ðxi ;uÞ Q�ðxi ;ujÞ



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241518
GPDP, we define the expected utility as

Uðx̃Þ:¼rEV ½V
�
kðx̃ÞjXk� þ

b
2

logðvarV ½V
�
kðx̃ÞjXk�Þ (13)

with weighting factors r, b. We explicitly conditioned on the
given input locations Xk on which the current value function has
been trained. This utility requires that we have a notion of the
distribution of V�kðx̃Þ. Fortunately, the predictive mean and
variance

EV ½V
�
kðx̃ÞjXk� ¼ kvðx̃;XkÞK

�1
v yv,

varV ½V
�
kðx̃ÞjXk� ¼ kvðx̃; x̃Þ � kvðx̃;XkÞK

�1
v kvðXk; x̃Þ

of V�kðx̃Þ are directly given by Eqs. (6) and (7), respectively. The
utility (13) expresses, how much total reward is expected from x̃
(first term) and how surprising V�kðx̃Þ is expected to be given the
current training inputs Xk of the GP model for V�k (second term).
As described by Chaloner and Verdinelli [9], the second term can
be derived from the expected Shannon information (entropy) of
the predictive distribution V�kðx̃Þ or the Kullback–Leibler diver-
gence between the predictive distribution of V�kðx̃ÞjXk and V�kðXkÞ.
The parameters r and b assess weight expected reward and
expected information gain. A large (positive) value of r favors high
expected reward, whereas a large value (positive) b favors gaining
information based on the predicted variance.12 Aiming at high
expected rewards exploits current knowledge represented and
provided by the probabilistic value function model. Gaining
information means to explore places with few training points.
By adding states with expected high rewards and high information
gain we lead state trajectories from the initial point to the goal
state. Therefore, the parameters r;b in Eq. (13) can be considered
parameters that control the exploration–exploitation tradeoff.

4.5.2. Adding multiple states

Instead of finding only a single promising state x̃�, we are
interested in the best l states x̃�j , j ¼ 1; . . . ; l; of the candidate set
X̃ ¼ fx̃i : i ¼ 1; . . . ; Lg. A naı̈ve approach is to select all states
independently of each other by just taking the best l values of the
expected utility (13) when plugging in X̃. However, we can
incorporate cross-information between the candidate states. This
approach accounts for the fact that states very close to one
another often do not contribute much more information than a
single state. To avoid combinatorial explosion in the selection of
the best set of l states, we add states sequentially.

We greedily choose the first state x̃�1 2 X̃ maximizing the
expected utility (13). Then, the covariance matrix is augmented
according to

Kv:¼
Kv kvðXk; x̃

�
Þ

kvðx̃
�;XkÞ kvðx̃

�; x̃�Þ

" #
(14)

with x̃� ¼ x̃�1 and kv being the covariance function of GPv. Now,
Kv incorporates information about how V�kðXkÞ and V�kðx̃

�

1Þ covary.
The updated covariance matrix is used to evaluate the expected
utility (13), which means to update the predictive variance of
V�kðx̃2Þ conditioned on Xk and x̃�1. Therefore, we explicitly consider
cross-covariance information between V�kðx̃

�

1Þ and V�kðx̃2Þ. The
predictive mean of V�kðx̃2Þ, the first term in Eq. (13), does not
change. Executing this procedure l times determines promising l

states x̃�1;...;l 2 X̃. A state x̃iþ1 depends on its expected total reward
and its expected information gain conditioned on Xk [ x̃�pi. To
define the set Xk�1, we could use the locations x̃�i , i ¼ 1; . . . ; l;
directly. This approach will cause problems as the states x̃�i are
12 A negative value of b will lead to conservative solutions that avoid solutions

with high variance (‘‘pessimism in the face of uncertainty’’ in contrast to

‘‘optimism in the face of uncertainty’’).
solely based on simulation. If the value function model GPv or the
transition model GPf were totally wrong, it would be possible to
add states, which are never dynamically reachable. Hence, we are
seeking input locations by interacting with the real system.

Thus far, we have discussed how to find promising locations x̃�i
from a set X̃ of candidates. However, we do not yet know how this
set is defined. Moreover, it is not clear yet, how to define the
training sets for GPf and GPv (see Table 2) and how to augment
the locations Xk to obtain Xk�1 using the information provided by
the promising states x̃�i , which are determined through simula-
tion. We will discuss these issues in the following paragraphs.
Note that the locations Xk serve as training inputs for both the
dynamics GP and the value function GP.
4.5.3. Set of candidate states

Although it is possible to choose candidate states X̃ randomly,
such selections would be highly inefficient and irregular. There-
fore, we take a different approach and exploit the dynamics model
for one-step ahead predictions in any recursion within ALGPDP
(Algorithm 4), which does not lead us to completely unexplored
regions of the state space. Using the dynamics GP, the predicted
means of the successor states of the set Xk (applying the set of
actions U in each of them) are chosen as candidates X̃. In line 9 of
Algorithm 4, these states are denoted by xkþ1. Therefore, their
predicted state distributions are already known from previous
computations.
4.5.4. Training dynamics and value function models

In order to train the dynamics model around the initial state
(line 1 of Algorithm 4), we observe short trajectories of states
starting from the initial state. As we do not have a notion of a good
strategy, we may apply actions randomly. The state–action pairs
ðxinit

i ;uinit
i Þ along the observed trajectories define the training

inputs for the dynamics GP, the corresponding successor states
f ðxinit

i ;uinit
i Þ define the training targets, which can be noisy. We

define the set XN:¼fxinit
i gi as the training input locations of the

initial dynamics GP.
Starting from XN , we employ Bayesian active learning to

augment this set of locations in each iteration of ALGPDP. Assume
in the following that the set of input locations Xk is known. We
determine the input locations Xk�1 to be employed in the
subsequent step of ALGPDP according to the following steps:
1.
 Determine X̃, that is, the predicted means of the successor
states when starting from Xk and applying U, X̃:¼Ef ½f ðXk;UÞ�.
The dynamics GP determines the distribution of the successor
states using Eqs. (6) and (7).
2.
 Bayesian active learning determines the most promising
predicted states x̃�i 2 X̃, i ¼ 1; . . . ; l.
3.
 Determine l tuples ðx0i;u
0
iÞ 2 Xk such that Ef ½f ðx

0
i;u
0
iÞ� ¼ x̃�i 2 X̃.

These tuples can be determined by a table look-up since the
sets Xk and U are finite.
4.
 We interact with the real system and apply action u0i in state x0i
and observe f ðx0i;u

0
iÞ. We define Xk�1:¼Xk [ ff ðx

0
i;u
0
iÞ :

i ¼ 1; . . . ; lg.

Note that we do not augment Xk with the predicted states x̃�i ,
which optimize the utility function (13). Rather, we interact with
the real system and apply action u0i in state xi, such that the mean
of the successor state is predicted to be x̃�i . We augment Xk with
the corresponding observation. Particularly, in the early stages of
learning, where not many observations are available, the predic-
tion does not necessarily correspond to the observation. However,
the probabilistic dynamics model recognizes and accounts for any



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1519
discrepancy between the real observations and the predicted
means in the next update.

In line 15 of Algorithm 4, we update the value function model
GPv. The training inputs are the set of states Xk and the goal
state.13 Initially at time step N, the value function equals the
terminal reward function gterm from Eq. (2), which depends on the
state only. In general, the corresponding training targets are
defined as the maximum of the Q�-function evaluated at the
locations Xk and the goal state. The goal state serves as additional
training input in the value function model and makes learning
more stable and faster since it provides some information about
the solution of the task. However, we do not think that this
information requires strong prior assumptions: if the rewards are
not externally given, the reward function has to be evaluated
internally. Note that the maximum immediate reward tells us,
where the goal state is.

The utility function (13) is solely optimized for a deterministic
set X̃, which effectively consists of predicted means of successor
states. Instead, it is possible to define the utility as a function of
the successor state distribution. This will require to determine the
predictive distribution of V� with uncertain inputs. Mean and
variance can be computed analytically and the corresponding
expressions for an SE kernel are given in Appendix A. However,
when updating the matrix (14), one has to compute the cross-
covariances between V�ðx̃Þ and V�ðX̃kÞ, which is computationally
more involved than computing the corresponding expression for
deterministic inputs (which basically is an n-fold evaluation of the
kernel). However, computation of the cross-covariance is also
analytically tractable. Although a definition of the expected utility
based on distributions pðx̃Þ will be a clean Bayesian treatment, we
do not explicitly discuss this case in this article.

4.6. Computational and memory requirements of ALGPDP

Let us consider the case of unknown (deterministic or
stochastic) dynamics first, which are trained offline. Apart from
training the dynamics GP once, which scales cubically in the
number of training points, we have to solve the integral in Eq. (11).
Computing a full distribution over the integral can be reformu-
lated as a standard GP prediction, which is quadratic in the
number of training points X.14 However, if we utilize the mean
only, the additional computations are OðjXj2jUjÞ per time step.

Compared to the case of unknown deterministic transition
dynamics, there is no additional computational burden for
unknown stochastic dynamics. Moreover, no more memory is
required to perform necessary computations. DP for stochastic
dynamics is often very cumbersome and hardly applicable
without approximations because of the OðjUDPjjXDPj

2Þ memory
required to store a full transition matrix. Moreover, the computa-
tional complexity of DP for a stochastic problem is also
OðjUDPjjXDPj

2Þ.
Now, let us consider the case of ALGPDP, which trains the

transition dynamics and value function models online. The
extended covariance matrix in Eq. (14) can be inverted in Oðn2Þ,
where n2 is the number of entries of the previous Kv. Hence, the
computational cost of Bayesian active state selection is
OðjUjðljXkj

2 þ ðl2 � lÞjXkjÞÞ 2 OðjUjjXkjlðlþ jXkjÞÞ. The dynamics
GP can be retrained in OððjXkj þ lÞ3Þ since the updated covariance
matrix Kf has to be inverted. The total computational complexity
of ALGPDP at time step k is therefore OðjUjðljXkj

2 þ ðl2 � lÞjXkjÞþ

ðjXkj þ lÞ3 þ jXkj
3ð1 þ jUjÞ þ jUj3jXkjÞ 2 OðjUjðljXkjðl þ jXkjÞÞþ
13 Riedmiller [50] calls the inclusion of the goal state ‘‘hint-to-goal heuristic’’.
14 The support points X are considered time invariant if we train the dynamics

offline.
jXkj
3ð1þ jUjÞ þ jUj3jXkjÞ, which includes training GPf , GPv,

GPq, and the evaluation of integral (11) for all successor states
of the states Xk when applying U. Note that XkD! Xk�1 ¼ Xk [

fx̃�plg and that standard GPDP in an optimal control setting as
discussed in Section 3 utilizes the full set X0 at any time step.
Hence, ALGPDP can lead to a remarkable speedup of GPDP.

4.7. Evaluations

We consider the under-actuated pendulum task, which has
been introduced in Section 3.3. Instead of minimizing the
expected cumulative cost, we now aim to maximize the expected
cumulative reward.15 We will consider the saturating immediate
reward function

gðxÞ:¼� 1þ expð�1
2dðxÞ2=a2Þ 2 ½�1;0�; a ¼ 1

6 m, (15)

where

dðxÞ2 ¼ 2l2 � 2l2 cosðjÞ; l ¼ 1 m

is the squared distance between the tip of the pendulum and the
goal state. Note that the immediate reward (15) solely depends on
the angle. In particular, it does not depend on the angular velocity
or the control variables. This reward function requires the learning
algorithm to discover automatically that a low angular velocity
around the goal state is crucial to solve the task. The reward
function (15) saturates for angles that deviate more than 17� �
0:3 rad from the goal position.

We maximize the (undiscounted) expected long-term reward
over a horizon of 2 s and assume that the dynamics are a priori
unknown if not stated elsewhere. The exploration/exploitation
parameters in the utility function (13) are set to r:¼1;b:¼2.16 The
initial state is chosen as ½�p;0�>, the goal state is the origin ½0;0�>.
The policy is modeled by a single GP instead of two GPs between
we can switch to account for discontinuities in the policy. In a
general learning approach, we cannot assume that specific prior
knowledge is available that describes a properties of a good
solution.

4.7.1. Swing up

To learn the transition dynamics around the initial state (line 1
of Algorithm 4), we observe two trajectories of length 2 s,
measured and controlled every 200 ms. Initially, we apply actions
randomly due to the lack of a good control strategy. The resulting
set XN consists of 20 states.

To perform the swing up, we use a total of 150 states including
the 20 states in XN along the initial random trajectories. This
means, we augment Xk by l ¼ 13 states at each time step to define
Xk�1. As in Section 3.3, we compared the solution learned by
ALGPDP to the optimal DP solution. Fig. 8 shows that a typical
solution provided by ALGPDP is close to the quality of the solution
of the optimal DP solution. The left panel shows that the angle
trajectories are close to each other. Therefore the immediate
rewards do not differ much either, which is shown in the right
panel. Remember that the reward function (15) is independent of
the angular velocity and the control signal. For this particular
trajectory, the cumulative reward of ALGPDP is approximately 7%
lower than the cumulative reward of the optimal DP solution.
Note that due to the reward function (15), only a very small range
of angles actually causes rewards significantly deviating from �1.
15 Both objectives are regarded equivalent since a negative reward is the

corresponding positive cost.
16 We did not thoroughly investigate many other parameter settings. However,

we observed that the algorithms also work for different values of r and b
reasonably well.



ARTICLE IN PRESS

2.5

5

π/2 −π/2

0

−π
ALGPDP
DP 0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

time in s

im
m

ed
ia

te
 re

w
ar

ds

ALGPDP
DP

Fig. 8. Trajectories of the angle and immediate rewards when applying optimal policies. The left panel is a polar plot of the angle trajectories (in radians) when applying the

optimal DP controller (red, dashed) and the approximate ALGPDP controller (blue, solid). The radius of any graph increases linearly in time: at time step zero (initial state

½�p;0�>), the trajectories start in the origin of the figure. Every time step, the radius becomes larger and moves toward the boundary of the polar plot, which it finally

reaches at the last time step after 5 s of simulating the system. Both trajectories are close to each other. The goal state is the upright position, 0 rad. Both controllers move

the pendulum rapidly to the goal state in the upright position although the optimal DP controller is slightly faster. The right panel shows the corresponding immediate

rewards over time. Initially, the rewards are identical. After 1.8 s they deviate because the DP controller brought the pendulum quicker into the region with higher reward.

After 2.2 s both trajectories are in a high-reward zone and do no longer differ noticeably (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.).

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

−1

−0.8

−0.6

−0.4

−0.2

0

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

−2

−1.5

−1

−0.5

0

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

−4

−3

−2

−1

0

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l. 

in
 ra

d/
s

−10

−8

−6

−4

−2

0

Fig. 9. Means of value function GP after 0, 2, 5, 10 steps of ALGPDP. The GP models of the value function were trained on the input locations marked by the white dots. The

upper left panel shows the initial value function model, which was learned with only two input locations: the initial state (left border) and the goal state (center), both in

white. The cyan squares are the input locations of the first dynamics model, that is, the random trajectories when starting from the initial state. Note that in all panels the

cyan squares are not used to train the current value function model, but rather added to the set of states, which serves as training inputs of the next iteration. The upper

right panel displays the mean of the value function after two iterations of ALGPDP. The value function is still very flat in the area close to the white dots. Bayesian active

learning selects promising locations to fill the relevant part of the state space. Due to its flatness, the expected total reward is not decisive to maximize the utility function.

Thus, variance information comes into play and selects locations, where the value function model is very uncertain. Hence, it can happen that the cyan squares are added in

uncertain regions in which the expected reward is somewhat lower than elsewhere. The lower left panel shows the mean of the value function GP after five iterations. In

this plot, it can already be seen that the recently added states (cyan squares) slowly ‘‘move’’ toward the goal state (white dot in the center), which is the point with highest

expected reward. The lower right panel shows the value function model after the last iteration and the full set of 250 input locations. The last states were added close to the

goal state, and exploration focuses on high-reward regions close to the goal state. Close to the input locations, which are considered to be the relevant part of the state

space, the value function model is sufficiently accurate.

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241520
Keep in mind that the optimal DP solution is cumbersome to
determine and requires much prior knowledge, computation time,
and memory.

Fig. 9 shows a typical evolution of the mean of the probabilistic
value function model throughout the iterations of ALGPDP.
Starting from the initial random trajectories, input locations are
added by using Bayesian active learning. It can be seen that
initially the inclusion of new states is based on exploration. The
final value function model (lower right plot) is trained with a
higher concentration of states around the goal state, which is due



ARTICLE IN PRESS

Table 3
Real computation times of ALGPDP on a standard computer.

jX0j ¼ 75 jX0j ¼ 150 jX0j ¼ 225 jX0j ¼ 300

126 s 256 s 429 s 689 s

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1521
to the fact that states in this region are very favorable according to
the utility function (13). After finding the high-reward region, the
algorithm still explores further until the gap between expected
information gain and low reward can no longer be bridged.

ALGPDP can perform the swing up reliably for a size of X0 of
75–300 states, which corresponds to a total experience (interac-
tion with the system) of less than a minute. The computation
times on a standard computer with a 2.4 GHz processor and 2 GB
RAM is given in Table 3 for different sizes of X0. The effective use
of data is mainly due to the involved probabilistic models for the
dynamics and the value functions. In contrast, Doya [12] solved
the task using experience of between 400 and 7000 s meaning
that ALGPDP can learn very quickly.

4.7.2. Comparison to NFQ iteration

Riedmiller [50] introduced the NFQ iteration as a model-free
RL algorithm, which models the Q�-function by a multi-layer
perceptron (MLP). An MLP is a deterministic, non-parametric and
is therefore well suited to nonlinear function approximation if the
parametric form of the latent function is a priori unknown.
However, in contrast to GPs, MLPs usually do not provide
confidence about the function model itself. The entire NFQ
algorithm is described in Algorithm 5. In the kth iteration, the
Q�k-function model is trained based on the entire set of transition
experiences, P�1; . . . ; Pk. The training inputs to the MLP that
models Q�k are state–action pairs ðx;uÞ, the training targets are the
values

Q�kðx;uÞ ¼ gðx;uÞ þmax
u0

gQ�k�1ðx
0;u0Þ,

where x0 is the observed successor state of the state–action pair
ðx;uÞ (following an e-greedy policy). Using the RPROP-algorithm
by Riedmiller and Braun [51], the Q�-function model is updated
offline (line 5 of Algorithm 5) to increase data efficiency, which is
not given in case of online Q�-function updates as described by
Riedmiller [49]. NFQ collects transition experiences from interac-
tions with the real system, stores them, and reconsiders them for
updating the Q�-function approximator. Riedmiller’s NFQ is a
general, state-of-the-art RL algorithm and a particular implemen-
tation of the fitted Q iteration by Ernst et al. [15].

Algorithm 5. Neural fitted Q iteration.
17 Roland Hafner and Martin Riedmiller kin

experiments out and made the results available
1: init: P�1
 . initialize training pattern
2: Q��1 ¼ MLPðP�1Þ
 . train initial Q�-function
3: for k ¼ 0 to N do

4: Pk ¼ generate_Pattern
 . collect new data
5: Q �k ¼ Rprop_trainðP�1; . . . ; PkÞ
 . update Q�-function model
6: end for
7: return Q�:¼Q�N
 . return final Q�-function model
We compare the ALGPDP results from Section 4.7.1 to NFQ with
11 discrete, equidistant actions ranging from �5 to 5 N m.17 Both
algorithms have to solve the swing-up task from scratch, that is,
using only very general prior knowledge. The MLP that models the
Q�-function consists of two layers with 20 and 12 units,
respectively. The length of an epoch that generates the training
dly carried the corresponding NFQ

.

pattern Pk is 20 time steps, that is, 8 s. The Q�-function model
requires N ¼ 64 iterations to converge. Hence, the final training
set consists of 1280 elements, which corresponds to a total
experience of approximately 256 s. Note that this NFQ setting
aims to find a policy, which is very close to optimal. The reward
function used in NFQ is similar to the ALGPDP reward function
(15) and does not penalize angular velocity or applied action but
solely the distance from a goal. The immediate rewards range
from �0:1 to 0. If the pendulum is in a defined goal region,
maximum reward is gained. A maximum reward region simplifies
learning although the reward region in this particular case is very
small. In contrast to Bayesian active learning in ALGPDP, NFQ uses
an e-greedy policy to explore the state space.

The optimal actions determined by NFQ quickly bring the
pendulum into the upright position and stabilize it there as shown
in Fig. 10(a). Compared to ALGPDP (reward �10:25), NFQ (reward
�9:6618) is even closer to the optimal DP solution (reward �9:60).

With the above setting, the computation time of NFQ on a
2.4 GHz processor is about 1560 s and higher than the computa-
tion times of ALGPDP, which are given in Table 3 for different sizes
of X0. Using fewer iterations in NFQ and, therefore, fewer data,
still leads to a controller that can solve the swing-up task. For
instance, using only 18 (instead of 64) iterations results in a
cumulative reward of about �10:1, a solution which corresponds
to the quality of the one determined by ALGPDP, which yields a
reward of �10:25. The size of the entire NFQ data set decreases to
360 elements, while the required interaction time reduces to 72 s,
which is also in the ballpark of the ALGPDP solution requiring less
than a minute of interactions. This efficiency is due to the fact that
ALGPDP exploits the probabilistic models of the value function
and the transition dynamics to explore relevant regions of the
state space.

Although the settings of ALGPDP and NFQ were not exactly
identical in our evaluations, both algorithms yielded similar
results for small data sets. Furthermore, both ALGPDP and NFQ are
remarkably more data efficient than the comparable solution to
the pendulum swing up by Doya [12].

4.8. Discussion

The proposed Bayesian approach of active state selection
avoids extreme designs by solely considering states that can be
dynamically reached within one time step. Furthermore, it
combines an information-based criterion and expected high
rewards, the natural choice in RL, to explore the state space. All
required mean and variance information (apart from the update of
the covariance matrix in Eq. (14)) are directly given by the GP
models of the system dynamics, the state-value function V�, and
the state–action value function Q�. All required Bayesian aver-
aging can be done analytically by exploiting properties of GP
models.

We sequentially add new states based on the information
provided by the value function GP model. In order to explore the
relevant part of the state space, it is necessary to add states every
time step. However, already in the setting we discussed in this
section, there are states, which do not contribute much to the
accuracy of the value function GP (or the dynamics GP). It will be
helpful to consider sparse approximations, some of which are
discussed in Quiñonero-Candela and Rasmussen [43] to com-
pactly represent the data set. Incorporation of these sparse
methods will not be difficult, but remains to future work. In
particular, the FITC approximation by Snelson and Ghahramani
[52] will be of high interest. Sparse approximations will also be
18 We applied the reward function (15) to the NFQ trajectory.



ARTICLE IN PRESS

2.5

5

−π/2π/2

0

−π

ALGPDP
DP
NFQ

0 1 2 3 4 5

−4

−2

0

an
g.

ve
l. ALGPDP

DP
NFQ

0 1 2 3 4 5
−5

0

5

time in s

ac
tio

n ALGPDP
DP
NFQ

Fig. 10. State and action trajectories for DP, ALGPDP, and NFQ controllers. The trajectories resulting from the NFQ controller are close to the optimal ones determined by the

DP controller and slightly outperform the ALGPDP controller. Angles and angular velocities follow the same trend, whereas the applied actions noticeably differ in the

stabilization phase. (a) Angle trajectories. (b) Angular velocities and applied actions.

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241522
unavoidable if the data sets become remarkably larger. This fact is
due to the scaling properties of GP training.

The value function and policy models in ALGPDP depend on
the initial trajectories, which are random in our case. Never-
theless, different initializations always led the pendulum to the
goal state hinting at the robustness of the method. However,
problem-specific prior knowledge can easily be incorporated to
improve the models. For example, Ko et al. [24] evaluate a method
of combining idealized ODEs describing the system dynamics
with GP models for the observations originating from the real
system.

The dynamics GP model can be considered an efficient
machine learning approach to non-parametric system identifica-
tion, which models the general input–output behavior. All
involved parameters are implicitly determined. A drawback of
this method is that using a non-parametric model does usually
not yield an interpretable relationship to a mechanical or physical
meaning.

If some parameters in system identification cannot be deter-
mined with certainty, classic robust control (minimax/H1-control)
aims to minimize the worst-case error. This methodology often
leads to suboptimal and conservative solutions. Possibly, a fully
probabilistic GP model of the system dynamics can be used for
robust control as follows. As the GP model reflects uncertainty
about the underlying function, it implicitly covers all transition
dynamics that explain observed data. By averaging over all these
models, we appropriately treat uncertainties and determine a
robust controller.

Treatment of noisy measurements in the dynamics learning
part is another issue to be dealt with in future. So far, we assumed
that we measure the state directly without being squashed
through a measurement function. Incorporation of measurement
maps demands filter techniques combining predictions and
measurements to determine an updated posterior distribution of
the hidden state, which is no longer directly accessible. First
results in filtering for GP models are already given by Ko et al. [25]
and Ko and Fox [23], where GP dynamics and observation models
are incorporated in the unscented Kalman filter [21] and the
extended Kalman filter.

The proposed ALGPDP algorithm is related to adaptive control
and optimal design. Similar ideas have been proposed for instance
by Murray-Smith and Sbarbaro [35] and Krause et al. [27].
A major shortcoming of ALGPDP is that it cannot directly be
applied to a dynamic system: if we interact with a real dynamic
system such as a robot, it is often not possible to experience
arbitrary state transitions. A possible adaptation to real-world
problems is to experience most promising trajectories following
the current policy. This approach can basically combine ideas
from this article and the paper by Rasmussen and Deisenroth [45].

4.9. Summary

We have introduced a data-efficient model-based Bayesian
algorithm for learning control in continuous state and action
spaces. GP models of the transition dynamics and the value
functions are trained online. We utilize Bayesian active learning to
explore the state space and to update the training sets of the
current GP models on the fly. The considered utility function rates
states according to expected information gain and expected total
reward, which seems a natural setting in RL. Our algorithm uses
data efficiently, which is important when interacting with the
system is expensive.
5. Conclusions

Probabilistic models in artificial learning algorithms can speed
up learning noticeably as they quantify uncertainty in experience-
based knowledge and alleviate model bias. Hence, they are
promising to design data-efficient learning algorithms.

In this article, we introduced Gaussian process dynamic
programming (GPDP), a value function-based RL algorithm for
continuous-valued state and action spaces. GPDP iteratively
models the latent value functions with flexible, non-parametric,
probabilistic GPs. In the context of a classic optimal control
problem, the under-actuated pendulum swing up, we have shown
that GPDP yields a near-optimal solution. However, in this setting,
we still required problem-specific knowledge.

To design a general, fast learning algorithm, we extended GPDP,
such that a probabilistic dynamics model can be learned online if
the transition dynamics are a priori unknown. Furthermore,
Bayesian active learning guides exploration and exploitation by
sequentially finding states with high expected reward and
information gain. This flexibility comes with the price of not



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–1524 1523
modeling the final policy globally, but only locally sufficiently
accurate. However, this methodology is useful when only little
knowledge about the task and only limited interactions with the
real system are available.

We provided experimental evidence that our online algorithm
works well on a pendulum swing-up task. The methodology is
quite general, relying on GP models, not adapted especially to the
pendulum problem. A fairly limited number of points are selected
by the active learning algorithm, which enables learning a policy
that is very close to the ones found by NFQ iteration, a state-of-
the-art model-free RL algorithm, and DP, which uses a very fine
discretization with millions of states.

We believe that our algorithm combines aspects, which are
crucial to solving more challenging RL problems, such as active
online learning and flexible non-parametric modeling. In parti-
cular, efficiency in terms of the necessary amount of interaction
with the system will often be a limiting factor when applying RL
in practice.
Acknowledgments

We are very grateful to Roland Hafner and Martin Riedmiller
for performing the neural fitted Q iteration experiments and for
valuable discussions. We thank the anonymous reviewers for
instructive comments and suggestions. M.P.D. acknowledges
support by the German Research Foundation (DFG) through Grant
RA 1030/1-3 to C.E.R.
Appendix A. GP prediction with uncertain inputs

In the following, we re-state results from Rasmussen and
Ghahramani [46], O’Hagan [37], Girard et al. [17], and Kuss [28] of
how to predict with GPs when the test input is uncertain.

Consider the problem of predicting a function value hðx�Þ for an
uncertain test input x�. This problem corresponds to seeking the
distribution

pðhÞ ¼

Z
pðhðx�Þjx�Þpðx�Þdx�. (16)

Consider the case, where h�GP with an SE kernel kh and
x��Nðl;RÞ. Let the predictive distribution pðhðx�Þjx�Þ be given
by the standard GP predictive mean and variance, Eqs. (6) and (7),
respectively. We can compute the mean n and the variance c2 of
the predictive distribution (16) in close form. We approximate the
exact predictive distribution with a Gaussian, which possesses the
same mean and variance (moment matching). The mean n is given
by

n ¼ Eh½Ex� ½hðx�Þ�� ¼ Ex� ½Eh½hðx�Þ�� ¼ Ex� ½mhðx�Þ�

¼

Z
mhðx�Þpðx�Þdx� ¼ b>l (17)

with b:¼ðKþ s2
e IÞ�1y and where

li ¼

Z
khðxi;x�Þpðx�Þdx�

¼ a2jRK�1
þ Ij�1=2 exp �

1

2
ðxi � mÞ>ðRþKÞ�1

ðxi � lÞ

� �

is an expectation of khðxi;x�Þ with respect to x�. Here, K is a
diagonal matrix, whose entries are ‘2

1; . . . ; ‘
2
nx

with ‘k; k ¼ 1; . . . ;nx,
being the characteristic length-scales. Note that the predictive
mean n in Eq. (17) depends explicitly on the mean and covariance
of the uncertain input x�. The variance of the predictive
distribution pðhðx�ÞÞ is denoted by c2 and given by

c2
¼ Ex� ½mhðx�Þ

2
� þ Ex� ½s2

hðx�Þ� � Ex� ½mhðx�Þ�
2

¼ b>Lbþ a2 � trððKþ s2
e IÞ�1LÞ � n2

with

Lij ¼
khðxi;lÞkhðxj;lÞ

j2RK�1
þ Ij1=2

expððzij � lÞ> Rþ
1

2
K

� ��1

RK�1
ðzij � lÞÞ

and zij:¼
1
2 ðxi þ xjÞ. Again, the predictive variance depends ex-

plicitly on the mean and the covariance matrix of the uncertain
input x�.

References

[1] C.G. Atkeson, Using local trajectory optimizers to speed up global optimiza-
tion in dynamic programming, in: J.E. Hanson, S.J. Moody, R.P. Lippmann
(Eds.), Advances in Neural Information Processing Systems, vol. 6, Morgan
Kaufmann, Los Altos, CA, 1994, pp. 503–521.

[2] C.G. Atkeson, J.C. Santamarı́a, A comparison of direct and model-based
reinforcement learning, in: Proceedings of the International Conference on
Robotics and Automation, 1997.

[3] C.G. Atkeson, S. Schaal, Robot learning from demonstration, in: D.H. Fisher Jr
(Ed.), Proceedings of the 14th International Conference on Machine Learning,
Morgan Kaufmann, Nashville, TN, USA, July 1997, pp. 12–20.

[4] R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton,
NJ, USA, 1957.

[5] D.P. Bertsekas, Dynamic Programming and Optimal Control, Optimization and
Computation Series, vol. 1, third ed., Athena Scientific, Belmont, MA, USA,
2005.

[6] D.P. Bertsekas, Dynamic Programming and Optimal Control, Optimization and
Computation Series, vol. 2, third ed., Athena Scientific, Belmont, MA, USA,
2007.

[7] D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming, in: Optimization
and Computation, Athena Scientific, Belmont, MA, USA, 1996.

[8] A.E. Bryson, Y.-C. Ho, Applied Optimal Control: Optimization, Estimation, and
Control, Hemisphere, New York City, NY, USA, 1975.

[9] K. Chaloner, I. Verdinelli, Bayesian experimental design: a review, Statistical
Science 10 (1995) 273–304.

[10] M.P. Deisenroth, J. Peters, C.E. Rasmussen, Approximate dynamic program-
ming with gaussian processes, in: Proceedings of the 2008 American Control
Conference, Seattle, WA, USA, June 2008, pp. 4480–4485.

[11] M.P. Deisenroth, C.E. Rasmussen, J. Peters, Model-based reinforcement
learning with continuous states and actions, in: Proceedings of the 16th
European Symposium on Artificial Neural Networks, Bruges, Belgium, April
2008, pp. 19–24.

[12] K. Doya, Reinforcement learning in continuous time and space, Neural
Computation 12 (1) (2000) 219–245.

[13] Y. Engel, S. Mannor, R. Meir, Bayes meets Bellman: the Gaussian process
approach to temporal difference learning, in: Proceedings of the 20th
International Conference on Machine Learning, Washington, DC, USA,
vol. 20, August 2003, pp. 154–161.

[14] Y. Engel, S. Mannor, R. Meir, Reinforcement learning with Gaussian processes,
in: Proceedings of the 22nd International Conference on Machine Learning,
Bonn, Germany, vol. 22, August 2005, pp. 201–208.

[15] D. Ernst, P. Geurts, L. Wehenkel, Tree-based batch mode reinforcement
learning, Journal of Machine Learning Research 6 (2005) 503–556.

[16] M. Ghavamzadeh, Y. Engel, Bayesian policy gradient algorithms, in: B.
Schölkopf, J.C. Platt, T. Hoffman (Eds.), Advances in Neural Information
Processing Systems, vol. 19, The MIT Press, Cambridge, MA, USA, 2007,
pp. 457–464.

[17] A. Girard, C.E. Rasmussen, J. Quiñonero Candela, R. Murray-Smith, Gaussian
process priors with uncertain inputs—application to multiple-step ahead
time series forecasting, in: S. Becker, S. Thrun, K. Obermayer (Eds.), Advances
in Neural Information Processing Systems, vol. 15, The MIT Press, Cambridge,
MA, USA, 2003, pp. 529–536.

[18] G.J. Gordon, Stable function approximation in dynamic programming, in: A.
Prieditis, S. Russell (Eds.), Proceedings of the 12th International Conference on
Machine Learning, Morgan Kaufmann, San Francisco, CA, USA, 1995,
pp. 261–268.

[19] R.A. Howard, Dynamic Programming and Markov Processes, The MIT Press,
Cambridge, MA, USA, 1960.

[20] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton, Adaptive mixtures of local
experts, Neural Computation 3 (1991) 79–87.

[21] S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, IEEE
Review 92 (3) (2004) 401–422.

[22] R.E. Kalman, A new approach to linear filtering and prediction problems,
Transactions of the ASME—Journal of Basic Engineering 82 (Series D) (1960)
35–45.

[23] J. Ko, D. Fox, GP-BayesFilters: Bayesian filtering using Gaussian process
prediction and observation models, in: Proceedings of the 2008 IEEE/RSJ



ARTICLE IN PRESS

M.P. Deisenroth et al. / Neurocomputing 72 (2009) 1508–15241524
International Conference on Intelligent Robots and Systems (IROS), Nice,
France, September 2008, pp. 3471–3476.

[24] J. Ko, D.J. Klein, D. Fox, D. Haehnel, Gaussian processes and reinforcement
learning for identification and control of an autonomous blimp, in:
Proceedings of the International Conference on Robotics and Automation,
Rome, Italy, April 2007, pp. 742–747.

[25] J. Ko, D.J. Klein, D. Fox, D. Haehnel, GP-UKF: unscented Kalman filters with
Gaussian process prediction and observation models, in: Proceedings of the
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, October 2007, pp. 1901–1907.

[26] J. Kocijan, R. Murray-Smith, C.E. Rasmussen, B. Likar, Predictive control with
Gaussian process models, in: B. Zajc, M. Tkalčič (Eds.), Proceedings of IEEE
Region 8 Eurocon 2003: Computer as a Tool, Piscataway, NJ, USA, September
2003, pp. 352–356.

[27] A. Krause, A. Singh, C. Guestrin, Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies, Journal of
Machine Learning Research 9 (2008) 235–284.

[28] M. Kuss, Gaussian process models for robust regression, classification, and
reinforcement learning, Ph.D. Thesis, Technische Universität Darmstadt,
Germany, February 2006.

[29] D.J.C. MacKay, Information-based objective functions for active data selection,
Neural Computation 4 (1992) 590–604.

[30] D.J.C. MacKay, Comparison of approximate methods for handling hyperpara-
meters, Neural Computation 11 (5) (1999) 1035–1068.

[31] D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, The Edinburgh Building, Cambridge, UK, 2003.

[32] R. Martinez-Cantin, N. de Freitas, A. Doucet, J. Castellanos, Active policy
learning for robot planning and exploration under uncertainty, in: Proceed-
ings of Robotics: Science and Systems III, Atlanta, GA, USA, June 2007.

[33] G. Matheron, The intrinsic random functions and their applications, Advances
in Applied Probability 5 (1973) 439–468.

[34] T.P. Minka, A family of algorithms for approximate Bayesian inference, Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, January
2001.

[35] R. Murray-Smith, D. Sbarbaro, Nonlinear adaptive control using non-
parametric Gaussian process prior models, in: Proceedings of the 15th IFAC
World Congress, vol. 15, Academic Press, Barcelona, Spain, July 2002.

[36] R. Murray-Smith, D. Sbarbaro, C.E. Rasmussen, A. Girard, Adaptive, cautious,
predictive control with Gaussian process priors, in: 13th IFAC Symposium on
System Identification, Rotterdam, Netherlands, August 2003.

[37] A. O’Hagan, Bayes–Hermite quadrature, Journal of Statistical Planning and
Inference 29 (1991) 245–260.

[38] D. Ormoneit, Ś Sen, Kernel-based reinforcement learning, Machine Learning
49 (2–3) (2002) 161–178.

[39] J. Peters, S. Schaal, Learning to control in operational space, The International
Journal of Robotics Research 27 (2) (2008) 197–212.

[40] J. Peters, S. Schaal, Natural actor-critic, Neurocomputing 71 (7–9) (2008)
1180–1190.

[41] J. Peters, S. Schaal, Reinforcement learning of motor skills with policy
gradients, Neural Networks 21 (2008) 682–697.

[42] T. Pfingsten, Bayesian active learning for sensitivity analysis, in: Proceedings
of the 17th European Conference on Machine Learning, September 2006,
pp. 353–364.

[43] J. Quiñonero-Candela, C.E. Rasmussen, A unifying view of sparse approximate
Gaussian process regression, Journal of Machine Learning Research 6 (2)
(2005) 1939–1960.

[44] C.E. Rasmussen, Evaluation of Gaussian processes and other methods for non-
linear regression, Ph.D. Thesis, Department of Computer Science, University
of Toronto, 1996.

[45] C.E. Rasmussen, M.P. Deisenroth, Probabilistic inference for fast learning in
control, in: S. Girgin, M. Loth, R. Munos, P. Preux, D. Ryabko (Eds.), Recent
Advances in Reinforcement Learning, Lecture Notes on Computer Science, vol.
5323, Springer, Berlin, November 2008, pp. 229–242.

[46] C.E. Rasmussen, Z. Ghahramani, Bayesian Monte Carlo, in: S. Becker, S. Thrun,
K. Obermayer (Eds.), Advances in Neural Information Processing Systems, vol.
15, The MIT Press, Cambridge, MA, USA, 2003, pp. 489–496.

[47] C.E. Rasmussen, M. Kuss, Gaussian processes in reinforcement learning, in: S.
Thrun, L.K. Saul, B. Schölkopf (Eds.), Advances in Neural Information
Processing Systems, vol. 16, The MIT Press, Cambridge, MA, USA, 2004,
pp. 751–759.

[48] C.E. Rasmussen, C.K.I. Williams, Gaussian processes for machine learning, in:
Adaptive Computation and Machine Learning, The MIT Press, Cambridge, MA,
USA, 2006 URL hhttp://www.gaussianprocess.org/gpml/i.

[49] M. Riedmiller, Concepts and facilities of a neural reinforcement learning
control architecture for technical process control, Neural Computation and
Application 8 (2000) 323–338.

[50] M. Riedmiller, Neural Fitted Q iteration—first experiences with a data
efficient neural reinforcement learning method, in: Proceedings of the 16th
European Conference on Machine Learning, Porto, Portugal, 2005.
[51] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation
learning the RPROP algorithm, in: Proceedings of the IEEE International
Conference on Neural Networks, 1993, pp. 586–591.

[52] E. Snelson, Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs,
in: Y. Weiss, B. Schölkopf, J.C. Platt (Eds.), Advances in Neural Information
Processing Systems, vol. 18, The MIT Press, Cambridge, MA, USA, 2006,
pp. 1257–1264.

[53] R.S. Sutton, A.G. Barto, Reinforcement Learning An Introduction, in: Adaptive
Computation and Machine Learning, The MIT Press, Cambridge, MA, USA,
1998.

[54] I. Verdinelli, J.B. Kadane, Bayesian designs for maximizing information and
outcome, Journal of the American Statistical Association 87 (418) (1992)
510–515.

[55] L. Wasserman, All of Nonparametric Statistics. Springer Texts in Statistics,
Springer Science+Business Media, Inc., New York, NY, USA, 2006.

[56] C.K.I. Williams, C.E. Rasmussen, Gaussian processes for regression, in: D.S.
Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.), Advances in Neural Processing
Systems, vol. 8, The MIT Press, Cambridge, MA, USA, 1996, pp. 598–604.
Marc Peter Deisenroth is a Ph.D. candidate at
Universität Karlsruhe (TH), Germany, while being
visiting graduate student at the Computational and
Biological Learning Lab at the Department of Engineer-
ing, University of Cambridge, UK. He graduated from
Universität Karlsruhe (TH) in August 2006 with a
German Masters degree in Informatics. From October
2006 to September 2007, he has been a graduate
research assistant at the Max Planck Institute for
Biological Cybernetics in Tübingen, Germany. He has
been a visiting researcher at Osaka University, Japan, in
2006 and at Kanazawa University, Japan, in 2004. His

research interests include Bayesian inference, reinfor-
cement learning, optimal and nonlinear control.
Carl Edward Rasmussen is a lecturer in the Computa-
tional and Biological Learning Lab at the Department of
Engineering, University of Cambridge and an adjunct
research scientist at the Max Planck Institute for
Biological Cybernetics, Tübingen, Germany. His main
research interests are Bayesian inference and machine
learning. He received his Masters in Engineering from
the Technical University of Denmark and his Ph.D. in
Computer Science from the University of Toronto in
1996. Since then he has been a post doc at the Technical
University of Denmark, a senior research fellow at the
Gatsby Computational Neuroscience Unit at University

College London from 2000 to 2002, and a junior research
group leader at the Max Planck Institute for Biological
Cybernetics in Tübingen, Germany, from 2002 to 2007.
Jan Peters heads the Robot Learning Lab (RoLL) at the
Max Planck Institute for Biological Cybernetics (MPI) in
Tübingen, Germany, while being an invited researcher
at the Computational Learning and Motor Control Lab
at the University of Southern California (USC). Before
joining MPI, he graduated from University of Southern
California with a Ph.D. in Computer Science in March
2007. Jan Peters studied Electrical Engineering, Com-
puter Science and Mechanical Engineering. He holds
two German M.S. degrees in Informatics and in
Electrical Engineering (from Hagen University and
Munich University of Technology) and two M.S.

degrees in Computer Science and Mechanical Engi-
neering from USC. During his graduate studies, Jan
Peters has been a visiting researcher at the Department

of Robotics at the German Aerospace Research Center (DLR) in Oberpfaffenhofen,
Germany, at Siemens Advanced Engineering (SAE) in Singapore, at the National
University of Singapore (NUS), and at the Department of Humanoid Robotics and
Computational Neuroscience at the Advanced Telecommunication Research (ATR)
Center in Kyoto, Japan. His research interests include robotics, nonlinear control,
machine learning, reinforcement learning, and motor skill learning.

http://www.gaussianprocess.org/gpml/

	Gaussian process dynamic programming
	Introduction
	Background
	Optimal control and RL
	Gaussian processes

	Gaussian process dynamic programming
	Computational and memory requirements
	Policy learning
	Evaluations
	General setup
	Value function and policy models
	Performance analysis
	Single GP policy

	Discussion
	Summary

	Online learning
	Learning the dynamics
	One-step ahead predictions
	Bayesian active learning
	ALGPDP
	Augmentation of the training sets
	Utility function
	Adding multiple states
	Set of candidate states
	Training dynamics and value function models

	Computational and memory requirements of ALGPDP
	Evaluations
	Swing up
	Comparison to NFQ iteration

	Discussion
	Summary

	Conclusions
	Acknowledgments
	GP prediction with uncertain inputs
	References


