
The Indian Buffet Process:

Scalable Inference and Extensions

Finale Doshi-Velez

A Thesis

Presented to the Fellowship of

The University of Cambridge

in Candidacy for the Degree of

Master of Science

Department of Engineering

Zoubin Ghahramani, supervisor

August 2009

This dissertation is the result of my own work and includes nothing which is

the outcome of work done in collaboration except where specifically indicated

in the text.

c© Copyright by Finale Doshi-Velez, 2009.

All Rights Reserved

Abstract

Many unsupervised learning problems seek to identify hidden features from

observations. In many real-world situations, the number of hidden features is

unknown. To avoid specifying the number of hidden features a priori, one can

use the Indian Buffet Process (IBP): a nonparametric latent feature model that

does not bound the number of active features in a dataset. While elegant, the

lack of efficient inference procedures for the IBP has prevented its application

in large-scale problems. The core contribution of this thesis are three new

inference procedures that allow inference in the IBP to be scaled from a few

hundred to 100,000 observations.

This thesis contains three parts:

(1) An introduction to the IBP and a review of inference tech-

niques and extensions. The first chapters summarise three constructions for

the IBP and review all currently published inference techniques. Appendix C

reviews extensions of the IBP to date.

(2) Novel techniques for scalable Bayesian inference. This thesis

presents three new inference procedures: (a) an accelerated Gibbs sampler for

efficient Bayesian inference in a broad class of conjugate models, (b) a parallel,

asynchronous Gibbs sampler that allows the accelerated Gibbs sampler to be

distributed across multiple processors, and (c) a variational inference procedure

for the IBP.

(3) A framework for structured nonparametric latent feature mod-

els. We also present extensions to the IBP to model more sophisticated rela-

tionships between the co-occurring hidden features, providing a general frame-

work for correlated non-parametric feature models.

iii

Acknowledgements

Finale thanks the Marshall Aid Commemoration Commission for funding

her two years at Cambridge University.

iv

Contents

Abstract . iii

Acknowledgements . iv

1 Introduction 1

2 The Indian Buffet Process Model 8

2.1 Restaurant Construction . 9

2.2 Infinite Limit Construction . 11

2.3 Stick-breaking Construction . 12

2.4 Beta-Bernoulli Process Construction 13

2.5 Summary . 15

3 Inference 16

3.1 Gibbs Sampler . 16

3.2 Collapsed Gibbs Sampler . 19

3.3 MH Proposals and Reversible Jump MCMC 21

3.4 Slice Sampler . 22

3.5 Particle Filtering . 23

3.6 Summary . 24

4 Accelerated Sampling in Conjugate Models 26

4.1 Intuition . 27

4.2 Formal Derivation . 28

4.3 Per-Iteration Running Times . 31

4.4 Experiments . 32

4.5 Discussion . 38

v

Contents vi

4.6 Summary . 40

5 Parallel Inference 42

5.1 Inference Procedure . 43

5.2 Comparison to Exact Metropolis 48

5.3 Analysis of Mixing Properties 52

5.4 Realworld Experiments . 55

5.5 Summary . 56

6 Variational Methods 58

6.1 Mean Field Approximation . 59

6.2 Computing the Variational Lower Bound 60

6.2.1 Taylor Series Bound . 62

6.2.2 Multinomial Lower Bound 65

6.3 Parameter Updates . 67

6.3.1 Taylor Update . 68

6.3.2 Multinomial Update . 69

6.4 Truncation Bounds . 70

6.4.1 Log Bound . 71

6.4.2 Levy-Kintchine Approach 72

6.5 Experiments and Discussion . 74

6.5.1 Synthetic Data . 75

6.5.2 Real Data . 77

6.6 Summary . 80

7 Correlated Non-Parametric Latent Feature Models 82

7.1 General Framework . 83

7.2 Specific Models . 86

7.2.1 DP-IBP Model . 87

7.2.2 IBP-IBP Model . 89

7.2.3 Noisy-Or IBP-IBP Model 90

7.3 Experiments . 94

7.4 Discussion . 99

Contents vii

7.5 Summary . 100

8 Conclusions and Future Work 101

A Likelihood Models 105

A.1 Linear-Gaussian . 105

A.2 Exponential-Gaussian . 107

A.3 Binary-Bernoulli . 108

B Derivations for Variational Inference in the IBP 109

B.1 Variational Lower Bound . 109

B.2 Parameter Updates . 111

C Structured Nonparametric Latent Feature Models 114

C.1 Adjusting Sparsity Properties 114

C.2 Temporal Correlations . 115

C.3 Correlated Observations . 117

C.4 Correlated Features . 117

Bibliography 126

Chapter 1

Introduction

A common goal in machine learning is to discover hidden, or latent, structure

in data. In the simplest case, structure may correspond to grouping, or clus-

tering, similar observations. For example, balloons may be clustered by their

colour. In contrast, multiple-membership or feature-based models attempt to

explain structure in observations by a collection of features (Ueda and Saito,

2003; Jolliffe, 2002; Zemel and Hinton, 1994; Spearman, 1904). For example, a

balloon may have a feature describing its colour and another feature describing

its shape. More generally, images may be characterised by the objects they

contain; a piece of music by its notes. The structure in the data corresponds

to features shared across different observations: similar objects in multiple

images, similar notes played at different times.

By capturing shared features, latent feature models can provide an efficient

encoding for the observations. For example, if notes are extracted from an

audio recording of a musical piece, then the piece may be played again using

just the information about the notes. Likewise, telling someone to buy a

‘round, red’ balloon may be more efficient than sending them an photograph.

In data-compression situations, the identities of the features—that is, what

they correspond to—are often known. For example, we may already know the

frequency characteristics of each note; our goal is then to identify which notes

occur at which times.

1

Chapter 1: Introduction 2

In other situations, the values of the features may not be known a pri-

ori, and the discovering the structure itself may be of inherent interest. For

example, sets of genes that are often expressed together may reflect underly-

ing biological pathways (Knowles and Ghahramani, 2007); patterns in stroke

symptoms may provide information about structure of the brain (Wood et al.,

2006). Patterns of software use from code traces may contain clues about the

presence of software bugs (Doshi and Gael, 2008). In this case, the goal of

the unsupervised learning problem is to simultaneously determine the feature

identities and what features are present in each observation. Finding these

patterns—latent structure in the data—may guide further research and anal-

ysis.

In this work, we focus on binary latent feature models, shown graphically

in figure 1.1. Here, Ak represents the value of the kth feature. For example, if

the observations are images, then Ak might correspond to some object in the

image, such as a car or tree. An arrow connecting Ak to Xn indicates that

feature k is present in observation n. The model is binary in that we are only

concerned about whether Ak is present (connected by an arrow) or absent (not

connected) in each observation Xn.

A1 A2 A3 A4

X1 X2 X3 X4

Figure 1.1: Graphical model of the binary latent feature model. Each observa-
tion Xi is generated by a combination of features Ak. For example, observation
X2 contains features A1 and A2. For now, we do not limit the number of ob-
servations or features.

If the features’ identities—that is, the values Ak—are unknown, it seems

reasonable that the total number of latent features may also be unknown.

However, many current approaches to modelling latent features require the

Chapter 1: Introduction 3

total number of features as input. Specifying the input can be tricky: if

the number of features is underestimated, the model may fail to explain the

data well; if the number of features is overestimated, the model may overfit

the data. Another issue in pre-specifying the number of features is that the

expected number of observed features may vary based on the size of the data

set. For example, given a few images, we may expect to see only a handful of

unique objects. However, many more unique objects may be present in a large

photo album.

A nonparametric Bayesian prior helps address the problem of specifying

the number of features. The Bayesian aspect of the approach allows us to

place a distribution over the expected number of features—as well as how

many features are likely to be present in any particular observation—while

the nonparametric aspect of the prior allows the expected number of fea-

tures to grow as more data is observed. The Indian Buffet Process (IBP)

of Griffiths and Ghahramani (2005) is one such non-parametric model that

places a prior over binary feature matrices Z in which the number of features

may be unbounded. In figure 1.1, a value of Z(n, k) = 1 would indicate a

link between the feature Ak and the observation Xn. Instead of having to

specify the total number of features present, the IBP provides a distribution

over latent features. An attractive property of the IBP is that new features

are expected to appear as more data is observed, but the number of features

expressed in a finite data set is finite with probability one. Details on the IBP

model and its construction are provided in Chapter 2.

Applications of Latent Feature Models

The properties of an IBP have made it useful in many applications, including

modelling choice behaviour and collaborative filtering, protein interactions,

causal graph structure, and dyadic data. Before diving into the details of

the model and inference, we describe several recent applications, showing the

richness in how the IBP matrix can be interpreted for a variety of purposes.

Chapter 1: Introduction 4

Dyadic Data. Dyadic data refers to a range of scenarios in which each

observation is associated with a pair of factors. For example, for a product-

customer pair may be associated with the observation of whether the customer

bought the item. A user-movie pair might be associated with the observation

of how well the user liked the movie. In these situations, the goal is often to

predict values of certain pairs given values for other pairs: for example, we may

wish to know how likely a customer is to enjoy a movie that he has not yet

seen. Meeds et al. (2007) posit that both the qualities of the customers and

the products may be summarised by a set of predictive features: for example, a

customer might be characterised by age, gender, and wealth, while the product

might be characterised by its cost, use, and reliability. By using an IBP prior,

the number of these predictive features can be determined automatically.

Choice Behaviour. A particular choice behaviour model, elimination by

aspects (Tversky, 1972), assumes that each of a customer’s options may be

described by a binary vector of features known as aspects. Each aspect repre-

sents some binary quality related to the option—whether it is expensive, pretty,

useful, etc.—and has a weight associated with its importance. The number of

aspects encodes the ‘complexity’ of the decision, that is, how many factors a

customer considers when choosing amongst the different options. Görür et. al.

use an IBP to automatically determine the number of aspects (Görür et al.,

2006). When applied to a data set where people are asked to choose celebrities

with whom they would like to spend an hour in conversation, and the model

recovers the three types of celebrities in the set.

Similarity Judgements. Closely related to choice modelling is the problem

of modelling similarity judgements. Given a similarity value between several

pairs of items (possibly from multiple sources), the goal is to determine some

underlying structure to describe the similarities. One approach, known as

additive clustering (Shepard and Arabie, 1979), models each item as having

a set of binary features, which may correspond to whether the object has

a particular colour or weight. Next, a similarity matrix is learned between

Chapter 1: Introduction 5

features instead of between objects. This approach typically requires fewer

parameters to be learned: for example, instead of having to learn that each

pair of red items are similar to each other, one can create a feature encoding

whether an item is red and use the feature similarity matrix to encode that

all red items are similar to each other. Navarro and Griffiths avoid having to

specify the number of features through an IBP prior.

Protein Interactions. Proteins interact to form complexes. While the lev-

els of various proteins are easily measured, the presence of a complex is much

more difficult to ascertain. Moreover, a protein may be part of several com-

plexes, and the number of complexes is an open biological question. Chu et al.

(2006) used the IBP to model which proteins take part in which complexes,

where the complexes correspond to the latent features. Their results on an

RNA-Polymerase data set recovers the several complexes known from biology.

Explaining Symptoms. As seen in figure 1.1, the IBP also places a distri-

bution over directed bipartite graphs. Thus the IBP can be used to determine

the causal graph structure where the observations come from a variety of hid-

den causes. Wood et al. (2006) use the IBP to determine the locations of a

stroke within the brain. The observations are a collection of symptoms and

the hidden variables are all the locations in the brain that have been blocked

by the stroke. Wood et. al. found that the IBP roughly clustered together

observations with common stroke locations. In particular, the IBP was able

to separate stroke locations in the left and right hemispheres. Such a model

could also be applied to other scenarios where one might need to consider that

a patient has multiple diseases or conditions to explain his symptoms.

Software Debugging. Andrzejewski et. al. propose the use of statistical

methods that analyse patterns of software use to discover bugs that may oth-

erwise be difficult to find via standard techniques (Andrzejewski et al., 2007).

One such approach, applied by Doshi and Gael (2008), is to treat each line of

code as an observation and each feature as a particular usage pattern, such as

Chapter 1: Introduction 6

clicking a mouse. Given tags on each session on whether the run was successful,

one can characterise what usage patterns make a run fail.

Extensions of the IBP to other probability models allow for an even broader

range of applications. Titsias (2008) suggests using a Gamma-Poisson model

instead of using a Beta-Bernoulli process for creating the feature assignment

matrix. Here, instead of binary values in the matrix, the matrix contains ele-

ments distributed as Poisson random variables. Such a model is useful when

we expect to see multiple copies of a feature in an observation; for example,

to describe an image, it may be more useful to describe the number of cars,

rather than the presence of cars. The extensions described in Section 7 and Ap-

pendix C also allow the IBP to be used to separate (an unknown number) of au-

dio channels (Gael et al., 2008) or related consumer preferences (Miller et al.,

2008b).

A common theme in all the applications is that the IBP provides an elegant

way of avoiding the need to pre-specify the number of latent aspects, protein

complexes, or other features. However, when applied to real data, the IBP is

often limited to small, often toy data sets. One of the reasons that the IBP

is not applied to larger problems is that existing inference techniques for the

IBP model do not scale, an issue that we address in Chapter 3.

Contribution

While elegant, scaling IBP inference to large data sets has proven to be a chal-

lenge. Current sampling approaches often do not scale beyond a few hundred

observations and tens of dimensions; as the size of the datasets grow, samplers

become slow and are often caught in local modes. Scaling issues are a problem

because we are currently faced with very large datasets that are still sparse:

for example a rating database might have millions of users and thousands of

movies, but each user may have only rated a few movies. In such settings,

Bayesian methods provide a principled and robust approach to drawing infer-

ences and making predictions from sparse information. The core of this thesis

is devoted to efficient algorithms for scalable inference in the IBP model. Many

Chapter 1: Introduction 7

of these techniques are also applicable to more general problems in Bayesian

inference.

The IBP is an important nonparametric latent feature model, but in many

cases, even more structure is expected in the observations. Recent work (Gael et al.,

2008; Miller et al., 2008b; Wingate et al., 2009) has focused on nonparametric

feature models that allow correlations between observations to be modelled—

for example, we may expect subsequent frames in movie to contain similar

objects, or people living in certain regions to be more likely to share certain

characteristics. Existing work (Rai and Daume, 2009) has also introduced tree-

structured correlations among the features in the IBP model in a somewhat

limited context. A second contribution of this thesis is to extend work this

fledgling area of nonparametric correlated latent feature models by providing

a general framework for introducing correlations between features in infinite

models.

The remainder of this thesis is laid out as follows

• Chapter 2 describes three constructions for the IBP. Chapter 3 reviews

current inference techniques.

• Chapter 4 presents a more efficient Gibbs sampler. More generally appli-

cable than just IBPs, the sampler provides orders of magnitude speed-up

on a broad range of Bayesian models with some basic conjugacy proper-

ties.

• Chapter 5 builds on from Chapter 4 to develop a data-parallel inference

scheme.

• Chapter 6 presents the first variational inference scheme for the IBP, as

well as the first truncation bounds for modelling the IBP with a finite

model.

• Chapter 7 extends the basic IBP model to handle correlations in the

data.

Chapter 2

The Indian Buffet Process

Model

The problem of discovering hidden features in a set of observations can natu-

rally be decomposed into two parts: determining what features ‘look-like’—the

likelihood model—and determining which features are present in each obser-

vation. Suppose that we have N observations. Then we can encode which

features are present in each observation with a binary feature-assignment ma-

trix Z, where Z(n, k) = 1 if feature k is present in observation n. Recalling

figure 1.1, one way to visualise the feature assignment matrix is as a matching

between features and data.

The Indian Buffet Process (Griffiths and Ghahramani, 2005) is a nonpara-

metric distribution over such binary matrices which does not bound the number

of features K. However, given a finite number of observations N , the distri-

bution ensures that the number of features K is finite with probability one.

The behaviour of the process is governed by a single concentration parameter

α, which governs the expected number of features in each observation. The

expected number of features K in N observations is O(α log(N)); the gener-

ative model favours scenarios in which there exist a few popular features and

many rare features (extensions to the basic IBP model, which encode different

prior biases, are described in Appendix C). In this chapter, we describe three

8

Chapter 2: The Indian Buffet Process Model 9

constructions for the Indian Buffet Process. Likelihood models used in this

thesis are described in Appendix A.

2.1 Restaurant Construction

The classic generative process of Griffiths and Ghahramani (2005) proceeds as

follows: imagine N customers, each representing an observation, in a queue at

an infinitely long buffet. The first customer tries the first Poisson(α) dishes,

where each dish represents a feature. The following customers take portions

from previously sampled dishes with probabilitymk/n, wheremk is the number

of people who sampled dish k before customer n. Each customer also tries

Poisson(α/n) new dishes. We record if customer n tried dish k in Z(n, k).

Figure 2.1 shows a cartoon of this process.

Figure 2.1: Cartoon of the generative process for the IBP. Each customer tries
a combination of previously tried dishes based on their popularity and then
possibly samples a few new dishes.

Even though the buffet is infinite, it follows from the construction that each

customer has a finite number of dishes with probability one, and thus, given

a finite number of observations, we expect only a finite number of features

to be present. The buffet analogy also highlights two important properties of

the Indian Buffet Process. First, we expect the number of sampled dishes—or

active features—to grow as the number of observations increases. Second, we

Chapter 2: The Indian Buffet Process Model 10

expect there to exist a few popular features occurring in many observations

and many rare features expressed in only a few observations.

Less obvious from the buffet construction is that the Indian Buffet Process

is also infinitely exchangeable, that is, the order in which the customers at-

tend the buffet as no impact on the distribution of Z up to permutations in

the columns, and that columns are also independent. Recall that in the buffet

construction, the customers simply chose dishes based solely on their popular-

ity. Thus, the only thing special about ‘feature one’ is that it is (probably) one

of the more popular features. The value chosen for ‘feature one’ is independent

of its popularity. In the graphical model, switching columns corresponds to

moving the nodes A1. . .Ak to different values—but since we do not change

the edges connecting the features to the observations, the model remains the

same.

Once we note that permuting the columns should not affect the model, it

is convenient to think of a canonical ordering for which all Z matrices that are

the same up to column-permutations are equivalent. Griffiths and Ghahramani

define a canonical representation called the left-ordered form of Z, written as

[Z] = lof(Z). The left-ordered form first takes the binary sequence of 0’s and

1’s for each column (referred to as a history h), treating the first customer as

the most significant bit, and converts the binary sequence to a number. Thus,

each column—or feature—receives a single value. We then order the columns

by descending value. It is possible to directly generate left-ordered Z matrices

with a variant of the buffet analogy (Griffiths and Ghahramani, 2005), but it

is not necessarily useful for inference.

The Indian Buffet Process places the following prior on [Z]:

P ([Z]) =
αK

∏2N−1
h=1 Kh!

exp {−αHN}
K
∏

k=1

(N −mk)!(mk − 1)!

N !
, (2.1)

where K is the number of nonzero columns in Z, mk is the number of ones

in column k of Z, HN is the N th harmonic number
∑N

n
1
n
, Kh is the number

of columns in Z with binary representation h, and α controls the expected

Chapter 2: The Indian Buffet Process Model 11

number features expressed in each observation. In particular, we note the

number of nonzero columns K is not bounded in equation 2.1.

2.2 Infinite Limit Construction

The exchangeability of the process is clearer in a the infinite-limit construction

also presented by Griffiths and Ghahramani (2005), which derives the IBP as

the infinite limit of a finite model with Kf latent features. The finite model

assigns a probability πk to each feature k. Then, each Z(n, k) is sampled as

independent Bernoulli random variable with parameter πk. Since each ‘cus-

tomer’ now samples a dish independently of the other customers, it should be

clear that the ordering of the observations does not impact the distribution on

Z.

The probabilities πk are sampled from Beta(α
Kf
, 1). Under the finite model,

the probability of the left-ordered form [Z] of a binary matrix Z is given by

P ([Z]) =
Kf !

∏2N−1
h=1 Kh!

Kf
∏

k=1

α
Kf

Γ(N −mk + 1)Γ(mk + α
Kf

)

Γ(N + 1 + α
Kf

)
, (2.2)

where, as in equation 2.1, mk is the number of ones in column k of Z, and Kh

is the number of columns in Z with binary representation h.

π

Figure 2.2: Cartoon of the infinite-limit generative model for the IBP. Since
features are not ordered in any way by their popularity, so initial features may
be absent from all observations.

Chapter 2: The Indian Buffet Process Model 12

In the limit that Kf goes to infinity, equation 2.2 becomes equation 2.1,

the distribution for the IBP. Intuitively, the mean feature probability, α
α+Kf

becomes very small; however, a few πk’s will still be large. Figure 2.2 shows

a cartoon of the process: because most of the feature probabilities are small,

very few features are expressed in the finite dataset. Since each probability

πk is drawn independently, it is clear that each of the (infinite) columns are

equally likely to be one of the popular features.

2.3 Stick-breaking Construction

π

v

Figure 2.3: Cartoon of the stick-breaking generative model for the IBP. Unlike
in the infinite limit construction (Section 2.2), features in the stick-breaking
construction are ordered by on their popularity.

The finite-limit construction for the IBP does not order the features; more

likely features may ‘located’ at some arbitrarily large index. The stick-breaking

construction of Teh et al. (2007) derives a similar model that orders the fea-

tures by their popularity. As with the infinite limit construction, the stick-

breaking construction assigns a probability πk to each column and samples

each Z(n, k) is sampled as independent Bernoulli random variable with pa-

rameter πk.

Unlike the infinite-limit construction, however, the feature probabilities πk

are not sampled independently. Instead, a sequence of independent random

variables v1, v2, . . ., each distributed as Beta(α, 1), are first sampled. Given the

Chapter 2: The Indian Buffet Process Model 13

set v1, v2, . . ., the probability πk of a feature k is given by

πk =
k
∏

i=1

vi.

As a result, πk > πk+1 (see figure 2.3); the expected value of πk is (α
1+α

)k. For

large k, the probability of any of the N observations containing that feature

decreases exponentially fast. Also, large values of α cause πk to decay more

slowly in expectation. Thus, larger values of α mean that more features will

be present in the data.

2.4 Beta-Bernoulli Process Construction

Finally, Thibaux and Jordan (2007) show one can also construct the Indian

Buffet Process from a Beta-Bernoulli process (just as the Chinese Restaurant

Process relates to the Dirichlet process). A Beta process BP(c, B0) is a dis-

tribution over measures governed by a concentration parameter c and a base

distribution B0. A draw B from the Beta process BP(c, B0) is a set of pairs

(ωk, πk). The pairs (ωk, πk) are sampled from a Poisson process on Ω × [0, 1].

The output can be represented as

B =
∑

k

πkδωk
,

where δωk
is an atom at ωk. Figure 2.4 illustrates how one may visualise B

as a set of weights πk placed at atoms ωk in some feature space Ω. The πk

values are not normalised; they will generally not sum to one. Finally, if B0

is a discrete distribution made up of atom-weight pairs (ωk, qk), then for each

atom ωk, πk ∼ Beta(cqk, c(1− qk)).

The Beta process B gives us a (possible infinite but) countable set of atoms

and weights. The corresponding Bernoulli process samples atoms from B;

each draw from the Bernoulli process may be interpreted as which atoms—or

features—are present in a particular observation. More formally, a Bernoulli

process Zn ∼ BeP(B) takes in a distribution B as its base measure. If the B

Chapter 2: The Indian Buffet Process Model 14

Beta Process on some space Ω

Ω

π π π

π π
3

4

5

1 2

Ω

Draw from associated Bernoulli Process

Figure 2.4: Cartoon of the Beta-Bernoulli generative model for the IBP.

is a discrete set of atom-weight pairs (ωk, πk), then a draw Zn ∼ BeP(B) is

given by

Zn =
∑

k

bkδωk
,

where bk is a 0-1 Bernoulli random variable with probability πk. If B is con-

tinuous, then Zn is Poisson with hazard B. Thus, a draw Zn of a Bernoulli

process is a collection of features. Concatenating several draws Zn into one

matrix Z results in a binary-feature assignment matrix.

When the draw from the Beta process B is explicitly represented, the repre-

sentation is similar to the stick breaking construction for the IBP: specifically,

the feature probabilities π are explicitly represented in the model. Marginal-

ising out B gives us a generative process more similar to the restaurant con-

struction. Given a set of draws Z1 . . . Zn, a new draw Zn+1 can be sampled

without explicitly representing B via the following equation

Zn+1|Z1...n ∼ BeP(
c

c+ n
B0 +

1

c+ n

n
∑

j

Zj).

where
∑n

j Zj is shorthand for a set of pairs that places mass mk on atom ωk,

where mk =
∑n

j bjk.

Now, suppose the concentration c = 1 and mass of the base measure over

the feature space B0(Ω) = α. Then we obtain:

Zn+1|Z1...n ∼ BeP(
1

1 + n
B0 +

1

1 + n

n
∑

j

Zj).

Chapter 2: The Indian Buffet Process Model 15

The first term, with relative weight α/(n + 1), represents drawing a new fea-

ture from the base measure. As expected, the probability of choosing a new

feature decreases with n. The second term is the discrete distribution based on

the counts (or popularities) of the features that have occurred at least once.

A nice property of the Beta-Bernoulli construction is that it naturally pro-

vides a second parameter, c, that can be adjusted to change the ‘stickiness’ or

concentration of the features in the IBP.

2.5 Summary

In this chapter, we described four constructions for the Indian Buffet Process.

The restaurant construction is unique in that it always marginalises the fea-

ture probabilities—that is, the πk’s are only ever implicitly represented—while

the remaining constructions provide a generative procedure for sampling the

πk’s. In practice, the restaurant and stick-breaking constructions tend to be

more useful for inference because they give the more popular features lower

indices. However, the infinite-limit and Beta-Bernoulli constructions make the

exchangeability and independences in the model explicitly clear. Appendix C

describes constructions for extensions of the IBP, including the two-parameter

IBP alluded to in Section 2.4.

Chapter 3

Inference

Chapter 2 described several generative models for the Indian Buffet Process.

A generative process can be used to simulate observations: we use the IBP

to sample a feature-assignment matrix Z, and then we apply a likelihood

model p(X|Z) to generate simulated observations X. This chapter considers

the complementary problem of inference: given a set of observations X, our

goal is to characterise the posterior p(Z|X). This posterior may be used to

compress existing data, predict properties of new data, or suggest structures to

guide further research. All currently existing methods for inference in the IBP

express the posterior p(Z|X) as a set of samples. We provide an overview of

these samplers and summarise their properties. As before, detailed descriptions

of likelihood models are given in Appendix A.

3.1 Gibbs Sampler

Gibbs sampling is a Markov-Chain Monte Carlo (MCMC) technique for draw-

ing samples from a joint distribution over several variables z1, z2, . . . , zK . New

values for each variable zk are sampled one at a time, conditioned on the

current values of the remaining variables and observed quantities x

zk ∼ p(zk|z−k, x) (3.1)

16

Chapter 3: Inference 17

where z−k refers to the set of all variables excluding zk: {z1, z2, . . . , zk−1, zk+1, . . . , zK}.

Usually each variable zk is sampled in a deterministic order, but the Gibbs

sampler will produce samples from the true posterior p(z|x) as long as each

variable zk is sampled infinitely often during an infinite run of the sampler.

A detailed description of Gibbs sampling (including a formal derivation) is

provided in (Gelman et al., 2003; Neal, 1993).

In Chapter 1, Ak represented the value of feature k. More generally, A may

represent any parameters needed to generate the data X given the feature-

assignments Z. Given a likelihood function P (X|Z,A) and data X, the goal

of the inference is to draw samples from the joint distribution p(Z,A|X). The

Gibbs sampler alternates between sampling elements of A and sampling el-

ements of Z. The exchangeability properties of the IBP imply that we can

always imagine that the row we are sampling corresponds to the last customer

to have entered the buffet. Given the feature matrix A, the IBP matrix Z is

sampled element-by-element

p(Znk|Z−nk, X,A) ∝
mk − Znk

N
p(X|Z,A) (3.2)

where mk is the number of observations using feature k (if observation n is

the only observation using feature k, then the Gibbs sampler will always re-

move it). In the linear-Gaussian model, the likelihood p(X|Z,A) factors into
∏

n p(Xn|Zn, A). Sampling a new value for Znk is computationally efficient

because changing Znk only p(Xn|Zn, A) changes in p(X|Z,A).

Following the buffet analogy, unused features become active if the customer

decides to try new dishes at the buffet. The probability that customer n

samples knew features is given by

p(knew) ∝ Poisson(knew,
α

N
)

∫

Anew

p(X|Znew, Anew)p(Anew)dAnew (3.3)

where Znew is an IBP matrix with knew 1’s appended to row n, and Anew has

knew rows drawn from the prior P (A). (Note that the integral in equation 3.3

depends on knew through the size of Anew.)

Chapter 3: Inference 18

In nonconjugate models, the integral in equation 3.3 is intractable, and

Gibbs sampling is no longer possible. However, new features can still be sam-

pled with Metropolis-Hastings (MH) methods. Like Gibbs sampling, MH sam-

plers are a form of MCMC that produce a sequence of samples from a desired

distribution. To sample a new value given a current value z, we first first draw

a value ẑ from some proposal distribution q(ẑ|z). The value ẑ is accepted with

probability

P (z → ẑ) = min(1,
p(x|ẑ)p(ẑ)q(ẑ|z)

p(x|z)p(z)q(z|ẑ)
) (3.4)

where p(x|z) is the likelihood of z given the data x.

Specifically for sampling new features, Meeds et al. (2007) describe a proce-

dure in which first, values for knew and Anew are sampled from their respective

priors. Next, a proposed Znew is created which deletes any current singleton

features in Zn and adds the knew features to Zn. The proposed matrix Znew is

accepted with probability

P (Z → Znew) = min(1,
P (X|Znew, Anew)

P (X|Z,A)
).

Depending on the model for the features A, the feature matrix may be

resampled analytically at once (for the linear-Gaussian model) or element-by-

element (exponential-Gaussian and Bernoulli models). In some cases, A may

be resampled by using a Metropolis step to propose a new value. In other cases,

A may be marginalised out so that only elements of Z need be sampled; this

special case is detailed in Section 3.2. To differentiate the two Gibbs samplers,

we call the sampler in this section the uncollapsed Gibbs sampler—since A

is explicitly represented—and the sampler where A is marginalised out the

collapsed Gibbs sampler.

In all MCMC-based sampling methods, the value of the current sample

depends on the value of the previous sample. An important consideration when

employing these methods is how quickly the underlying Markov chain mixes,

which roughly corresponds to how many ‘independent’ samples we obtain from

this set of dependent samples (see Gelman et al., 2003). While the uncollapsed

Gibbs sampler is computationally efficient per iteration, it mixes relatively

Chapter 3: Inference 19

slowly. In particular, since new features are sampled from the prior, which may

not be a good fit for the data, many proposals may be needed before a needed

feature is added. Sampling A and Z in two separate stages also decreases the

sampler’s flexibility, preventing observations from making adjustments to A

when determining the feature assignment Z.

Fortunately, mixing can be improved in several ways. In conjugate mod-

els, we find that instantiating initialised features but integrating out new

features usually speeds up mixing, especially in high-dimensional datasets

where samples from the prior were unlikely to be good proposals. In non-

conjugate models, mixing may be improved by drawing the new features in

Anew from some intelligent proposal distribution p∗(A) and weighting samples

by p(A)p(X|Znew,Anew)
p∗(A)

. Finally, Courville (2008) notes that mixing can be im-

proved by running the Gibbs sampler at several different temperatures, a tech-

nique known as parallel tempering (Earl and Deem, 2005). Chains are allowed

to exchange samples via Metropolis steps, and the idea is that chains running

at higher temperatures, that is, with smoothed probability distributions, will

be able to move more effectively from local hills.

Finally, we observe that mixing is generally not a problem in lower di-

mensional datasets. Combined with a fast per-iteration runtime, this simple

sampler is often difficult for the other methods to beat. Two advantages of

the uncollapsed Gibbs sampler are that it rarely proposes many new features

and it readily prunes features that are poor matches for the data. Always

maintaining a small set of features improves its already fast runtime.

3.2 Collapsed Gibbs Sampler

We now consider the special case where the parameters of the likelihood func-

tion can be integrated out, that is, where we have an analytic expression for

p(X|Z):

p(X|Z) =

∫

A

p(X|Z,A)p(A)dA. (3.5)

Chapter 3: Inference 20

In this situation, we can sample feature-assignment matrices Z from the pos-

terior p(Z|X) without having to represent A explicitly. We refer to this as the

collapsed Gibbs sampler (Griffiths and Ghahramani, 2005).

As with the uncollapsed Gibbs sampler, the collapsed Gibbs sampler sam-

ples elements of Z one at a time. We use the exchangeability property of the

IBP to imagine that the current observation n is the last customer to have

entered the buffet. For all active features k, we sample Znk via

p(Znk|Z−nk, X) ∝
mk − Znk

N
p(X|Z) (3.6)

where mk is the number of observations containing feature k.

The probability of observation n containing knew features is given by

p(knew) ∝ Poisson(knew,
α

N
)p(X|Znew) (3.7)

where Znew is the feature-assignment matrix with knew additional columns set

to one for feature n. The likelihood term p(X|Znew) is computed using equa-

tion 3.5. To Gibbs sample knew, we compute p(knew) for knew = 1 . . . kmax,

where kmax is some truncation level, and then sample a value for knew propor-

tionally from the probabilities p(knew).1

The advantage of the collapsed Gibbs sampler is that integrating out the

features A gives the sampler faster mixing rates (by the Rao-Blackwell theo-

rem). However, integrating out the features correlates all of the data, so com-

puting the likelihood P (X|Z) with one element Znk involves all of the obser-

vations X1...XN , not just the associated observation Xn. As a result, the run-

time of the collapsed Gibbs sampler (as described in Griffiths and Ghahramani

(2005)) is significantly slower than its uncollapsed counterpart. One of the

contributions of this thesis is novel collapsed Gibbs sampler that achieves an

identical runtime (up to constant factors) to the uncollapsed Gibbs sampler

(Chapter 4). Empirically, we also observe that collapsed Gibbs sampler is

1One may also use the Metropolis approach of Section 3.1. In practice, we find that
the Metropolis method prevents the sampler from adding many features at once, a useful
computational quality of in a sampler.

Chapter 3: Inference 21

quicker to add features and slower to delete them during the burn-in period

directly following initialisation. The initial feature explosion can significantly

affect running times, especially in large datasets.

3.3 MH Proposals and Reversible Jump MCMC

Because it makes very local moves—changing only one variable at a time—

Gibbs samplers often get trapped in a single mode, and it may take exponential

time (in the number of variables) for the Gibbs sampler to move from one part

of the posterior to another. Using MH moves (equation 3.4), particularly with

a well-chosen proposal distribution q(ẑ|z), allows the sampler to make large,

global moves such as adding or deleting entire features.

The choice of proposal distribution depends heavily on the application,

but there are a few basic moves that are useful in a variety of applications.

Meeds et al. (2007) introduce split-merge proposals, where two features are

either combined (via an ‘or’-operation) or a single feature is split, with each

‘1’ in the original feature column choosing to go with one of the new features.

The probability of acceptance in these Metropolis steps may be improved by

using ideas from Jain and Neal (2000), which introduces a novel split-merge

MCMC for the Dirichlet Process. Their approach incorporates Gibbs sampling

within the MH proposal distribution to produce better proposals. Create-

destroy steps (Doshi and Gael, 2008) may also be posited to help form or

remove individual features and be optimised in a similar way.

Reversible jump MCMC (RJMCMC) is a variant of MH designed to explore

models of different dimensionalities (Green, 1995). In the context of the IBP,

changing “dimension” corresponds to changing the number of active features

in a dataset. Wood and Griffiths (2007) suggest the an RJMCMC procedure

for the IBP that introduces create-destroy proposals between standard Gibbs

sampling steps. The proposals have clean, closed-form acceptance probabilities

for the binary likelihood models. In practice, Wood et. al. found the RJMCMC

sampler much slower to mix than the Gibbs sampler, performing poorly until

a very large number of iterations had been run. Our experience with MH

Chapter 3: Inference 22

proposals is similar: especially as the dimensionality of the data grows and

features become more distinct, simple create/destroy and split/merge moves

rarely accept. A good RJMCMC or MH sampler should leverage domain

knowledge about the data.

3.4 Slice Sampler

Slice sampling is a two-step sampling technique well-suited to drawing samples

from distributions with a few tall modes and many regions of low probability

mass (Neal, 2003). Suppose we wish to sample a new value for the variable

of interest z from some distribution p(z). The key concept is to introduce an

auxiliary variable u that does not change the underlying distribution, that is
∫

u
p(z, u)du = p(z), for which sampling p(z|u) is efficient. Gibbs sampling is

performed over each of the variables z and u in turn, and the resulting sequence

of variables z are samples from p(z).

In the context of slice sampling, the auxiliary variable u is used to focus

computational effort on more probable values of z, that is, “slice” away less

likely z. More concretely, u is drawn from (0, p(z)), p(z) < 1, from some

distribution that has full support over the the interval. Next, we sample a new

value for the variables of interest z, considering only z such that p(z) > u. If

we write the joint as p(z, u) = p(u|z)p(z), we see that the marginal distribution

of z is unchanged:

∫

u

p(z, u)du =

∫

u

p(u|z)p(z)du

=

∫

u

1

p(z)
I(u ∈ (0, p(z))p(z)du

=

∫

u

I(u ∈ (0, p(z))du

= p(z)

In this way, the slice sampler provides a principled approach to largely ignore

regions of low probability mass.

Chapter 3: Inference 23

The slice sampler for the IBP (Teh et al., 2007) leverages the stick-breaking

construction of the IBP, explicitly representing the probability πk of each fea-

ture. The sampling process first draws an auxiliary slice variable u from the

distribution

u ∼ Uniform(0, π∗)

where π∗ = mink≤K(πk) and K is the number of active features. (If there are

no active features, π∗ = 1). The slice u corresponds to the least likely feature

we will consider—any feature with probability less than u is ignored in the

following sampling round.

Without loss of generality, the slice sampler assumes that the inactive fea-

tures are ordered by their feature probabilities πK+1 > πK+2 > πK+3 New

feature probabilities—and feature values Ak—are sampled until πk < u. Next,

standard conditionals (see Teh et al., 2007) are applied to resample elements

of the feature assignment matrix Z, feature values A, and feature probabili-

ties πk. Because the slice variable has fixed the number of features, expensive

operations to add or delete features are not needed at this stage. Finally, any

unused features are deleted, and a new slice variable u is sampled. Teh et.

al. find that the slice sampler mixes almost as quickly as the collapsed Gibbs

sampler, even though it does not integrate out the feature matrix A. Thus the

slice sampler is particularly useful for nonconjugate likelihood models.

3.5 Particle Filtering

Wood and Griffiths (2007) propose a very different approach to sampling using

sequential Monte Carlo, or particle filtering. Here, even though the data arrives

as a batch, we pretend that it arrives sequentially. Thus, the particle filter

samples based on successively larger data sets. Processing the data sequentially

provides similar advantages as tempering: the posterior is initially less peaked

because the number of observations is small. By adding data gradually—and

thus peaking the posterior gradually—the hope is that the particle filter will

follow general trends in the observations and be less likely to get caught in

poor modes early on.

Chapter 3: Inference 24

Applied to the IBP, we can think of particle filtering as considering a num-

ber of possibilities for what each new customer will do when entering the buffet

and keeping the most likely possibilities. The algorithm begins with I parti-

cles {Z i : i = 1...I} with zero rows and zero columns. The first customer—or

observation—arrives and each particle Z i samples Poisson(α) features for it

(and, if the model is not conjugate, corresponding feature values Ai). Each

particle is weighted by the likelihood wi = P (X1|Z i, Ai). A new set of I par-

ticles Z i is then drawn with replacement from the discrete distribution based

on normalising the weights wi.

During the nth transition step, an additional row n is added to each Z i

matrix based on the IBP generative model and the previous rows. For non-

conjugate models, a new feature matrix Ai is also sampled based on Z i. Par-

ticles are weighted by their likelihood wi = P (X1:n|Z
i
1:n, A

i), and a new set of

I particles is drawn with replacement from the discrete distribution based on

the weights wi. The procedure continues until all N rows have been added

to each Z i. After processing all N observations, the set {Z i} represents an

approximation to the true posterior P (Z,A|X). In the limit as I → ∞, this

approximation converges to the true distribution.

For certain problems, Wood and Griffiths show that particle filtering pro-

vides orders of magnitude of speed-up. However, we found that because each

row of the Z matrix is being sampled from the prior, which may not well match

the posterior, the particle filter often requires a large number of particles, es-

pecially as the number of observations and the dimensionality of the dataset

become large.

3.6 Summary

This chapter described several sampling methods for inference in the Indian

Buffet Process. Gibbs sampling is the most simple and, in our experience,

effective on broad variety of problems (especially when models are conjugate).

The remaining methods—MH sampling, slice sampling, and particle filtering—

have more parameters and work well in the applications presented by their

Chapter 3: Inference 25

developers. In particular, MH sampling can be quite effective in situations

when a one has a method for generating good proposals.

Chapter 4

Accelerated Sampling in

Conjugate Models 1

In chapter 3, we noted that while the collapsed Gibbs sampler mixed faster

than the uncollapsed Gibbs sampler, it required significantly more computa-

tion. In the context of IBPs, the collapsed Gibbs sampler of Griffiths and Ghahramani

(2005) is O(N3) even with rank-one optimisations, whereas the uncollapsed

Gibbs sampler is O(N). However, the mixing-runtime tradeoff is not lim-

ited to IBPs: many models—such a factor analysis, probabilistic PCA, and

probabilistic matrix factorisation—contain a core variable which, if explicitly

represented, renders the data independent at the cost of losing flexibility in

the sampler. The contribution of this chapter is an accelerated Gibbs sampler

for models such at the IBP, FA, and PCA with conjugate likelihoods. The

accelerated sampler retains the benefits of a collapsed sampler but has a linear

per-iteration running time.

For the purposes of this chapter, we focus on the linear-Gaussian model

for the IBP. In the linear-Gaussian model, the data X is generated by a ma-

trix product X = ZA + ǫ, where each binary Znk denotes whether feature k

is present in observation n, each Akd indicates the value of feature k along

dimension d, and ǫnd is Gaussian white noise. An independent Gaussian prior

is placed on each Akd (see Appendix A for more details). Given the data X,

1Parts of this chapter were previously published as Doshi-Velez and Ghahramani (2009).

26

Chapter 4: Accelerated Sampling in Conjugate Models 27

our goal is to infer Z and A. However, our method is broadly applicable to a

much wider class of conjugate models.

Inspired from Maximisation-Expectation clustering (Welling and Kurihara,

2006), where hard cluster assignments are combined with distributions over

cluster indices, our accelerated sampler samples the feature assignments Z but

keeps a posterior over the feature identities A. We use this posterior to ef-

ficiently compute the likelihood of an observation without being constrained

by a single, sampled feature identity. Our approach easily scales to datasets

of 10,000 observations or 1,500 dimensions. The derivations and experiments

that follow focus on the IBP, but our method can provide significant speed-ups

in any conjugate model where the following conditions hold:

• We can marginalise out the likelihood parameters A to compute p(X|Z),

but it is computationally expensive.

• We have an exponential family form for the posterior on the likelihood

parameter p(A|Z,X).

• We do not have an analytic form for the joint p(Z,A|X).

In the general case, Z would correspond to variables associated with specific

observations and A would correspond to global parameters of the likelihood.

For example, in factor analysis, Z would correspond to the factor loadings of

each observation and A to the set of factors. In probabilistic PCA, Z would

correspond to the low dimensional representation of each input, and A would

be the set of eigenvectors defining the projection.

4.1 Intuition

The collapsed Gibbs sampler is slow because the collapsed likelihood compu-

tation (equation A.2) depends on the entire dataset. The graphical model

in figure 4.1 illustrates this dependence, where we have split the observations

into two parts. The “bottom” XW matrix represents a window containing the

last W observations and X−W represents the other observations. If A is not

Chapter 4: Accelerated Sampling in Conjugate Models 28

observed, inference on ZW depends on both XW and X−W . In contrast, if A

is observed—as in the uncollapsed Gibbs sampler—inference on ZW depends

only on the corresponding data XW . (The Z−W dependence is easy to compute

in the IBP; it may not exist in other models.)

A

Z−w X−w

XwZw

α

Figure 4.1: Graphical model for the IBP, showing the observations and the
feature-assignment matrix split into two (arbitrary) parts. The observations
corresponding to ZW occur “after” Z−W and depend on the counts of Z−W .

Our accelerated sampler maintains the posterior p(A|X−W , Z−W). By keep-

ing the posterior, instead of sampling a fixed value for A, the accelerated sam-

pler retains the flexibility—that is, the mixing properties—of the collapsed

Gibbs sampler (regardless of W). However, similar to the uncollapsed Gibbs

sampler, the posterior blocks the dependence of ZW on X−W . As a result, the

accelerated Gibbs sampler has similar runtime to the uncollapsed sampler.

4.2 Formal Derivation

We formally show how the intuition in the previous section produces a sampler

that is exactly equivalent to the collapsed Gibbs sampler. Let XW denote

some window of observations containing observation n. The exchangeability

of the IBP allows us to imagine that XW are the final W observations and Xn

is the last observation. Using Bayes rule, we write the probability p(Znk =

Chapter 4: Accelerated Sampling in Conjugate Models 29

1|Z−nk, X) as:

p(Znk = 1|Z−nk, X) ∝ p(Znk|Z−nk)p(X|Z)

=
mk

n

∫

A

p(X|Z,A)p(A)dA.

We split the data into sets XW and X−W and apply the conditional indepen-

dencies from figure 4.1 to get

p(Znk = 1|Z−nk, X)

=
mk

n

∫

A

p(XW , X−W |ZW , Z−W , A)p(A)dA

=
mk

n

∫

A

p(XW |ZW , A)p(X−W |Z−W , A)p(A)dA.

Finally, we apply Bayes rule again to p(X−W |Z−W , A):

p(Znk = 1|Z−nk, X) ∝
mk

n

∫

A

p(XW |ZW , A)p(A|X−W , Z−W)dA (4.1)

Thus, given p(A|X−W , Z−W), we can compute p(Znk = 1|Z−nk, X) exactly

without touching X−W .

In the linear-Gaussian model, the feature posterior p(A|X−W , Z−W) and

likelihood p(XW |ZW , A) are both Gaussian, and the integral in equation 4.1

yields

P (Znk|Z−nk, X) ∝
mk

n
N (XW ;ZWµ

A
−W , ZWΣA

−WZ
T
W +ΣX), (4.2)

where (µA
−W ,ΣA

−W) is the mean and covariance of the feature posterior and

ΣX = σ2
xI is the noise variance.

The accelerated sampling procedure, summarised in Algorithm 1, only uses

a small window of observations XW at one time. We first compute the feature

posterior given all of the data using equation A.3. Next, we randomly choose

W observations as our window. Given the full feature posterior p(A|X,Z) =

N (µA,ΣA), the posterior p(A|X−W , Z−W) with the window XW removed is

Chapter 4: Accelerated Sampling in Conjugate Models 30

Algorithm 1 Accelerated Gibbs Sampler

Initialise Z.
Compute p(A|Z,X).
for each iteration do
S ← {1 . . .N}
while S is not empty do

Sample and remove W elements from S.
Compute p(A|Z−W , X−W) from p(A|Z,X).
for each observation n in W do

Sample Znk according to equation 4.2.
Sample new features for each observation n according to equation 3.7.

end for
Update p(A|Z,X) from p(A|Z−W , X−W).

end while
end for

given by

ΣA
−W = (I−ΣAZT

W (ZWΣAZT
W−ΣX)−1ZW)ΣA

µA
−W = b(µA−ΣAZT

W (ZW ΣAZT
W +ΣX)−1XW)

where b=(I−ΣAZT
W (ZWΣAZT

W +ΣX)−1ZW ΣA)−1. Now each Znk in ZW may

be sampled using equation 4.2. New features are sampled using equation 3.7.

In practice, using the information form PA = (ΣA)−1, hA = PµA results in

slightly more stable updates. We convert PA
−W and hA

−W to ΣA
−W and µA

−W

before computing likelihoods, so the computational complexity is unchanged.

Each sampling step requires the computation of P (XW |ZW), given by

N (XW ;ZWµ
A
−W , ZWΣA

−WZ
T
W + ΣX). If only one element Znk of ZW changes,

the new (ΣX
W)−1 and its determinant can be computed by a pair of rank-

one updates; new features may also be incorporated into the covariance via

a single rank-one update. If the Woodbury formulas are used, the updates

require O(W 2) elementary operations. Griffiths and Ghahramani (2005) show

an O(K2) update is also possible. However, the O(W 2) inversions will be faster

because we expect K to grow with the number of observations while W can

be fixed to remain small.

Chapter 4: Accelerated Sampling in Conjugate Models 31

Once we have completed sampling the window, we recompute the full fea-

ture posterior p(A|X,Z):

µA = µA
−W + ΣA

−WZ
T
W · (ZW ΣA

−WZ
T
W + ΣX)−1(Xi − ZWµ

A
−W)

ΣA = (I − ΣA
−WZ

T
W (ZWΣA

−WZ
T
W + ΣX)−1ZW)ΣA

−W

For each iteration, the sampler then chooses W new observations without

replacement and repeats until all N observations have been updated.

4.3 Per-Iteration Running Times

We consider the number of addition and multiplication operations for one

sweep through an NxK feature-assignment matrix Z under a linear-Gaussian

likelihood model (ignoring the addition of new features). The running time

of the collapsed Gibbs sampler is dominated by the computation of the expo-

nent XT (I − Z(ZTZ + Iσ2
x/σ

2
a)

−1ZT)X. If only one element of Z is changed,

then the inverse (ZTZ + Iσ2
x/σ

2
a)

−1 may be updated in O(K2) time. How-

ever, the remaining matrix products require O(N2K) and O(N2D) opera-

tions respectively. Thus, for NK elements, the running time for large N is

O(NK(N2K +N2D)).

The uncollapsed Gibbs sampler requires many fewer operations per ele-

ment: p(Xn|Zn, A) is independent of the remaining observations and only

requires the computation of ZnA, which is O(KD). The features A are re-

sampled once per iteration. Computing the mean and variance for A given Z

requires steps that O(K3 +NK2 +NKD), but the O(NK2D) time required

to sample NK elements dominates these terms.

Finally, as with the collapsed Gibbs sampler, the accelerated Gibbs sam-

pler’s per-iteration running time also has a dominant term from computing the

likelihood. If Woodbury inversions are used, the likelihood computations are

O(W 2+DW 2), for a complexity O(NKDW 2) for sampling all the Znk. How-

ever, the feature posterior must also be updated N/W times. Each update

requires steps of complexity O(W 3+W 2K+WK2), corresponding to inverting

Chapter 4: Accelerated Sampling in Conjugate Models 32

the variance of the data XW and expanding it to compute the variance of the

parameters. Thus, the overall complexity is O(N(KDW 2+K2)), and the op-

timal value for W is 1.2 Like the uncollapsed Gibbs sampler, the accelerated

sampler’s complexity is linear in N .

Table 4.1 summarises the running times. Both the uncollapsed and accel-

erated Gibbs sampler are linear in N , but the accelerated Gibbs sampler has

a slightly better complexity in K and D. The lower order dependence is ben-

eficial for scaling because we expect K to grow with N . While constants and

lower-order terms are important, our experiments confirm the lower complexity

is significant in the larger datasets.

Table 4.1: Per-iteration running times for large N and a linear-Gaussian like-
lihood model, given an NxK matrix Z and D-dimensional data.

Algorithm Running Time
Collapsed Gibbs O(N3(K2+KD))
Uncollapsed Gibbs O(NDK2)
Accelerated Gibbs O(N(KDW 2+K2))
Accelerated Gibbs, W=1 O(N(K2 +KD))

4.4 Experiments

We compared the computational efficiency and inference quality of the col-

lapsed Gibbs sampler, the semi-collapsed Gibbs sampler (an uncollapsed Gibbs

sampler that integrates over the new features when sampling knew), and the

accelerated Gibbs sampler. All samplers were heavily optimised to take ad-

vantage of rank-one updates and Matlab vectorisation.

Per-iteration runtimes were used to evaluate computational efficiency. Since

Gibbs sampling produces a sequence of correlated samples, another important

metric was the degree of independence between successive samples: more in-

dependent samples indicate faster mixing. With the synthetic data, we ran 5

2We included W in our original formulation because in general the optimal choice of W
will depend on the relative costs of computing the feature posterior and the likelihood.

Chapter 4: Accelerated Sampling in Conjugate Models 33

chains in parallel to evaluate the effective number of independent samples per

actual sample (Gelman et al., 2003). The effective number of samples per sam-

ple will be 1 if successive samples are independent and less than 1 otherwise.

Experiments with real-world data took longer to complete, so we estimated

the burn-in time instead. In both cases, the number of features K and the

training log-likelihood were the chain statistics used to evaluate mixing.

We evaluated the inference quality by first holding out approximately 100D

Xnd values during the initial inference. No observation had all of its dimensions

missing, and no dimension had all of its observations missing. The quality of

the inference was measured by evaluating the average L2 reconstruction error

over the missing elements xm
nd,

el2 =
∑

i

∑

xm
nd

(xm
nd − z

i
na

i
d)

2

where i denotes the sample, and the average test log-likelihood treating each

missing value as a separate test point

ell =
∑

i

∑

xm
nd

−
1

2
log(2πσ2

nd)−
1

2σ2
nd

(xm
nd − z

i
na

i
d)

2,

σ2
nd = σ2

x + znΣAz
T
n

The metrics were averaged over the final 50 samples.

Synthetic Data The synthetic data were generated from the IBP prior (α =

2) and the linear-Gaussian model (µA =0, σa =2, σx = .2 , D=10). We ran 5

chains from different starting positions for each sampler with N equal to 50,

100, 250, and 500 for 1000 iterations. Figure 4.2 shows the evolution of the per-

iteration runtime as the number of observations grows (note the log-log scale).

The slopes of the lines indicate the order of the runtime polynomial. The semi-

collapsed and accelerated Gibbs samplers have nearly identical slopes, while

the per-iteration running time of the collapsed Gibbs sampler scales much more

poorly.

Chapter 4: Accelerated Sampling in Conjugate Models 34

10
2

10
−1

10
0

10
1

10
2

10
3

Number of Observations

P
er

−
Ite

ra
tio

n
R

un
tim

e
(s

)

Per−Iteration Runtime on Simulated Data

Collapsed Gibbs
Semi−collapsed Gibbs
Accelerated Gibbs

Figure 4.2: Per iteration runtime vs. number of observations (note the log
scale on the x-axis).

Table 4.2: Performance statistics on data from the prior. Each value is an
average over 5 chains.
Evaluation Statistic Collapsed Gibbs Semi-collapsed Gibbs Accelerated Gibbs
Iteration Time 90.273 1.302 1.566
Effective N 0.020 0.019 0.020
L2 Test Error 0.710 4.534 1.780
Test log Likelihood -24.557 -13.977 -26.936

Figure 4.3 plots the effective sample count (per sample) of for each sampler.

Again, as expected, the semi-collapsed Gibbs sampler had the lowest effective

sample count, and the accelerated Gibbs sampler and the collapsed Gibbs

sampler had similar counts. From these two plots, we see that the accelerated

Gibbs sampler mixes like the collapsed Gibbs sampler but has a run-time like

the uncollapsed Gibbs sampler.

The running times and quality criteria are summarised in table 4.2. The

accelerated Gibbs sampler’s running time is on par with the semi-collapsed

Gibbs sampler and nearly two orders of magnitude faster than the collapsed

Gibbs sampler. It does not achieve the best test likelihoods or reconstruction

errors, but they are always on par with collapsed Gibbs sampler.

Chapter 4: Accelerated Sampling in Conjugate Models 35

50 100 150 200 250 300 350 400 450 500
0.019

0.0195

0.02

0.0205

0.021

0.0215

Number of Observations

E
ffe

ct
iv

e
nu

m
be

r
of

 in
de

pe
nd

en
t s

am
pl

es
 p

er
 s

am
pl

e

Effective number of independent samples per sample on Simulated Data

Collapsed Gibbs
Semi−collapsed Gibbs
Accelerated Gibbs

Figure 4.3: Effective number of samples vs. dataset size.

Real Data Table 4.3 summarises the real-world data sets.3 All datasets

were first centred to have 0-mean. Values for the hyperparameters σa and σx

were fixed to .75σ and .25σ, respectively, where σ was the standard deviation

of the observations across all dimensions. We set α = 2 in all experiments.

Each sampler ran for 500 iterations or up to 150 hours.

Figure 4.4 plots how the log-joint probability log p(X,Z) of the training

data evolves for all six datasets (note the log-scale on the time axis). In almost

all the datasets, the accelerated Gibbs sampler equilibrates to the same log-

joint probability as the semi-collapsed Gibbs sampler but orders of magnitude

faster. The plots suggest the time allowed was not sufficient for the collapsed

Gibbs sampler to complete burning-in, though it seems to be approaching a

similar joint probability. For the higher dimensional and larger datasets in the

bottom row, the collapsed Gibbs sampler often failed to complete even one

iteration in 150 hours. The semi-collapsed sampler also suffered in the higher

dimensional datasets. The accelerated Gibbs sampler always completed its run

in less than two hours.

3The block images are not a real-world dataset, but they do not come from the linear-
Gaussian model. The emoticons were obtained from www.smileyset.com and post-processed
to normalise image size and centring.

Chapter 4: Accelerated Sampling in Conjugate Models 36

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Time (s)

Lo
g

Jo
in

t P
ro

ba
bi

lit
y

Images: Joint Probability vs. Time

Collapsed Gibbs
Semi−collapsed Gibbs
Accelerated Gibbs

(a) Block Images: N = 1000, D = 36

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8
x 10

6

Time (s)
Lo

g
Jo

in
t P

ro
ba

bi
lit

y

Emoticons: Joint Probability vs. Time

Collapsed Gibbs
Semi−collapsed Gibbs
Accelerated Gibbs

(b) Emoticons: N = 702 , D = 1032

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
x 10

6

Time (s)

Lo
g

Jo
in

t P
ro

ba
bi

lit
y

Yale: Joint Probability vs. Time

Collapsed Gibbs
Semi−collapsed Gibbs
Accelerated Gibbs

(c) Yale Faces: N = 722 , D = 1032

10
1

10
2

10
3

10
4

10
5

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2
x 10

7

Time (s)

Lo
g

Jo
in

t P
ro

ba
bi

lit
y

AR Faces: Joint Probability vs. Time

Semi−collapsed Gibbs
Accelerated Gibbs

(d) AR Faces: N = 2600 , D = 1598

10
−4

10
−2

10
0

10
2

10
4

10
6

−18

−16

−14

−12

−10

−8

−6

−4

−2

0
x 10

6

Time (s)

Lo
g

Jo
in

t P
ro

ba
bi

lit
y

EEG: Joint Probability vs. Time

Collapsed Gibbs
Semi−collapsed Gibbs
Accelerated Gibbs

(e) EEG: N = 4400 , D = 32

10
2

10
3

10
4

10
5

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

6

Time (s)

Lo
g

Jo
in

t P
ro

ba
bi

lit
y

Piano: Joint Probability vs. Time

Accelerated Gibbs

(f) Piano: N = 10000 , D = 161

Figure 4.4: Evolution of the log joint-probability vs. time for several datasets.

Chapter 4: Accelerated Sampling in Conjugate Models 37

Table 4.3: Descriptions of datasets.

Dataset N D Description
Block-Images
(Wood and Griffiths, 2007)

1000 36 noisy overlays of four binary shapes
on a grid

Emoticons 702 1032 different smiley faces
Yale (Georghiades et al.,
2001)

722 1032 faces with various lighting

AR (Mart’inez and Kak,
2001)

2600 1598 faces with lighting, accessories

EEG (Hoffmann et al.,
2008)

4400 32 EEG recording on various tasks

Piano (Poliner and Ellis,
2007)

10000 161 DFT of a piano recording

Table 4.4 shows the per-iteration running times and the measures on the

missing data for the six datasets. A dash indicates insufficient iterations were

completed to compute the statistic. The speed benefit of the accelerated Gibbs

sampler is particularly apparent on these larger datasets: often it is two or-

ders of magnitude faster per-iteration than the collapsed sampler. However,

its test L2 reconstruction error and likelihood remains on-par or better than

either sampler. For slightly troublesome EEG dataset, most of the likelihood

loss came from 4 dimensions of 4 observations. These four troublesome dimen-

sions had a variance about two orders of magnitude larger than the remaining

dimensions (the other datasets were more homogenous). All samplers had

to manage this issue, but the accelerated Gibbs sampler’s heavy reliance on

rank-one updates made it particularly sensitive to ill-conditioning from ex-

treme situations.

Finally, figures 4.5 and 4.6 show qualitative results on the emoticon and AR

faces datasets. Our primary objective here was to show that the accelerated

sampler finds reasonable features (rather than discover previously unknown

structure in the data). Each figure decomposes three observations into features

found by the sampler (all features contribute equally in the additive model).

The sampler finds features associated with the emoticon’s expression (first

Chapter 4: Accelerated Sampling in Conjugate Models 38

Original Reconstructed Parts

Figure 4.5: Some reconstructed emoticons: the expression is a different feature
than the type of the face.

OriginalReconstructed Parts

Figure 4.6: Some reconstructed AR faces: faces contain features for the face,
lighting, scarves, and sunglasses.

column of ‘Parts’) and features that make up emoticon’s accessories. In the

larger AR Faces dataset, the sampler finds features corresponding to lighting

conditions, facial features, and accessories such as scarves or sunglasses. These

decompositions are similar to those found by the other samplers.

4.5 Discussion

The accelerated Gibbs sampler attained similar test likelihood and reconstruc-

tion errors as the existing Gibbs samplers but did so faster than either ap-

proach. Its per-iteration runtime was two orders of magnitude faster than

Chapter 4: Accelerated Sampling in Conjugate Models 39

the collapsed Gibbs sampler. While it is difficult to judge the convergence

of the samplers from a single run, the accelerated Gibbs sampler’s training

likelihoods were generally on par with the other samplers, suggesting that the

gains in speed were achieved without sacrifices in performance.

The difference between the NK2D term in the running time of the uncol-

lapsed Gibbs sampler and the N(K2 +KD) of the accelerated Gibbs sampler

becomes more pronounced as the dimensionality of the observations and the

number of features increases. If K grows logarithmically with N , as posited by

the IBP prior, then large datasets will impact the complexity because K will

be larger. For example, in the AR Faces dataset, where D is 1598 and feature

counts ranged between 15-80, the difference between the two expected running

times is one to two orders of magnitude. (Of course, implementation details af-

fect the differences in per-iteration running times, but the experiments confirm

this speed-up factor.4)

Loss of precision during the rank-one updates is the primary implementa-

tion concern for the accelerated sampler. This effect was particularly apparent

in the EEG dataset because the dimensions had widely varying variances, lead-

ing to ill-conditioned matrices. An important question is how often expensive

full-updates of the feature posterior and data posterior must be completed; we

did so once per run and once per window, respectively. While a window size W

of 1 produces an optimal runtime, larger windows might slow the degradation

due to repeated rank-one updates.

Our comparison focused on performance relative to other Gibbs samplers.

Regarding other IBP inference techniques, we expect it to mix faster than

the slice sampler, as the slice sampler mixes more slowly than the collapsed

Gibbs sampler (Teh et al., 2007). Well-designed MH-proposals may make a

Metropolis sampler efficient in some domains, and other domains may be well-

suited for particle filtering, but one advantage of the accelerated Gibbs sampler

is its simplicity: neither MH-proposals nor a particle count is needed to perform

principled, effective inference. However, an interesting question is if population

4Using the semi-collapsed Gibbs sampler instead of the uncollapsed Gibbs sampler will
also affect the runtime, but this effect appeared to be small in preliminary experiments.

Chapter 4: Accelerated Sampling in Conjugate Models 40

Monte Carlo techniques can be used to merge the benefits of our accelerated

Gibbs sampler and particle filtering.

Finally, we note that the approach described here can be easily converted

to provide a greedy, deterministic approximation: instead of sampling, one

can simply climb in the direction of increasing likelihood. In practice, this

approach gives almost the same quality of solutions as sampling, as posterior

modes tend to be highly peaked and with large datasets the sampler never has

a chance to explore multiple modes in the posterior.

4.6 Summary

The accelerated Gibbs sampler has the mixing properties of the collapsed Gibbs

sampler but the running time of the uncollapsed Gibbs sampler. The key

insight was to allow data to share information only through the statistics on

the feature posterior. Thus, likelihoods of feature assignments could efficiently

be computed using local computations without sacrificing the flexibility of

a collapsed sampler. The accelerated Gibbs sampler scaled to inference for

several large, real-world datasets. An interesting future direction may be to

explore how maintaining distributions over parameters may help accelerate

other MCMC inference methods.

Chapter 4: Accelerated Sampling in Conjugate Models 41

Table 4.4: Results on realworld data sets. Dashes indicate values that could
not be computed in the time allotted.
Data Set Collapsed Gibbs Semi-collapsed Gibbs Accelerated Gibbs

Iteration Time
Images 1526.4 38.1 7.6
Emoticons 10205.4 32.8 19.0
Yale 8759.0 18.1 25.5
AR Faces - 13291.8 120.9
EEG 112692.3 13.0 21.9
Piano - - 221.5

Burn-in Count
Images 12.0 2.0 4.0
Emoticons 35.0 82.0 42.0
Yale 45.0 184.0 133.0
AR Faces - - 31.0
EEG - - 29.0
Piano - - 25.0

L2 Test Error
Images 0.1066 0.1239 0.0555
Emoticons 5905.8 11781.1 5612.7
Yale 459.4 413.0 435.9
AR Faces - 3836.4 919.9
EEG 267292.3 282108.1 215174.5
Piano - - 0.0005

Test Likelihood
Images -2.0 -1.7 -2.0
Emoticons -14.4 -12.0 -14.2
Yale -17.8 -15.8 -16.0
AR Faces - -13.3 -13.7
EEG -26274.0 -3621.5 -14133.3
Piano - - -7.0

Chapter 5

Parallel Inference 1

The accelerated sampler of chapter 4, while orders of magnitude faster than the

original collapsed Gibbs sampler, only takes advantage of a single processor.

However, from information retrieval and recommender systems, to bioinfor-

matics and financial market analysis, recent years have seen an explosion in

the size of datasets. These datasets may be spread across several hard-disks

and certainly exceed the memory capacity of a single machine.

While large, these datasets are often sparse and difficult to model. For

example, we may have expression levels from thousands of genes from only a

few people. A rating database may contain millions of users and thousands

of movies, but each user may have only rated a few movies. In such settings,

Bayesian methods provide a principled and robust approach to drawing in-

ferences and making predictions from sparse information. However, scaling

Bayesian inference, especially for nonparametric models, remains a challenge.

Advances in multicore and distributed computing provide one answer to

this challenge. Already techniques exist to efficiently split variables across

processors in undirected graphical models (Joseph Gonzalez, 2009) and factor

graphs (Stern et al., 2009); specific techniques have been developed data paral-

lelisation for latent Dirichlet allocation (Nallapati et al., 2007; Newman et al.,

2008; Asuncion et al., 2008). For more complex models, such as Bayesian

factor analysis or the IBP, data parallelisation of inference (with marginalised

1Joint work with David Knowles and Shakir Mohammed.

42

Chapter 5: Parallel Inference 43

variables) is nontrivial—while simple models might only require pooling a small

number of sufficient statistics (Chu et al., 2007), correct inference in more com-

plex models can depend on frequent synchronisation or worse yet, having to

communicate entire probability distributions between processors. This chapter

describes a message passing framework for data-parallel Bayesian inference for

nonparametric models.

To achieve efficient parallelisation, we apply the core idea of chapter 4:

given a distribution over certain coupling features A, the distribution over

other latent variables Zn becomes factorised. Coupled with a message passing

scheme to maintain the posterior p(A|Z,X), we can distribute inference over

many processors while sacrificing little accuracy in performance; we demon-

strate our approach on a problem with 100,000 observations. As with the

accelerated Gibbs sampler, most elements of our procedure are general to data

parallelisation in other models.

5.1 Inference Procedure

In this section, we describe synchronous and asynchronous procedures for ap-

proximate, parallel inference in the IBP. Procedures are described for the

linear-Gaussian and Bernoulli models; however they should readily extend

to other likelihood models. Section 5.2 describes how to make this approx-

imate sampler exact, at the expense of requiring synchronous communications

between processors.

The first step is to partition the dataset between the processors. We let

Xp and Zp denote the portions of the data X and feature assignment ma-

trix Z assigned to processor p. In chapter 4, the distribution P (A|X−n, Z−n)

was used to derive an accelerated sampler for sampling Zn. Similarly, our

parallel inference algorithm will have each processor p to maintain a distri-

bution P p(A|X−n, Z−n), where P p is an approximation to the true posterior

P (A|X−n, Z−n). We show that the distributions P p (as well as counts of Z)

will be efficiently updated via message passing between the processors.

The inference alternates between three phases:

Chapter 5: Parallel Inference 44

• Message passing: processors communicate to compute the exact P (A|X,Z).

• Gibbs sampling: processors sample a new set of Zp’s in parallel.

• Hyperparameter sampling: a designated root processor resamples hyper-

parameters, which are propagated to other processors

We detail each of these phases below and then describe how they may be imple-

mented in an asynchronous system. Because all of the processors are sampling

Z at once, the posteriors P p(A|X,Z) used by each processor are no longer

exact. However, we show empirically in section 5.2 that this approximation

has little effect on the inference.

Message Passing The full posterior on the featuresA is given by P (A|Z,X).

Bayes Rule gives us the following factorisation:

P (A|Z,X) ∝ P (A)
∏

p

P (Xp|Zp, A) (5.1)

If the prior P (A) and the likelihoods P (Xp|Zp, A) are part of conjugate ex-

ponential family models, then the product in equation (5.1) is equivalent to

summing the sufficient statistics of the likelihoods from all of the processors.

In the linear-Gaussian model, these statistics correspond to mean vectors and

covariance matrices (handled more readily in information mean and precision

form); in the Bernoulli model, the statistics correspond to counts on how of-

ten each element Akd is equal to one. The linear-Gaussian messages have size

O(K2 + KD), and the Bernoulli messages O(KD). For nonparametric mod-

els such as the IBP, the number of features K grows as O(logN). This slow

growth means that messages remain compact and we can efficiently scale to

large datasets.

The most straightforward way to accurately compute the full posterior is

to network the processors in a tree architecture. The sufficient statistics for

the feature posterior are summed via message passing along the tree, which

is an instance of (exact) belief propagation. Specifically, the message s from

Chapter 5: Parallel Inference 45

Root
prior

sta
tis

tic
s

po
ste

rio
r

P1 P2

sta
tis

tic
s

statisticsposterior

po
ste

rio
r posterior

statistics

P3 P4

Figure 5.1: Message passing process. The processors send sufficient statistics
of the likelihood up to the root, which calculates and sends the full (exact)
posterior down to the processors.

processor p to processor q is given by

sp→q = lp +
∑

r∈N(p)\q

sr→p

where N(p)\q are the processors attached to p besides q and lp are the suffi-

cient statistics from processor p. When the summing the statistics, care must

be taken to ensure that feature identities stay aligned, that is, ensuring that

feature i on processor p is the same as feature i on processor q. Unlike in par-

allel inference for the HDP (Asuncion et al., 2008), simply matching features

by their index, that is, just assuming that the ith feature on processor p was

also the ith feature on processor q, often leads to disastrous results. In fact, in

the parallel implementation, processors pass around a token, and only a pro-

cessor possessing a token may add new features. Finally, a dummy neighbour

containing the statistics of the prior is connected to the root processor. Also

summed are the counts mp
k =

∑

n∈Xp Z
p
nk, the popularity of feature k within

processor p. Figure 5.1 shows a cartoon of the message passing process.

Chapter 5: Parallel Inference 46

Gibbs Sampling In general, Znk can be Gibbs-sampled using Bayes rule

P (Znk|Z−nk, X) ∝ P (Znk|Z−nk)P (X|Z).

The probability P (Znk|Z−nk) depends on the total number of observations

and the number of observations mk for which feature k is active. The message

passing provides each processor with an accurate count for mk, from which it

may compute m−p
k = mk − mp

k using its current count mp
k. Each processor

updates its own mp
k as it samples Zp and assumes that m−p

k stays fixed (a good

approximation for popular features).

For conjugate models, we evaluate the likelihood P (X|Z) via the integral

P (X|Z) ∝

∫

A

P (Xn|Zn, A)P (A|Z−n, X−n)dA,

where the partial posterior P (A|Z−n, X−n) is given by

P (A|Z−n, X−n) ∝
P (A|Z,X)

P (Xn|Zn, A)
. (5.2)

Because the model is conjugate, the partial posterior in (5.2) can be efficiently

computed by subtracting observation n’s contribution to the sufficient statis-

tics.

For non-conjugate models, we can use a variational distribution Q(A) to

approximate P (A|X,Z) during message passing, where Q(A) is a projec-

tion of P onto an exponential family (similar to variational message pass-

ing (Winn and Bishop, 2005)). Thus, computing the partial posterior Q−p(A)

is identical to the conjugate case. Given the partial posterior Q−p(A), the pro-

cessor initialises an uncollapsed Gibbs sampler with a draw A from Q−p(A).

The samples of A from the uncollapsed sampler are used to compute the suf-

ficient statistics for the likelihood P (X|Z).

Hyperparameter Resampling The IBP concentration parameter α and

hyperparameters of the likelihood can also be sampled during inference. Re-

sampling α depends only on the total number of active features K and the

Chapter 5: Parallel Inference 47

number of observations N . Given a vague Γ(1, 1) prior, the posterior on α is

α ∼ Γ(1 +K, 1 +HN)

Thus, it can easily be resampled at the root and propagated to the other

processors.

In the linear-Gaussian model, the posteriors on the noise and feature vari-

ances (starting from inverse gamma priors) depend on various squared-errors,

which can also be computed in a distributed fashion:

σ−2
n ∼ Γ(1 +

1

2
ND, 1 +

1

2

∑

n

∑

d

(Xnd −
∑

k

ZnkAkd)
2)

σ−2
a ∼ Γ(1 +

1

2
KD, 1 +

1

2

∑

k

∑

d

A2
kd)

For more general, non-conjugate models, resampling the hyperparameters

requires two steps. In the first step, a hyperparameter value is proposed by the

root and propagated to the processors. The processors each compute the like-

lihood of the current and proposed hyperparameter values and propagate this

value back to root. The root evaluates a Metropolis step for the hyperparam-

eters and propagates the decision back to the leaves. The two-step approach

introduces a latency in the resampling but does not require any additional

message passing rounds.

Asynchronous Operation So far we have discussed message passing, Gibbs

sampling, and hyperparameter resampling as if they occur in separate phases.

In practice, these phases may occur asynchronously: between its Gibbs sweeps,

each processor updates its feature posterior based on the most current mes-

sages it has received and sends likelihood messages to its parent. Likewise,

the root continuously resamples hyperparameters and propagates the values

down through the tree. Asynchronous operation adds an additional layer of

approximation in that information about changes to feature posteriors in some

processors may be delayed in reaching other processors. As a result, rare fea-

tures may take longer to be added: a long delay may occur between when one

Chapter 5: Parallel Inference 48

processor adds a particular feature and a different processor decides to use it,

and in that delay the first processor may have deleted the feature. However,

asynchronous operation does allow faster processors to share information and

perform more inference on their data instead of waiting for slower processors.

Feature Sub-sampling to Scale to Larger Datasets Both likelihood

models discussed above require the product ZA to be computed to evaluate

each Gibbs update. Normally, this computation requires O(KD) elementary

multiplication and addition operations. The overall complexity can be reduced

because of the local nature of the Gibbs updates, but it still remains O(K) or

O(D), depending on whether the updates are for A or Z, respectively.

If the IBP prior is a reasonable model of the data, we expect the number

of features K in a dataset to be O(log(N)). As N grows large, therefore,

computations that depend on K are also potentially slow. For larger datasets,

we sample only a subset of the K features in each iteration. The features to be

sampled is chosen randomly at the start of each Gibbs iteration. As such, over

an infinite run of the sampler, each feature will be sampled infinitely often and

the sampling method remains exact.

While a promising idea, we found that feature sub-sampling was not useful

in our datasets: it largely had only the effect of slowing down the mixing rate

of the sampler. However, we believe that smarter choice of which features to

sample—we chose them randomly—may make this approach valuable for very

large datasets.

5.2 Comparison to Exact Metropolis

Because all Zp’s are sampled at once, the posteriors P p(A|X,Z) used by each

processor in section 5.1 are no longer exact.2 Below we show how Metropolis–

Hastings (MH) steps can make the parallel sampler exact, but the approach

introduces significant computational overheads both in computing the transi-

2A fully uncollapsed sampler could be parallelised exactly without MH proposals, but
collapsed samplers generally have better mixing properties.

Chapter 5: Parallel Inference 49

tion probabilities and in the message passing. Moreover, we observe empirically

that the approximate inference behaves very similarly to the MH sampler.

Exact Parallel Metropolis Sampler. Let Ẑp be the matrix output after

a set of Gibbs sweeps on Zp. We use all the Ẑp’s to propose a new Z ′ matrix.

The acceptance probability of the proposal is

min(1,
P (X|Z ′)P (Z ′)Q(Z ′ → Z)

P (X|Z)P (Z)Q(Z → Z ′)
), (5.3)

where the likelihood terms P (X|Z) and P (Z) are readily computed in a dis-

tributed fashion. For the transition distribution Q, we note that if we set the

random seed r, then the matrix Ẑp from the Gibbs sweeps in the processor

is some deterministic function of the input matrix Zp. The proposal Zp′ is a

(stochastic) noisy representation of Ẑp in which for example

P (Zp′

nk = 1) = .99 if Ẑp
nk = 1, (5.4)

P (Zp′

nk = 1) = .01 if Ẑp
nk = 0

where K should be at least the number of features in Ẑp. We set Zp′

nk = 0 for

k > K.

To compute the backward probability, we take Zp′ and apply the same

number of Gibbs sampling sweeps with the same random seed r. The resulting

Ẑp′ is a deterministic function of Zp′. The backward probability Q(Zp′ →

Zp) = Q(Ẑp′ → Zp), where Q(Ẑp′ → Zp) can be computed from (5.4). While

the transition probabilities can be computed in a distributed, asynchronous

fashion, all of the processors must synchronise when deciding whether to accept

the proposal. Figure 5.2 shows a cartoon of the proposal process.

Experimental Comparison To compare the exact Metropolis and approx-

imate inference techniques, we ran both approaches on 1000 block images of

Griffiths and Ghahramani (2005) on 5 simulated processors. Each test was

repeated 25 times. The approximate inference was run for 500 iterations in

which each processor completed 5 Gibbs sweeps per iteration. The exact in-

Chapter 5: Parallel Inference 50

ZpZp Zp’

Gibbs with
fixed seed

Random
noise

Figure 5.2: Cartoon of the transition distribution for the MH proposal. The
first step ‘sampling’ a deterministic Ẑp given an input Zp. Next, Ẑp is stochas-
tically ‘fuzzified’ to get the proposal Zp′.

ference, due to the MH rejections, required much longer to burn-in, so it was

run for 7500 iterations in which each processor computed one Gibbs sweep. To

keep the probability of an acceptance reasonable, we allowed each processor to

change the feature assignments Zn for only 1, 5, or 10 observations each per

sweep.

In table 5.1, we see that the approximate sampler runs about five times

faster than the exact samplers while achieving comparable (or better) predic-

tive likelihoods and reconstruction errors on held-out data. Feature subsam-

pling only sampled a few features per iteration, leading to faster running times

but slightly worse performance. Figures 5.3, 5.4, and 5.5 show empirical CDFs,

computed using the final half of the 25 trials, for the IBP concentration param-

eter α, the noise variance σ2
n, and the feature variance σ2

a. The approximate

sampler (black) produces similar CDFs to the various exact Metropolis sam-

plers (gray). Some of the distributions (especially that on the α parameter)

are different. On the exact samplers, we believe that poor mixing is the pri-

mary culprit. For the approximate sampler, there is a slight bias toward fewer

features due to the latency between when a processor creates a new feature

and when other processors have a chance to use it. However, the approximate

sampler is close enough to the exact one, so that we use it exclusively in the

remaining experiments.

Chapter 5: Parallel Inference 51

Table 5.1: Comparison of running times and performance between the MH
and approximate sampler. Values are averaged over 25 runs.
Method Time (s) Test L2

Error
Test Log
Likelihood

MH Accept
Proportion

MH, n = 1 717 0.0468 0.1098 0.1106
MH, n = 5 1075 0.0488 0.0893 0.0121
MH, n = 10 1486 0.0555 0.0196 0.0062

Approximate 179 0.0487 0.1292 -
Feature Sub-sampling 120 0.0436 0.1489 -

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for IBP Concentration

IBP Concentration Parameter

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

Figure 5.3: Empirical CDF of IBP α. The solid black line is the approximate
sampler; the three solid gray lines are the MH samplers with n equal to 1, 5,
and 10; lighter shades indicate larger n. The approximate sampler and the MH
samplers for smaller n have similar CDFs; the n = 10 MH sampler’s differing
CDF indicates it did not mix in 7500 iterations (reasonable since its acceptance
rate was 0.0062).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for Noise Variance

Noise Variance

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

Figure 5.4: Empirical CDF of σ2
x; same line types as figure 5.3

Chapter 5: Parallel Inference 52

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for Feature Variance

Feature Variance

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

Figure 5.5: Empirical CDF of σ2
a; same line types as figure 5.3

5.3 Sampler Properties3

We ran a series experiments on 10,000 block images of Griffiths and Ghahramani

(2005) to study the effects of various sampler configurations on running time

and performance, as well as the mixing properties of the sampler. We set

5000 data points as test data and the remainder as training data. Figure 5.6

shows the loglikelihood on the test data using 1, 7, 31 and 127 parallel proces-

sors simulated in software, using 1000 parallel (outer) iterations and 5 Gibbs

(inner) iterations. The parallel samplers are able to reach the same test like-

lihood levels as the serial algorithm, but with significant savings in running

time. The characteristic shape of the test likelihood, similar across all testing

regimes, indicates of the manner in which the features are learnt. Initially, a

large number of features are added, which provides improvements in the test

likelihood. Further jumps in likelihood occur once the features are refined and

excess features are pruned away.

The hairiness index, based on the CUSUM method for monitoring MCMC

convergence (Brooks and Roberts, 1998; Robert and Casella, 2004), was used

to evaluate the mixing properties of the chain. The method applies a cumu-

lative sum path plot of a single chain of sampler output—here, based on the

sampled values of the hyperparameters—to monitor convergence. The intu-

ition is that taking a cumulative sum of the statistics of a well-mixing chain

3These tests were run by Shakir Mohammed.

Chapter 5: Parallel Inference 53

−1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

T
es

t l
og

lik
el

ih
oo

d

Time (s)

Test Loglikelihood for inner = 5 and outer = 1000 iterations

20 40 60 80100

0

0.5

1

Processors = 1

H
ai

rin
es

s
In

de
x

20 40 60 80 100

0

0.5

1

Processors = 7

H
ai

rin
es

s
In

de
x

20 40 60 80100

0

0.5

1

Processors = 31

H
ai

rin
es

s
In

de
x

20 40 60 80100

0

0.5

1

Processors = 127

H
ai

rin
es

s
In

de
x

Proc = 1

Proc = 7

Proc = 31

Proc = 127

Figure 5.6: Change in likelihood for various numbers of processors over the
simulation time. The corresponding hairiness index plots are shown on the
left.

should stay near the mean. Large deviations from the mean suggest that the

chain is staying in one regime for a long time and then moving to another

regime for a long time. Specifically, the hairiness index on statistic s measures

how often (on average) the slope

Dt =
1

t

∑

τ

dτ

dτ = (sign(sτ − sτ−1) 6= sign(sτ−1 − sτ−2))

for t in some range 1 . . .T . A fast mixing chain is expected to have many

changes of slope, or high “hairiness.” By making certain independent-Bernoulli

variable assumptions on the probability of the slope changing, one can compute

confidence intervals for Dt. Figure 5.6 plots the hairiness index plots and the

corresponding 95% confidence bounds after thinning and burnin. The hairiness

index lies between the bounds for all the test scenarios, so we have no reason to

believe that there are any issues in convergence in either the single-processor

or the parallel inference cases.

To gain insight into the tradeoff in choosing between the number of Gibbs

(inner) sweeps and parallel (outer) iterations, we show the effective number

of samples (Robert and Casella, 2004) for various numbers of inner iterations,

after the chain has been thinned and burnt-in, in figure 5.7(a). As expected,

the effective number of samples decreases as the number of inner Gibbs sweeps

Chapter 5: Parallel Inference 54

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

E

ffe
ct

iv
e

S
am

pl
es

 p
er

 O
ut

er
 It

er
.

#Inner Iterations

Proc = 1

Proc = 7

Proc = 31

Proc = 127

1 7 31 127
1

2

3

4

5

Processors

T
ot

al
 T

im
e

(s
)

i = 50, o = 100

i = 20, o = 250

i = 10, o = 500

i = 5, o = 1000

i = 1, o = 5000

Figure 5.7: Effects of changing the number of inner iterations on: (a) The
effective sample size (b) Total running time (Gibbs and Message passing).

increases; changes propagate more slowly because less information is being

exchanged between the processors. However, the trade-off for a higher effective

number of samples is the need for processors to communicate more often. From

the plot, we see that between 10 and 20 Gibbs sweeps between message passing

lead to only modest drops in the effective number of samples.

Finally, we also evaluated the running time of the samplers. Each combi-

nation of Gibbs sweeps and outer iterations was set so that the total number of

sweeps was 5000. During each simulated outer iteration, we set the Gibbs time

to the maximum time required by any one of the processors to compute a set of

Gibbs sweeps. The message passing time was set to the total time required for

all messages (an overestimate; in section 5.4 we see that the message passing

times on a real asynchronous system are negligible). In figure 5.7(b), we see

that the running time decreased until we reached 31 processors; at this point

the overhead of message-passing began to dominate and additional processors

did not add speed. Employing a larger number of Gibbs sweeps between outer

iterations improves the running time, but at the cost of mixing rates as seen

in figure 5.7(a).

Chapter 5: Parallel Inference 55

Table 5.2: Log likelihoods on test data for real-world datasets for the serial,
synchronous and asynchronous inference types.

Dataset N D Description Serial
p = 1

Sync
p = 16

Async
p = 16

AR Faces
(Mart’inez and Kak,
2001)

2600 1598 faces with lighting, ac-
cessories (real-valued)

-4.74 -4.77 -4.84

Piano
(Poliner and Ellis,
2007)

57931 161 STDFT of a piano
recording (real-valued)

– -1.182 -1.228

Flickr (Kollar,
2008)

100000 1000 indicators of image
tags (binary-valued)

— -0.0584

5.4 Realworld Experiments4

We tested our parallel scheme on three real world datasets on a 16 node clus-

ter using Matlab Distributed Computing Engine. The first dataset was a set

of 2600 frontal face images with 1598 dimensions (Mart’inez and Kak, 2001).

While not extremely large, the high-dimensionality of the dataset makes it chal-

lenging for other inference approaches. The piano dataset (Poliner and Ellis,

2007) consisted of 57931 samples from a 161-dimensional short-time discrete

Fourier transform of a piano piece. Finally, the binary-valued Flickr dataset (Kollar,

2008) indicated whether each of 1000 popular keywords occurred in the tags of

100000 images from Flickr. Table 5.2 summarises the data and the predictive

log-likelihoods obtained on held-out data; we see the performance is compara-

ble across the various methods. Thus, the real question is what computational

benefits parallelisation can provide.

Figure 5.8 shows the time processors spent processing and waiting in the

synchronous implementation of the parallel inference algorithm. The Gibbs

sampling time per iteration decreased almost linearly as the number of proces-

sors increased; for example, in the music dataset, using 16 processors sped up

the inference by 14 times. The message passing time is negligible: 7% of the

4These tests were run by David Knowles.

Chapter 5: Parallel Inference 56

1 2 4 8 16
0

20

40

60

80

100

120

number of processors

m
ea

n
tim

e
pe

r
ou

te
r

ite
ra

tio
n/

s

sampling
waiting

(a) Timing analysis for faces dataset

1 2 4 8 16
0

200

400

600

800

1000

1200

number of processors

m
ea

n
tim

e
pe

r
ite

ra
tio

n/
s

sampling
waiting

(b) Timing analysis for music dataset

Figure 5.8: Bar charts comparing sampling time and waiting times for syn-
chronous parallel inference.

10
−2

10
0

10
2

10
4

−2.8

−2.6

−2.4

−2.2

−2

−1.8
x 10

7

time/s

lo
g

jo
in

t

serial P=1
synchronous P=16
asynchronous P=16

Figure 5.9: Timing comparison for different approaches

Gibbs sampling time for the faces data and 0.1% of the Gibbs sampling time

for the music data. However, waiting for synchronisation becomes significant

as the number of processors increases. In figure 5.9, we see that with 16 pro-

cessors, the asynchronous inference is 1.64 times faster than the synchronous

case, reducing the computational time from 11.8s per iteration to 7.2s.

5.5 Summary

We have described a parallel inference procedure that allows nonparametric

Bayesian models based on the Indian Buffet Process to be applied to large

Chapter 5: Parallel Inference 57

datasets. The IBP poses specific challenges to data parallelisation in that

the dimensionality of the representation changes during inference and that we

have an unbounded number of features. Our approach for data parallelisation

leverages a compact representation of the feature posterior that approximately

decorrelates the data stored on each processor and limits the bandwidth of

communications between processors. The approximate sampling empirically

behaves similarly to an exact sampler without the additional computational

overhead.

The ideas presented here are applicable to a more general problems in

unsupervised learning that could benefit from parallel inference. The algorithm

can be adapted to scale inference for popular bilinear models ranging from

PCA and NMF to ICA. Future directions for this work include heuristics for

maintaining mixing as the number of processors increases. For example, in

the asynchronous setting, the tree structure can be changed between sampling

iterations, moving slower processors towards the leaves of the tree. Changing

the structure will not affect the correctness of the inference but will allow faster

processors to exchange information more often, allowing for better mixing.

Chapter 6

Variational Methods1

The previous chapters have described how to scale Gibbs sampling to large

datasets. The advantage of sampling-based approaches to inference is that,

run for a long enough time, the samples will be a faithful representation of the

true posterior. However, the amount of time required for the Gibbs sampler to

fully explore the posterior—a more stringent criterion than mixing—typically

grows with the number of observations. In large datasets, it is likely that

the Gibbs sampler will only explore one mode of the posterior in a reasonable

amount of time.

The IBP is a particularly challenging for sampling-based approaches. Due

to its combinatorial nature, even if we limit ourselves to K features for N

objects, there exist O(2NK) possible feature assignments. In this combinatorial

space, sampling-based inference procedures for the IBP often suffer because

they assign specific values to the feature-assignment variables. Hard variable

assignments give samplers less flexibility to move between optima, and the

samplers may need large amounts of time to escape small optima and find

regions with high probability mass.

In this chapter, we derive a deterministic approach to inference. Instead

of approximating the true posterior over feature assignments p(Z|X) with a

series of samples, variational inference approximates p(Z|X) with some simpler

1Parts of this chapter were previously published as (Doshi-Velez et al., 2009). Please
refer to the technical report accompanying (Doshi-Velez et al., 2009) for more complete
derivations and implementation details.

58

Chapter 6: Variational Methods 59

distribution q(Z) in which inference is tractable. More formally, given some

family of “nice” distributions Q, we try to find q ∈ Q such that the KL

divergence D(q||p) is minimised.

Inference involves using optimisation techniques to find a good approxi-

mate posterior. Mean-field variational inference is a special case of variational

inference in which q(Z) is assumed to be fully factorable, that is, q(Z) =
∏

i Zi

for all variables Zi in Z. Our mean field approximation for the IBP maintains

a separate probability for each feature-observation assignment. Optimising

these probability values is also fraught with local optima, but using the soft

variable assignments—that is, using probabilities instead of sampling specific

assignments—gives the variational method a flexibility that samplers lack. In

the early stages of the inference, this flexibility can help the variational method

avoid small local optima.

6.1 Mean Field Approximation

As in previous chapters, we develop our equations for the linear-Gaussian like-

lihood model. However, the updates derived in this chapter may be easily ex-

tended to other exponential family models. Following on variational inference

for the Dirichlet Process (Blei and Jordan, 2004), we use a mean-field approx-

imation for p based on the stick-breaking construction to the IBP (Teh et al.,

2007). Recall that in the stick-breaking construction to the IBP, the feature

probabilities πk are given by

πk =

k
∏

m=1

vm,

where each vk is drawn independently from a Beta(α, 1). Let v = {v1 . . . vK},

the collection of these independent Beta variables. The set W = {v, A, Z}

contains all of the latent variable of interest. We use θ to denote the set of

hyperparameters {α, σ2
a, σ

2
n}.

Chapter 6: Variational Methods 60

We approximate the true posterior with a fully factorised distribution of

the form

q(W) =

K
∏

k=1

qτk
(vk)qφk

(Ak)

N
∏

n=1

qνk
(Znk).

where q is truncated to contain only K features. Note, however, even though

the approximating family q is truncated, we will still be finding the q that

minimises the distance to the true, infinite posterior p.2 Each of the factored

distributions has the form:

• qτk
(vk) = Beta(vk; τk1, τk2),

• qφk
(Ak·) = Normal(Ak·; φ̄k,Φk),

• qνnk
(znk) = Bernoulli(Znk; νnk).

Here, τk1 and τk2 are the variational parameters for the Beta distribution on

vk, φ̄k and Φk are the variational parameters for the mean and variance of the

feature values, and νnk is the variational parameter for Pr[Znk = 1].

6.2 Computing the Variational Lower Bound

Minimising the KL divergence is equivalent to maximising a lower bound on

the evidence p(X|θ). The evidence may be broken down as

log p(X|θ) = D(q((W)||p(W |X, θ))−

∫

q(W) log
q(W)

p(W , X|θ)

= D(q((W)||p(W |X, θ)) +H [q] + Eq[log p(W , X|θ)]

Since the evidence has a fixed value with respect to q, finding a distribution q

that minimises the KL divergence D(q((W)||p(W |X, θ)) is equivalent to find-

ing a distribution q to maximise the quantity L(q) ≡ H [q]+Eq[log p(W , X|θ)].

2In our paper (Doshi-Velez et al., 2009), we also derive a ‘finite approximation’ in which
we minimise the KL divergence to a finite approximation of the IBP in which each feature
probability πk has an independent Beta(α/K, 1) prior. In the limit of K → ∞, the finite
approximation becomes the true IBP. Using the finite approximation to the IBP adds another
layer of approximation to the inference but results in computationally simpler updates.
For details, please refer to the technical report. We also note that the derivations for the
finite model were simultaneously derived and published as beta process factor analysis by
Paisley and Carin (2009).

Chapter 6: Variational Methods 61

Moreover, since the KL divergence is always non-negative, the quantity L(q)

also serves as a lower bound on the evidence p(X|θ).

For our specific case, we first split the expression into parts the depend on

different latent variables:

ln p(X|θ) ≥
K
∑

k=1

Ev [ln p(vk|α)] +

K
∑

k=1

N
∑

n=1

Ev,Z [ln p(Znk|v)]

+
K
∑

k=1

EA

[

ln p(Ak·|σ
2
A)
]

+
N
∑

n=1

EZ,A

[

ln p(Xn·|Z,A, σ
2
n)
]

+H [q],

By computing the above expectations, we can keep track of the lower bound

on the likelihood. Except for the second term, all of the terms are exponential

family calculations (see Appendix B for derivations); they evaluate to

log p(X|θ) (6.1)

≥
K
∑

k=1

[logα+ (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

+

K
∑

k=1

N
∑

n=1

[

νnk

(

k
∑

m=1

ψ(τk2)− ψ(τk1 + τk2)

)

+ (1− νnk)Ev

[

log

(

1−
k
∏

m=1

vm

)]]

+
K
∑

k=1

[

−D

2
log(2πσ2

A)−
1

2σ2
A

(

tr(Φk) + φ̄kφ̄
T
k

)

]

+

N
∑

n=1

[−
D

2
log(2πσ2

n)−
1

2σ2
n

(Xn·X
T
n·−2

K
∑

k=1

νnkφ̄kX
T
n·+2

∑

k<k′

νnkνnk′φ̄kφ̄
T
k′ (6.2)

+

K
∑

k=1

νnk

(

tr(Φk)+φ̄kφ̄
T
k

)

)]

+
K
∑

k=1

[log

(

Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)

− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) (6.3)

+(τk1 + τk2 − 2)ψ(τk1 + τk2)]

+

K
∑

k=1

1

2
log
(

(2πe)D|Φk|
)

+

K
∑

k=1

N
∑

n=1

[−νnk log νnk − (1− νnk) log(1− νnk)]

where ψ(·) is the digamma function, and we have left Ev

[

log
(

1−
∏k

m=1 vm

)]

,

a byproduct of the expectation of Ev,Z [log p(Znk|v)], unevaluated. This expec-

Chapter 6: Variational Methods 62

tation has no closed-form solution, so we instead lower bound it (and therefore

lower bound the evidence).

The key difficulty lies in computing the expectations for the second ex-

pectation: Ev,Z [ln p(Znk|v)]. Following derivations for variational inference

in Dirichlet processes (Blei and Jordan, 2004), we break the expectation into

several parts:

Ev,Z [ln p(Znk|v)] = Ev,Z

[

ln p(Znk = 1|v)I(Znk=1)p(Znk = 0|v)I(Znk=0)
]

= EZ [I(Znk = 1)] Ev

[

ln
k
∏

m=1

vm

]

+EZ [I(Znk = 0)] Ev

[

ln(1−
k
∏

m=1

vm)

]

= νnk

(

k
∑

m=1

Ψ(τk2)−Ψ(τk1 + τk2)

)

+ (1− νnk)Ev

[

ln(1−
k
∏

m=1

vm)

]

where I(·) is an indicator function that is 1 if its argument is true and 0 if

its argument is false. The first line follows from the definition of v, while

the second line follows from the properties of Bernoulli and Beta distribu-

tions. However, we are still left with the problem of evaluating the expecta-

tion Ev[ln(1−
∏k

m=1 vm)], or alternatively, to compute a lower bound for the

expression.3 We describe two approaches for computing this bound.

6.2.1 Taylor Series Bound

A Taylor series approximation can provide an arbitrarily close approximation

to Ev[ln(1−
∏k

m=1 vm)]. The Taylor series for ln(1− x) is given by

ln(1− x) = −
∞
∑

n

xn

n
,

and it converges for x ∈ (−1, 1). In our case, x corresponds to the product of

probabilities
∏k

m=1 vm, so the sum will converge unless all of the vm’s equal

3Jensen’s inequality cannot be used to lower bound this expectation; the concavity of the
log goes in the wrong direction.

Chapter 6: Variational Methods 63

one. Since the distribution over the vm are continuous densities, the series will

almost surely converge.

Applying the Taylor expansion to our formula, we obtain

Ev[ln(1−
k
∏

m=1

vm)] = Ev[−
∞
∑

n=1

1

n

k
∏

m=1

vn
m]

= −
∞
∑

n=1

1

n

k
∏

m=1

Ev[vn
m]

= −
∞
∑

n=1

1

n

k
∏

m=1

Γ(τm1 + n)Γ(τm2 + τm1)

Γ(τm1)Γ(τm2 + τm1 + n)

= −
∞
∑

n=1

1

n

k
∏

m=1

(τm1) . . . (τm1 + n− 1)

(τm2 + τm1) . . . (τm2 + τm1 + n− 1)

where we use the fact that the moments of a Beta distribution are given by

E[xn] =
Γ(α + n)Γ(α + β)

Γ(α)Γ(α+ β + n)
.

As all of the terms in the Taylor series are negative, simply truncating the

series will not produce a lower bound. However, note that for integer values

of τm2, most terms in the numerator and denominator will cancel for n > τm2.

Let T be a value greater than ⌊maxm∈1...k(τm2)⌋; then we can write a lower

Chapter 6: Variational Methods 64

bound for the series in the following form:

Ev[ln(1−
k
∏

m=1

vm)]

≥ −
T
∑

n=1

1

n

k
∏

m=1

(τm1) . . . (τm1 + n− 1)

(τm1 + τm2) . . . (τm1 + τm2 + n− 1)

−
∞
∑

n=T+1

1

n

k
∏

m=1

(τm1) . . . (τm1 + n− 1)

(τm1 + ⌊τm2⌋) . . . (τm1 + ⌊τm2⌋+ n− 1)

= −
T
∑

n=1

1

n

k
∏

m=1

(τm1) . . . (τm1 + n− 1)

(τm1 + τm2) . . . (τm1 + τm2 + n− 1)

−
∞
∑

n=T+1

1

n

k
∏

m=1

(τm1) . . . (τm1 + ⌊τm2⌋ − 1)

(τm1 + n) . . . (τm1 + ⌊τm2⌋+ n− 1)

= −
T
∑

n=1

1

n

k
∏

m=1

(τm1) . . . (τm1 + n− 1)

(τm1 + τm2) . . . (τm1 + τm2 + n− 1)

−
k
∏

m=1

((τm1) . . . (τm1 + ⌊τm2⌋ − 1))

∞
∑

n=T+1

1

n

k
∏

m=1

1

(τm1 + n) . . . (τm1 + ⌊τm2⌋+ n− 1)
,

where we have factored the final term to make it clear that the second term

has n only in the denominator. Now, if T is relatively small, the first sum

should not be too expensive to compute. We proceed to find a lower bound

for the second term, focusing on the final summation. A fairly trivial lower

bound is:

∞
∑

n=T+1

1

n

k
∏

m=1

1

(τm1 + n) . . . (τm1 + ⌊τm2⌋+ n− 1)

≤
∞
∑

n=1

1

n

k
∏

m=1

1

(τm1 + n) . . . (τm1 + ⌊τm2⌋+ n− 1)

≤
∞
∑

n=1

1

n

k
∏

m=1

1

n⌊τm2⌋

= ζ(1 +

k
∑

m=1

⌊τm2⌋),

where ζ(·) is the Riemann zeta function.

Chapter 6: Variational Methods 65

However, the bound above is a gross underestimate. We can do better by

∞
∑

n=T+1

1

n

k
∏

m=1

1

(τm1 + n) . . . (τm1 + ⌊τm2⌋+ n− 1)
≤ ζH(1 +

k
∑

m=1

⌊τm2⌋, T + 1),

that is, summing from n = T + 1, not n = 1, where ζH(·, ·) is the generalized

or Hurwitz zeta function. The quality of the bound depends on the choice

of T . For larger T , we trade off having to compute more terms in the first

summation, but the error introduced by the fact that the denominator of the

second term is (τm1 + n), not n diminishes with large T .

Since all of the terms in the series are negative, we know that the Taylor

series reaches the true value from above, and that the value of the zeta function

is a bound on the error. Thus, we can place the true expectation in an interval

Ev[ln(1−
k
∏

m=1

vm)] = −
T
∑

n=1

1

n

k
∏

m=1

(τm1) . . . (τm1 + n− 1)

(τm1 + τm2) . . . (τm1 + τm2 + n− 1)
+ ǫ,

where

ǫ ∈ −
k
∏

m=1

((τm1) . . . (τm1 + ⌊τm2⌋ − 1)) · [0, ζH(1 +

k
∑

m=1

⌊τm2⌋, T + 1)].

6.2.2 Multinomial Lower Bound

Although the Taylor series approximation can be made arbitrarily accurate,

computing the terms in the series can be computationally expensive. Here

we present an alternative approach to bounding Ev[ln(1 −
∏k

m=1 vm)] that is

computationally efficient and has straightforward parameter updates.4 Empir-

ically we find that the multinomial bound is usually only 2-10% looser than a

50-term Taylor series expansion—and about 30 times faster to compute.

The multinomial approximation to bound Ev

[

log
(

1−
∏k

m=1 vm

)]

first in-

troduces an auxiliary multinomial distribution qk(y) and applies Jensen’s in-

4This approach was suggested by Yee Whye Teh.

Chapter 6: Variational Methods 66

equality:

Ev

[

log

(

1−
k
∏

m=1

vm

)]

= Ev

[

log

(

k
∑

y=1

(1− vy)

y−1
∏

m=1

vm

)]

= Ev

[

log

(

k
∑

y=1

qk(y)
(1− vy)

∏y−1
m=1 vm

qk(y)

)]

≥ EyEv

[

log(1− vy) +

y−1
∑

m=1

log vm

]

+H [qk]

= Ey

[

ψ (τy2) +

(

y−1
∑

m=1

ψ(τm1)

)

−

(

y
∑

m=1

ψ(τm1 + τm2)

)]

+H [qk].

If we write the terms in the multinomial qk(y) as (qk1, qk2, . . . , qkk), we get

Ev

[

log

(

1−
k
∏

m=1

vm

)]

≥

(

k
∑

m=1

qkmψ(τm2)

)

+

(

k−1
∑

m=1

(

k
∑

n=m+1

qkn

)

ψ(τm1)

)

(6.4)

−

(

k
∑

m=1

(

k
∑

n=m

qkn

)

ψ(τm1 + τm2)

)

−
k
∑

m=1

qkm log qkm.

Equation 6.4 holds for any qk1, . . . , qkk for all 1 ≤ k ≤ K.

Next we optimise qk(y) to maximise the lower bound. Taking derivatives

with respect to each qki,

0 = ψ(τi2) +

i−1
∑

m=1

ψ(τm1)−
i
∑

m=1

ψ(τm1 + τm2)− 1− log(qki)− λ

where λ is the Lagrangian variable to ensure that q is a distribution. Solving

for qki, we find

qki ∝ exp

(

ψ(τi2) +

i−1
∑

m=1

ψ(τm1)−
i
∑

m=1

ψ(τm1 + τm2)

)

(6.5)

where the proportionality ensures that qk a valid distribution. If we plug this

multinomial lower bound back into Ev,Z [log p(znk|v)], we have a lower bound

on log p(X|θ). We then optimise the remaining parameters to maximise the

lower bound.

Chapter 6: Variational Methods 67

The auxiliary distribution qk is largely a computational tool, but it does

have the following intuition. Since πk =
∏k

i=1 vi; we can imagine the event

znk = 1 is equivalent to the event that a series of variables ui ∼ Bernoulli(vi)

all flip to one. If any of the ui’s equal zero, then the feature is off. The

multinomial distribution qk(y) can be thought of as a distribution over the

event that the yth variable uy is the first ui to equal 0.

6.3 Parameter Updates

Recall that our goal is to find an approximating distribution q ∈ Q with

minimum KL divergence D(q||p) to the true distribution p. We rephrased this

optimisation problem in terms of certain expectations and entropies:

arg min
τ,φ,ν

D(q||p) = arg max
τ,φ,ν

Eq[log(p(X,W |θ)] +H [q]. (6.6)

In general, this optimisation can be quite difficult. However, when the con-

ditional distribution and variational distribution are both in the exponential

family, each step in the coordinate ascent has a closed form solution (Beal,

2003; Wainwright and Jordan, 2008). If we are updating the variational pa-

rameters ξi that correspond to Wi, then the optimal ξi are the solution to

log qξi
(Wi) = EW−i

[log p(W , X|θ)] + c (6.7)

where the expectation is taken over all W except Wi according to the varia-

tional distribution.

Using the fixed-point equation 6.7, the updates for most of the variational

parameters are straight-forward. These are described in appendix B. The only

updates that are difficult are the updates for the τ parameters that describe the

variational distribution on each of the stick-breaking variables v. The updates

for these parameters depend on whether we use the Taylor or multinomial

approximation in the lower bound.5

5We also tried fitting a Beta distribution to vk based on its moments, but this approxi-
mation produced poor results.

Chapter 6: Variational Methods 68

6.3.1 Taylor Update

The Taylor approximation does not lend itself to closed-form updates; instead

we optimise the τk1 and τk2 parameters directly with respect to the variational

lower bound. To do so, we first note only some terms in equation 6.1 depend

on the τ parameters:

f =

K
∑

k=1

[lnα + (α− 1) (Ψ(τk1)−Ψ(τk1 + τk2))]

+

K
∑

k=1

N
∑

n=1

[νnk

(

k
∑

m=1

Ψ(τm1)−Ψ(τm1 + τm2)

)

−(1− νnk)
∞
∑

r=1

1

r

k
∏

m=1

(τm1) . . . (τm1 + r − 1)

(τm1 + τm2) . . . (τm1 + τm2 + r − 1)
]

+

K
∑

k=1

[ln

(

Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)

− (τk1 − 1)Ψ(τk1)

−(τk2 − 1)Ψ(τk2) + (τk1 + τk2 − 2)Ψ(τk1 + τk2)].

The derivatives with respect to τk1 are given by

∂f

∂τk1
= (α− 1) (Ψ′(τk1)−Ψ′(τk1 + τk2)) +

(

K
∑

m=k

N
∑

n=1

νnm

)

(Ψ′(τk1)−Ψ′(τk1 + τk2))

−
K
∑

m=k

(

N −
N
∑

n=1

νnm

)

∞
∑

r=1

1

r

(

m
∏

i=1

(τi1) . . . (τi1 + r − 1)

(τi1 + τi2) . . . (τi1 + τi2 + r − 1)

)

·
r
∑

j=1

τk2

(τk1 + j − 1)(τk1 + τk2 + j − 1)

−(τk1 − 1)Ψ′(τk1) + (τk1 + τk2 − 2)Ψ′(τk1 + τk2),

where the last term follows if we simplify the initial derivative of the entropy

term

Γ′(τk1)

Γ(τk1)
−

Γ′(τk1 + τk2)

Γ(τk1 + τk2)
−Ψ(τk1)−(τk1−1)Ψ′(τk1)+Ψ(τk1+τk2)+(τk1+τk2−2)Ψ′(τk1+τk2),

Chapter 6: Variational Methods 69

by noting that Γ′(x) = Γ(x)Ψ(x). Similarly, the derivatives with respect to τk2

are given by

∂f

∂τk2

= (α− 1) (−Ψ′(τk1 + τk2))−

(

K
∑

m=k

N
∑

n=1

νnm

)

Ψ′(τk1 + τk2)

−
K
∑

m=k

(

N −
N
∑

n=1

νnm

)

∞
∑

r=1

1

r

(

m
∏

i=1

(τi1) . . . (τi1 + r − 1)

(τi1 + τi2) . . . (τi1 + τi2 + r − 1)

)

·
r
∑

j=1

−1

τk1 + τk2 + j − 1

−(τk2 − 1)Ψ′(τk2) + (τk1 + τk2 − 2)Ψ′(τk1 + τk2).

While messy, they can be computed for particular parameter settings (where

we choose some arbitrary truncation level of the infinite sum). Several compu-

tations can be reused across k, and others can be computed iteratively across

r. We can plug these derivatives into an optimization routine to get updates

τk1 and τk2.

6.3.2 Multinomial Update

The multinomial lower bound allows for far more efficient updates. The terms

in the likelihood that contain τk are

lτk
=

[

α +
K
∑

m=k

N
∑

n=1

νnm +
K
∑

m=k+1

(

N −
N
∑

n=1

νnm

)(

m
∑

i=k+1

qmi

)

− τk1

]

(Ψ(τk1)−Ψ(τk1 + τk2))

+

[

1 +

K
∑

m=k

(

N −
N
∑

n=1

νnm

)

qmk − τk2

]

(Ψ(τk2)−Ψ(τk1 + τk2)) + ln

(

Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)

.

Optimising lτk
with respect to τk (holding qk fixed) is a standard exponential

family variational update. The optimal values of τk1 and τk2 are

τk1 = α +

K
∑

m=k

N
∑

n=1

νnm +

K
∑

m=k+1

(

N −
N
∑

n=1

νnm

)(

m
∑

i=k+1

qmi

)

τk2 = 1 +
K
∑

m=k

(

N −
N
∑

n=1

νnm

)

qmk.

Chapter 6: Variational Methods 70

6.4 Truncation Bounds

The previous sections described how to perform variational inference in the

IBP. One of the key elements in our approach was truncating the variational

distribution to K features. In this section, we explore how the choice of a

truncation level K affects the quality of our approximation. Specifically, given

a number of observations N and a concentration parameter α, we consider the

difference between the IBP prior and the prior truncated at levelK. Intuitively,

the difference amounts to how often we expect to see features beyond K in

a dataset of size N—if it is unlikely that the dataset contains more than K

features, then truncating the prior should have little effect.

Our development parallels a bound for the Dirichlet Process by Ishwaran and James

(2001) and presents the first such truncation bound for the IBP. Let us de-

note the marginal distribution of observation X by m∞(X) when we integrate

W with respect to the true IBP stick-breaking prior p(W |θ). Let mK(X)

be the marginal distribution when W are integrated out with respect to the

truncated stick-breaking prior with truncation level K, pK(W |θ). For consis-

tency, we continue to use the notation from the linear-Gaussian model, but

the derivation that follows is independent of the likelihood model.

We can show that difference between the IBP prior and the prior truncated

at level K is at most

1

4

∫

|mK(X)−m∞(X)|dX ≤ Pr(any zik = 1, k > K) (6.8)

= 1− Pr (all z1k = 0, i ∈ {1, . . . , N}, k > K)

= 1− E

([

∞
∏

i=K+1

(1− πi)

]n)

Our goal is therefore to either find an upper bound of

1− E

([

∞
∏

i=K+1

(1− πi)

]n)

or to approximate it so that we can determine the rate of convergence. We

describe two approaches to this bound below.

Chapter 6: Variational Methods 71

6.4.1 Log Bound

We need to evaluate the following using the expectation of the rth moment of

independent Beta(α, 1) random variables:

∞
∑

i=K

E log

(

1−
i
∏

j=1

vj

)

= −
∞
∑

i=K

∞
∑

r=1

1

r

i
∏

j=1

α

α + r

= −
∞
∑

r=1

1

r

∞
∑

i=K

(

α

α + r

)i

= −
∞
∑

r=1

1

r2

αK

(α + r)K−1
.

If we abandon having a strict bound and say that αK

r2(α+r)K−1 ≈
αK

(α+r)K+1 ,

then we can substitute in the Zeta function and get the following expression:

1− E

([

∞
∏

i=K

(1− πi)

]n)

≤ 1− exp

(

−n
∞
∑

r=1

1

r2

αK

(α + r)K−1

)

≈ 1− exp
(

−nαKζ(K + 1, α)
)

.

In practice, we find this heuristic bound to be very close to the true value.

More formally6, we can write

∞
∑

r=1

1

r2

αK

(α + r)K−1
≤

αK

(α+ 1)K−1
+

∫ ∞

1

1

r2

αK

(α+ r)K−1

=
αK

(α+ 1)K−1
+

∫ 1

0

αK

(α + 1
t
)K−1

=
αK

(α+ 1)K−1
+
αK

K
F (K − 1, K;K + 1;−a)

where F (a, b; c; x) is Gauss’s hypergeometric function. The first line applies

the integral inequality, where we have included the first term to ensure that

we have an upper bound. Next, we substitute t = 1
r

into the integral and

evaluate. Next, we apply the reflection law of hypergeometric functions. The

6We thank Professor John Lewis from MIT for his insights for manipulating hypergeo-
metric functions regarding this approach.

Chapter 6: Variational Methods 72

reflection law states

1

(1− z)a
F (a, b; c;

−z

1− z
) = F (a, c− b; c; z)

and allows us to simplify the expression to the following hypergeometric func-

tion, which we expand out into its sum.

∞
∑

r=1

1

r2

αK

(α + r)K−1
≤

αK

(α + 1)K−1
+

αK

K(α+ 1)K
F (2, K;K + 1;

a

a + 1
)

=
αK

(α + 1)K−1
+

αK

(α+ 1)K

∞
∑

j=0

(

α

α + 1

)j
1 + j

K + j

≤
αK

(α + 1)K−1
+

αK

(α+ 1)K

∞
∑

j=0

(

α

α + 1

)j

= 2(α+ 1)

(

α

α+ 1

)K

which we can plug into our original expression to get

1− exp

(

−N
∞
∑

r=1

1

r2

αK

(α + r)K−1

)

≤ 1− exp

(

−2N(α + 1)

(

α

α + 1

)K
)

6.4.2 Levy-Kintchine Approach

A very similar bound can be derived using the Levy-Kintchine formula.7 We

begin the derivation of the formal truncation bound by noting that beta-

Bernoulli process construction for the IBP (Thibaux and Jordan, 2007) im-

plies that the sequence of π1, π2, . . . may be modelled as a Poisson process on

the unit interval [0, 1] with rate µ(x) = αx−1dx. It follows that the sequence

of πK+1, πK+2, . . . may be modelled as a Poisson process on the interval [0, πK]

with the same rate. The Levy-Khintchine formula (Applebaum, 2004) states

that the moment generating function of a Poisson process X with rate µ can

be written as

E[exp(tf(X))] = exp

(
∫

(exp(tf(y))− 1)µ(y)dy

)

.

7Thanks to Yee Whye Teh for deriving this bound.

Chapter 6: Variational Methods 73

where we use f(X) to denote
∑

x∈X f(x).

Returning to Equation 6.8, if we rewrite the final expectation as

E

[(

∞
∏

i=K+1

(1− πi)

)]

= E

[

exp

(

∞
∑

i=K+1

log(1− πi)

)]

,

then we can apply the Levy-Khintchine formula to get

E

[

exp

(

∞
∑

i=K+1

log(1− πi)

)]

= EπK

[

exp

(
∫ πK

0

(exp(log(1− x))− 1)µ(x)dx

)]

= EπK
[exp(−απK)].

Finally, we apply Jensen’s inequality, using the fact that πK is the product of

independent Beta(α, 1) variables:

EπK
[exp (−απK)] ≥ exp (Eπk

[−απK])

= exp

(

−α

(

α

1 + α

)K
)

.

Substituting this expression back into Equation (6.8) gives us the bound

1

4

∫

|mK(X)−m∞(X)|dX ≤ 1− exp

(

−Nα

(

α

1 + α

)K
)

. (6.9)

Similar to truncation bound for the Dirichlet Process, the expected error in-

creases as N and α, the factors that increase the expected number of features,

increase. However, the bound decreases exponentially quickly as truncation

level K is increased.

Figure 6.1 shows our truncation bound and the true L1 distance based on

1000 Monte Carlo simulations of an IBP matrix with N = 30 observations

and α = 5. As expected, the bound decreases exponentially fast with the

truncation level K. The bound is loose, however; in practice, we find that the

heuristic bound is nearly equal to the true bound.

Chapter 6: Variational Methods 74

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

B
ou

nd
 o

n
L 1 D

is
ta

nc
e

True Distance
Truncation Bound

Figure 6.1: Truncation bound and true L1 distance.

6.5 Experiments and Discussion

We compared our variational approaches with both Gibbs sampling (Griffiths and Ghahramani,

2005) and particle filtering (Wood and Griffiths, 2007). As variational algo-

rithms are only guaranteed to converge to a local optima, we applied standard

optimisation tricks to avoid small minima. Each run was given a number of

random restarts and the hyperparameters for the noise and feature variance

were tempered to smooth the posterior. We also experimented with several

other techniques such as gradually introducing data and merging correlated

features. The latter techniques proved less useful as the size and dimensional-

ity of the datasets increased; they were not included in the final experiments.

The sampling methods we compared against were the collapsed Gibbs sam-

pler of Griffiths and Ghahramani (2005) and a partially-uncollapsed alterna-

tive in which instantiated features are explicitly represented and new features

are integrated out. In contrast to the variational methods, the number of fea-

tures present in the IBP matrix will adaptively grow or shrink in the samplers.

To provide a fair comparison with the variational approaches, we also tested

finite variants of the collapsed and uncollapsed Gibbs samplers. We also tested

against the particle filter of Wood and Griffiths (2007). All sampling meth-

ods were tempered and given an equal number of restarts as the variational

methods.

Chapter 6: Variational Methods 75

Both the variational and Gibbs sampling algorithms were heavily optimised

for efficient matrix computation so we could evaluate the algorithms both on

their running times and the quality of the inference. For the particle filter, we

used the implementation provided by Wood and Griffiths (2007). To measure

the quality of these methods, we held out one third of the observations on the

last half of the dataset. Once the inference was complete, we computed the

predictive likelihood of the held out data (averaged over restarts).

6.5.1 Synthetic Data

The synthetic datasets consisted of Z and Amatrices randomly generated from

the truncated stick-breaking prior. Figure 6.2 shows the evolution of the test-

likelihood over a thirty minute interval for a dataset with 500 observations

of 500 dimensions and with 20 latent features. The error bars indicate the

variation over the 5 random starts. 8 The finite uncollapsed Gibbs sampler

(dotted green) rises quickly but consistently gets caught in a lower optima

and has higher variance. Examining the individual runs, we found the higher

variance was not due to the Gibbs sampler mixing but due to each run getting

stuck in widely varying local optima. The variational methods were slightly

slower per iteration but soon found regions of higher predictive likelihoods.

The remaining samplers were much slower per iteration, often failing to mix

within the allotted interval.

Figure 6.3 shows a similar plot for a smaller dataset with N = 100. Here,

the variational approaches do less well at finding regions of large probabil-

ity mass than the Gibbs samplers. We believe this is because in a smaller

dataset, the Gibbs samplers mix quickly and explore the posterior for regions

of high probability mass. However, the variational approach is still limited by

performing gradient ascent to one optima.

Figures 6.4 and 6.5 show results from a systematic series of tests in which we

tested all combinations of observation counts N = {5, 10, 50, 100, 500, 1000},

8The particle filter must be run to completion before making prediction, so we cannot
test its predictive performance over time. We instead plot the test likelihood only at the
end of the inference for particle filters with 10 and 50 particles (the two magenta points).

Chapter 6: Variational Methods 76

0 5 10 15 20 25 30

−10

−9

−8

−7

−6

−5

−4

x 10
4

Time (minutes)

P
re

di
ct

iv
e

lo
g

lik
el

ih
oo

d

Finite Variational

Infinite Variational

Finite Uncollapsed Gibbs

Infinite Uncollapsed Gibbs

Finite Collapsed Gibbs

Infinite Collapsed Gibbs

Particle Filter

Figure 6.2: Evolution of test log-likelihoods over a thirty-minute interval for
N = 500, D = 500, and K = 20. The finite uncollapsed Gibbs sampler has the
fastest rise but gets caught in a lower optima than the variational approach.

0 5 10 15 20 25
−7

−6

−5

−4

−3

−2

−1

x 10
4

Time (minutes)

P
re

di
ct

iv
e

lo
g

lik
el

ih
oo

d

Figure 6.3: Evolution of test log-likelihoods over a thirty-minute interval for
N = 100, D = 500, and K = 25. For smaller N , the Gibbs sampler does
better at finding an optima of high probability mass.

Chapter 6: Variational Methods 77

dimensionalities D = {5, 10, 50, 100, 500, 1000}, and truncation levels K =

{5, 10, 15, 20, 25}. Each of the samplers was run for 1000 iterations on three

chains and the particle filter was run with 500 particles. For the variational

methods, we used a stopping criterion that halted the optimisation when the

variational lower bound between the current and previous iterations changed

by a multiplicative factor of less than 10−4 and the tempering process had

completed.

Figure 6.4 shows how the computation time scales with the truncation

level. The variational approaches and the uncollapsed Gibbs are consistently

an order of magnitude faster than other algorithms. Figure 6.5 shows the

interplay between dimensionality, computation time, and test log-likelihood

for datasets of size N = 5 and N = 1000 respectively. For N = 1000, the

collapsed Gibbs samplers and particle filter did not finish, so they do not

appear on the plot. We chose K = 20 as a representative truncation level.

Each line represents increasing dimensionality for a particular method (the

large dot indicates D = 5, the subsequent dots correspond to D = 10, 50,

etc.). The nearly vertical lines of the variational methods show that they

are quite robust to increasing dimension. Moreover, as dimensionality and

dataset size increase, the variational methods become increasingly faster than

the samplers. By comparing the lines across the likelihood dimension, we see

that for the very small dataset, the variational method often has a lower test

log-likelihood than the samplers. In this regime, the samplers are fast to mix

and explore the posterior. However, the test log-likelihoods are comparable

for the N = 1000 dataset.

6.5.2 Real Data

We applied our variational method to two real-world datasets to test how it

would fare with complex, noisy data not drawn from the IBP prior9. The Yale

Faces (Georghiades et al., 2001) dataset consisted of 721 32x32 pixel frontal-

face images of 14 people with varying expressions and lighting conditions. We

set σa and σn based on the variance of the data. The speech dataset consisted of

9Note that our objective was not to demonstrate low-rank approximations.

Chapter 6: Variational Methods 78

Figure 6.4: Time versus truncation (K). The variational approaches are gen-
erally orders of magnitude faster than the samplers (note log scale on the time
axis).

Figure 6.5: Time versus log-likelihood plot for K = 20. The larger dots
correspond to D = 5 the smaller dots to D = 10, 50, 100, 500, 1000.

Chapter 6: Variational Methods 79

245 observations sampled from a 10-microphone audio recording of 5 different

speakers. We applied the ICA version of our inference algorithm, where the

mixing matrix S modulated the effect of each speaker on the audio signals.

The feature and noise variances were taken from an initial run of the Gibbs

sampler where σn and σa were also sampled.

Tables 6.1 and 6.2 show the results for each of the datasets. All Gibbs

samplers were uncollapsed and run for 200 iterations.10 In the higher dimen-

sional Yale dataset, the variational methods outperformed the uncollapsed

Gibbs sampler. When started from a random position, the uncollapsed Gibbs

sampler quickly became stuck in a local optima. The variational method was

able to find better local optima because it was initially very uncertain about

which features were present in which data points; expressing this uncertainty

explicitly through the variational parameters (instead of through a sequence

of samples) allowed it the flexibility to improve upon its bad initial starting

point.

Table 6.1: Running times in seconds and test log-likelihoods for the Yale Faces
dataset.

Algorithm K Time Test Log-Likelihood (×106)

5 464.19 -2.250
Finite Gibbs 10 940.47 -2.246

25 2973.7 -2.247
5 163.24 -1.066

Finite Variational 10 767.1 -0.908
25 10072 -0.746
5 176.62 -1.051

Infinite Variational 10 632.53 -0.914
25 19061 -0.750

The story for the speech dataset, however, is quite different. Here, the

variational methods were not only slower than the samplers, but they also

achieved lower test-likelihoods. The evaluation on the synthetic datasets points

10On the Yale dataset, we did not test the collapsed samplers because the finite collapsed
Gibbs sampler required one hour per iteration with K = 5 and the infinite collapsed Gibbs
sampler generated one sample every 50 hours. In the iICA model, the collapsed Gibbs
sampler could not be run because the features A cannot be marginalised.

Chapter 6: Variational Methods 80

to a potential reason for the difference: the speech dataset is much simpler than

the Yale dataset, consisting of 10 dimensions (vs. 1032 in the Yale dataset).

In this regime, the Gibbs samplers perform well and the approximations made

by the variational method become apparent. As the dimensionality grows, the

samplers have more trouble mixing, but the variational methods are still able

to find regions of high probability mass.

Table 6.2: Running times in seconds and test log-likelihoods for the speech
dataset.

Algorithm K Time Test Log-Likelihood

2 56 -0.7444
Finite Gibbs 5 120 -0.4220

9 201 -0.4205
Infinite Gibbs na 186 -0.4257

2 2477 -0.8455
Finite Variational 5 8129 -0.5082

9 8539 -0.4551
2 2702 -0.8810

Infinite Variational 5 6065 -0.5000
9 8491 -0.5486

6.6 Summary

We observed empirically that the variances reported by our variational method

were quite small, suggesting that the method had found one, highly-peaked

mode. While one might argue that a sampler would provide a better repre-

sentation of the posterior, we show that in these situations samplers rarely

explore multiple modes, and therefore are effectively performing stochastic

gradient ascent to a MAP estimate.11 The variational method achieves these

results faster by using deterministic optimisation techniques.

The soft assignments in the variational method are another key advantage

that sets it apart from sampling-based methods. The combinatorial nature

11Moreover, in many cases, the machine learning community only reports predictive like-
lihoods or reconstruction errors with respect to a known model for performance. If these are
truly the measures of interest, then sampling is clearly the wrong approach, as it attempts
to explore the full posterior, not find the most likely mode.

Chapter 6: Variational Methods 81

of the Indian Buffet Process poses specific challenges for sampling-based in-

ference procedures. Whereas sampling methods work in the discrete space of

binary matrices, the variational method allows for soft assignments of features

because it approaches the inference problem as a continuous optimisation. Es-

pecially for high dimensional problems, the soft assignments seem to allow the

variational methods to explore the posterior space faster than sampling-based

approaches.

Chapter 7

Correlated Non-Parametric

Latent Feature Models1

In previous chapters, we discussed several methods for scaling inference in

the IBP (and similar conjugate models). Perhaps the simplest nonparametric

latent feature model, the IBP is an attractive starting point for nonparametric

modelling of multiple-membership data. In many real situations, however,

observations may not be exchangeable or features may not be independent. For

example, suppose observations correspond to image pixels, and latent features

correspond to objects in the scene, such as a pen or lamp. Sets of objects—

that is, certain latent features—may tend to occur together: an image with a

desk is likely to contain a pen; an image with a knife is likely to contain a fork.

The IBP is unable to discover or leverage such correlations. In this chapter,

we lay out a general framework for nonparametric correlated feature models.2

We first motivate why learning correlations between features may be useful—

after all, one could always group co-occurring features into a single feature and

thus avoid the need to model correlations between features. However, ignor-

ing the underlying structure could result in less robust inference if the set of

features does not always occur as a set: for example, if a pen is missing from

a particular desk. Moreover, such an approach would have to learn separate

1Parts of this chapter was previously published in (Doshi-Velez and Ghahramni, 2009).
2For a review of work on other types of extensions to the IBP (such as introducing

correlations between observations), refer to appendix C

82

Chapter 7: Correlated Non-Parametric Latent Feature Models 83

models for a pen on a desk and a pen in a store and thus lose to opportunity

to leverage all pen instances to refine its object model.

One approach to modelling correlations, the correlated topic model of

Blei and Lafferty (2006), directly learns parameters for a joint distribution.

Our approach, however, draws on the hierarchical structures of sigmoid (Neal,

1992) and deep belief (Hinton et al., 2006a; Bengio, 2007a) networks, where

correlations reflect a higher layer of structure. For example, in the image sce-

nario, being at a table may explain correlations between knives and forks. In

the nonparametric setting, topic models such as Pachinko allocation (Li et al.,

2007) also use hierarchies to model correlations. Closest to our interest in non-

parametric feature models is the infinite hierarchical factorial regression (Rai and Daume,

2009). IHFR is a partially-conditional model that uses an IBP to determine

what features are present and then applies Kingman’s coalescent to model cor-

relations given the active features. Drawing on the use of hierarchies in topic

models and deep belief nets, we develop a more general framework for uncondi-

tional nonparametric correlated feature models and demonstrate applications

to several real-world datasets.

7.1 General Framework

Our nonparametric correlated featured model places a prior over a structure

describing the correlations and cooccurrences among an infinite number of

features and observations. Inference on this infinite structure is tractable if

the prior ensures that a finite set of observations affects only a finite part of

the structure. More generally, the following properties would be desirable in a

nonparametric correlated feature model:

• A finite dataset should be generated by a finite number of latent features

with probability one.

• Features and data should remain exchangeable.

• Correlations should capture motifs, or commonly occuring sets of fea-

tures.

Chapter 7: Correlated Non-Parametric Latent Feature Models 84

The first desideratum requires particular attention if the hidden features are

correlated. The model must ensure that the correlations do not cause an

infinite number of features to be expressed in any observation.

Let the feature assignment matrix Z be a binary matrix where znk = 1

if feature k is present in observation n. In our model, Z depends on a set of

category assignments C and a set of category-feature relationsM (see graphical

model in figure 7.1). The binary category-assignment matrix C contains cnl =

1 if observation n is a member of category l. Similarly, mlk = 1 if feature k is

associated with category l. Features become correlated because observations

choose features only through categories, and categories are associated with sets

of features (see figure 7.2 for a more explicit illustration). Finally, the data X

are produced by the feature assignments Z and some parameters A.

Formal Description. For each observation, the generative model first draws

one or more categories via a non-parametric process with hyper-parameter αC .

C ∼ NP1(αC) (7.1)

where cnl indicates whether category l is active in observation n. A second

nonparametric process with parameter αM associates categories with features:

M ∼ NP2(αM) (7.2)

where mlk indicates whether category l chose feature k. The processes NP1 and

NP2 should ensure that, with probability one, each observation is associated

C

Z

M X

A

Figure 7.1: Graphical model. Feature assignments Z depend on category
assignments C and category-feature relations M . Data X depend on Z and
parameters A (all hyperparameters omitted for clarity).

Chapter 7: Correlated Non-Parametric Latent Feature Models 85

z z z1 2 3

ccc1 2 3

n

x

 M

 A

Figure 7.2: Plate for one observation. Observation n is generated from a set
of categories cnl which in turn select features znj . The connection matrix M
describes the links between features and categories.

Z

N
= f ...

C
L

...

*

KM
L ...

...

K

N

Figure 7.3: Cartoon of the matrix product. The function f describes how
feature assignments are derived from the category matrix C and the connection
matrix M .

with a finite number of categories and each category is associated with a finite

number of features. Finally, the feature-assignment matrix Z = f(CM), where

f is some (possibly stochastic) function that converts the matrix product CM

element-wise into a set of binary values. Figure 7.3 shows a cartoon of this

process.3

We summarise sufficient conditions on the binary-valued function f to en-

sure a finite set of observations will contain a finite number of active features

below:

3It is possible to add more layers to the hierarchy, but we believe two layers should suffice
for most applications. Inference also becomes more complex with more layers.

Chapter 7: Correlated Non-Parametric Latent Feature Models 86

Proposition 7.1.1. If znk = f(c⊤nmk) and c⊤nmk = 0 implies f(c⊤nmk) = 0,

then the number of features in a finite dataset will be finite with probability

one.

Proof. Let L be the number of active categories in N observations, and let K

be the number of active features in the L categories. The conditions on NP1

ensure L is bounded with probability one. Since L is bounded, the conditions

on NP2 ensure K is also bounded with probability one. Let C1:N denote the

first N rows of C. Thus the product C1:NM contains at most NK nonzero

values. The second condition on f ensures that Z1:N has a finite number of

non-zero values with probability one.

Intuitively, the sufficient conditions imply (1) only the presence—not the

absence–of a category can cause features to be present in the data and (2)

categories can only cause the presence of the features associated with them.

These implications are similar to those of the standard IBP model, where we

require only the presence of a feature has an effect on the observations.

The previous discussion was limited to situations where C, M , and Z

are binary. However, other sparse processes may be used for C and M , and

the output of f(·) need not be binary as long as f(0) = 0 with probability

one. For example, the infinite gamma-poisson process (Titsias, 2007) creates

a sparse integer-valued matrix; such a prior may be appropriate if categories

are associated with multiple copies of a feature.

7.2 Specific Models

Many choices exist for the nonparametric processes NP1 and NP2 and the

function f . Here we describe nested models that use the Dirichlet Process

(DP) and the Indian Buffet Process as base processes. However, other models

such as the Pitman-Yor Process could also be used. The DP-IBP model is

a factorial approach to clustering where we expect clusters to share features.

The IBP-IBP models add an additional layer of sophistication: an observation

may be associated with multiple feature sets, and sets may share features.

Chapter 7: Correlated Non-Parametric Latent Feature Models 87

The DP and the associated Chinese restaurant process (CRP) are a distri-

bution on discrete distributions which can be used for clustering (see Ferguson,

1973). We represent the CRP in matrix form by setting cnl = 1 if observation

n belongs to cluster l. The IBP (Griffiths and Ghahramani, 2005) is a fea-

ture model in which each observation is associated with Poisson(α) features.

Similar to the DP, a few popular features are present in most of the observa-

tions. Specifically, given N total observations, the probability that observation

n contains an active feature k is rk/N , where rk is the number of observations

currently using feature k. Both the CRP and the IBP are exchangeable in the

observations and features.

7.2.1 DP-IBP Model

The DP-IBP model draws C from a CRP andM from an Indian Buffet Process.

We let f(c⊤nmk) = c⊤nmk and thus Z = CM :

C ∼ CRP(αC) (7.3)

M ∼ IBP(αM)

znk = c⊤nmk

In the context of the Chinese restaurant analogy for the DP, the DP-IBP cor-

responds to customers (observations) sitting at tables associated with combo

meals (categories) instead of single dishes, and different combo meals may

share specific dishes (features). As in the DP, the dishes themselves are drawn

from some continuous or discrete base distribution.

Properties. The properties of the DP and IBP ensure the DP-IBP will be ex-

changeable over features and the observations. The distribution over the num-

ber of features has no closed form, but we can bound its expectation. The ex-

pected number of categories NC in a DP with N observations is O(αC log(N)).

Given NC , the number of features Nf is distributed as Poisson(αMHNC
), where

HNC
is the harmonic number corresponding to NC . We apply Jensen’s inequal-

ity to the iterated expectations expression for E[Nf] to bound the expected

Chapter 7: Correlated Non-Parametric Latent Feature Models 88

number of features:

E[Nf] = Ec[Em[Nf |Nc]] (7.4)

= Ec[αMHNc
]

= Ec[αM log(Nc) +O(1)]

≤ αM log(EC [Nc]) +O(1)

= αM log(O(αC log(N))) +O(1)

= O(log log(N))

Inference. We apply the partial Gibbs sampling scheme described in Neal

(2000) to resample the DP category matrix C. The IBP matrix M can be

resampled using the standard equations described in Griffiths and Ghahramani

(2005). In both cases, the sampling equations have the same general form:

P (mlk|X,Z,C,M−lk, A) (7.5)

∝ P (mlk|M−lk)P (X|Z,A)P (Z|C,M)

where M−lk denotes the elements of M excluding mlk. An attractive feature

of the DP-IBP model is that because Z is a deterministic function of C and

M , the likelihood term P (X|Z,A)P (Z|C,M) reduces to P (X|C,M,A). Be-

cause the data is directly considered when sampling categories and connections,

without Z as an intermediary, the sampler tends to mix quickly.

Demonstration. We applied the Gibbs sampler to a synthetic dataset of

700 block images from Griffiths and Ghahramani (2005). The 6x6 pixel images

contained four types of blocks, shown in the lower left quadrant of figure 7.4,

which always cooccurred in specific combinations (lower right quadrant). We

ran 3 chains for 1000 iterations with the DP-IBP model, using a likelihood

model of the form X = ZA+ ǫ. The features A had an exponential prior and

ǫ was Gaussian white noise uncorrelated across observations and dimensions.

All hyperparameters were sampled using vague Gamma priors.

Chapter 7: Correlated Non-Parametric Latent Feature Models 89

The top half of figure 7.4 shows a representative sample from the inference.

The DP-IBP recovers that the images contain four types of blocks cooccurring

in nine combinations. In particular, the DP-IBP hierarchy allows the infer-

ence to naturally discover the null-cluster, corresponding to no features being

present, without additional parameters (as required for IHFR (Rai and Daume,

2009)). The sampler quickly converges near the true number of features and

clusters (figure 7.5).

Features Found Clusters Found

True Features True Clusters

Figure 7.4: Sample showing structure found by the DP-IBP. Both the features
and clusters (top row) closely match the underlying structure (bottom row).

7.2.2 IBP-IBP Model 4.

The DP-IBP associates each observation with only one cluster. However, some

situations may naturally contain observations with memberships in multiple

categories. For example, a image of a picnic may contain typical outdoor

elements, such as trees and sky, as well as food-related objects. A multiple

membership model at the category level would allow an observation to be part

of multiple sets. In the IBP-IBP model, we place IBP priors on both C and

4A similar model was simultaneously derived as the infinite factor model hierar-
chy (Courville, 2009)

Chapter 7: Correlated Non-Parametric Latent Feature Models 90

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

N
f

Feature Count

4 6 8 10
0

200

400

600

N
f

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

N
c

Category Count

iteration

5 10 15 20
0

200

400

600

N
c

Figure 7.5: Evolution of the number of clusters and features (dashed lines show
true values). The histograms of posterior over feature and cluster counts were
computed from the final 500 samples. The hyperparameters converged in a
similar fashion.

M and set the link function f to the ‘or’ of the product c⊤nmk:

C ∼ IBP(αC) (7.6)

M ∼ IBP(αM)

znk = (c⊤nmk) > 0

Properties. The expected number of features in the IBP-IBP can be bounded

similarly to the DP-IBP. The number of active categories NC in N observa-

tions is distributed as Poisson(αCHN), so the expected number of categories

is still O(log(N)). Given a number of categories, the number of features is

distributed as Poisson(αMHNC
). Thus, by equation 7.4, the expected number

of features is bounded by O(log log(N)). The distribution of Z is exchangeable

in both the features and observations from the properties of the IBP.

Inference. To Gibbs sample in the IBP-IBP model, we use the equations

of Griffiths and Ghahramani (2005) to sample both C and M .

7.2.3 Noisy-Or IBP-IBP Model

The ‘or’ in the IBP-IBP model implies that a feature is present in an observa-

tion if any of its parent categories are present. This hard constraint may be

Chapter 7: Correlated Non-Parametric Latent Feature Models 91

unrealistic: for example, kitchen scenes may often contain refrigerators, but

not always. The noisy-or IBP-IBP uses a stochastic link function in which

P (znk = 1|C,M) = 1− qc⊤n mk (7.7)

where q ∈ [0, 1] is the noise parameter (Pearl, 1988).5 An attractive feature

of the noisy-or formulation is that the probability of a feature being present

increases as more of its parent categories become active. For example, we

might expect a scene tagged with both kitchen and dining categories may be

more likely to contain a table than a scene tagged as only a kitchen.

The noisy-or IBP-IBP is summarised by:

C ∼ IBP(αC) (7.8)

M ∼ IBP(αM)

znk ∼ Bernoulli(1− qc⊤n mk)

Properties. The noisy-or IBP-IBP inherits its exchangeability properties

and feature distribution from the IBP-IBP (the parameter q only scales the

expected number of features by a multiplicative constant). As q → 0, the

noisy-or IBP-IBP reduces to the IBP-IBP.

Inference. Because f is stochastic, the feature assignments Z must also be

sampled. Given M , C, and X, the probability that a feature znk = 1 is given

by

P (znk = 1|C,M,X,A) ∝ (1− qc⊤n mk)P (xn|zn, A). (7.9)

Gibbs sampling C and M is identical to the IBP-IBP case except the likelihood

terms now depend on Z and are generally independent of the data.6 For

5Proposition 7.1.1 requires that the noisy-or does not also leak, that is, P (znk = 1) must
be 0 if all the parents cn of znk are zero.

6The exception is when new features are being sampled.

Chapter 7: Correlated Non-Parametric Latent Feature Models 92

example, when resampling mlk,

P (mlk|X,Z,C,M−lk, A) (7.10)

∝ P (mlk|M−lk)P (X|Z,A)P (Z|C,M)

∝ P (mlk|M−lk)P (Z|C,M)

The constraints of the noisy-or model pose problems when naively sampling

a single element of C or M . For example, suppose n is the only observation

using category l. According to the IBP prior, Pr[cnl = 1] = 0. However, if

cnl is the only active parent of feature znk, and znk = 1, then according to

the likelihood P (cnl = 1) = 1. In such situations, cnl and its children from zn

should be sampled jointly.

Another problem arises when all the parents of znk are inactive but the

likelihood P (xn|zn, A) prefers znk = 1. To set znk = 1, one of znk’s parents

must become active. However, if znk = 0, znk’s parents are unlikely to turn

on. Jointly sampling znk with its parents resolves these issues.

Features Found Clusters Found

True Features True Clusters

Figure 7.6: Sample showing structure found by the Noisy-Or IBP-IBP. Both
the features and clusters (top row) reflect the underlying structure (bottom
row), but often contain replicas.

Chapter 7: Correlated Non-Parametric Latent Feature Models 93

Demonstration. We return to the blocks example of section 7.2.1, using the

same clusters as before. However, unlike in section 7.2.1, we allow multiple

(often overlapping) clusters to be present in an observation when generating

the observations. Thus, the observations used to demonstrate the noisy-or

IBP are not the same as the observations used in section 7.2.1; they have

significantly more complex structure.

Figure 7.6 shows the inferred features and clusters for a typical sample from

the inference. The inferred features largely match the true features, but they

are more noisy, and features are sometimes repeated. Similarly, the inferred

clusters contain the true clusters and some replicas. The ghosted features and

replicas are a common occurrence when sampling in IBP-like models; they

occur when multiple observations propose similar features. Over time they

tend to disappear, but this time can be exponential in the size of the dataset.7

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

N
f

Feature Count

9 11 13 15 17
0

200

400

600

N
f

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

N
c

Category Count

iteration

10 15 20 25
0

200

400

600

800

N
c

Figure 7.7: Evolution of the number of clusters and features. The dashed
lines show the true values; the histograms show the posterior over the number
of features and clusters. As before, the hyperparameters, given vague priors,
converged in a similar fashion.

Figure 7.7 confirms that the number of features and categories is often

overestimated. The posterior of the flexible noisy-or has many local optima;

even after the sampler has mixed, many modes must be explored. However,

7One might introduce Metropolis moves to merge features or clusters. However, we find
that these moves, while effective on small problems, have little effect in more complex,
higher-dimensional real-world models.

Chapter 7: Correlated Non-Parametric Latent Feature Models 94

Table 7.1: Descriptions of data sets.
Dataset N D Description
UN 155 15 Human development statistics for 155 countries
Joke 500 30 User ratings (continuous) of 30 jokes
Gene 251 226 Expression levels for 226 genes
Robot 750 23 Visual object detections made by a mobile robot
India 398 14 Socioeconomic statistics for 398 Indian households

the replicas do not prevent the noisy-or IBP-IBP from producing good recon-

structions of the data.

7.3 Experiments

We applied the three models of section 7.2 to five real-world datasets (ta-

ble 7.1). The gene data consisted of expression levels for 226 genes from 251

subjects (Carvalho et al., 2008). The UN data consisted of a dense subset

of global development indicators, such as GDP and literacy rates, from the

UN Human Development Statistics database (UN, 2008). Similarly, the India

dataset consisted of development statistics from Indian households (Desai et al.,

2005). The joke data consisted of a dense subset of continuous-valued ratings

of various jokes (Goldberg et al., 2001). Finally, the robot data consisted of

hand-annotated image tags of whether certain objects occurred in images from

a robot-mounted camera (Kollar, 2008).

Inference was performed using uncollapsed Gibbs sampling on 3 chains for

1000 iterations. Chains for more complex models were initialised with the final

sample outputted by simpler models: the IBP and the DP-IBP were initialised

with the output of the DP, the IBP-IBP was initialised from the DP-IBP, and

the noisy-or IBP-IBP was initialised from the IBP-IBP. The likelihood model

xn = znA+ ǫ, where akd ∼ Exponential(λ) and the noise ǫ ∼ Normal(0, σ2
n) was

used for the continuous-valued datasets. Under this model, the conditional

posterior on akd was a truncated Gaussian. For the binary robot data, the

Chapter 7: Correlated Non-Parametric Latent Feature Models 95

likelihood was given by

P (xnd = 1|znd = 1) = 1−md

P (xnd = 1|znd = 0) = fd

where fd was the probability of a false detection, and md was the probability

of a missed detection. These simple likelihood models are not necessarily the

best match for complex, real-world data. However, even these simple models

allowed us to find shared structure in the observations. (For a real application,

of course, one would use an appropriately designed likelihood model.) Finally,

all hyperparameters were given vague priors and sampled during the inference.

Quantitative Evaluation We evaluated inference quality by holding out

approximately 10D Xnd values during the initial inference. No observation

had all of its dimensions missing, and no dimension had all of its observations

missing. Because models had different priors, inference quality was measured

by evaluating the test log-likelihood and the L2 reconstruction error of the

missing elements (a complete Bayesian model comparison would require an

additional prior over the model classes). The evaluation metrics were averaged

from the final 50 samples of the 3 chains.

Tables 7.2 and 7.3 and figure 7.8 compare the reconstruction errors and

predictive likelihoods of the three variants with the standard IBP, which does

not model correlations between features, the DP, a flat clustering model. As

we are most interested in feature-based models (IBP, DP-IBP, IBP-IBP, or

noisy-or IBP-IBP), both the best-performing feature-based model, as well as

the best overall model, are highlighted in bold. Plots for the hyperparameters

are not shown, but the posteriors seemed to converge during the inference.

The structured variants outperformed the standard IBP in almost all cases.

In particular, the DP-IBP usually had the best performance among the feature-

based models. Its performance was on par with the DP—a simpler model

with a much more robust inference procedure. Indeed, we believe that the

robustness of inference in the DP—and the difficulty of inference in the complex

Chapter 7: Correlated Non-Parametric Latent Feature Models 96

0 2 4 6

x 10
6

noIBPIBP

IBPIBP

DPIBP

IBP

DP

UN

0 20 40 60

Jokes

0 1 2

Gene

L2 Reconstruction Error (bars); Negative Predictive Log Likelihood (circles)
−1 −0.5 0 0.5

Robot

0 5 10

x 10
9

India

Figure 7.8: Negative predictive log-likelihoods (circles) and L2 reconstruction
errors (bars) for held-out data from the real-world datasets. Both metrics have
the same scale. Smaller values indicate better performance; note that models
have consistent performance with respect to both predictive log-likelihoods
and L2 reconstruction errors across all datasets.

Table 7.2: Predictive likelihoods on held-out data (higher is better). Bold
figures indicate the best feature-based and best overall models for each dataset.

Model UN Jokes Gene Robot India

DP -3.5e5 -45.5 -1.2 0.8 -2.0e9

IBP -1.7e5 -58.7 -1.5 0.7 -8.0e9

DPIBP -17.0e5 -44.0 -1.4 0.8 -2.7e9

IBPIBP -25.0e5 -48.6 -1.6 0.8 -3.0e9

noIBPIBP -58.0e5 -45.6 -2.0 0.7 -2.6e9

posterior landscapes of the structured models—is the primary reason for the

difference in the models’ performance: the tight coupling between parameters

in the structured models make them incredibly slow to mix. Better inference

procedures for the structured models will certainly improve their performance

(since the structured models have DPs and IBPs as special cases, they should

be able to perform at least as well). However, unlike the flat clusters provided

by the DP, the DP-IBP can provide a structured representation of the data

Table 7.3: L2 reconstruction errors on held-out data (lower is better). Bold
figures indicate the best feature-based and best overall models for each dataset.

Model UN Jokes Gene Robot India

DP 18.0e4 22.6 0.5 0.2 1.0e9

IBP 8.5e4 29.2 0.6 0.3 4.0e9

DPIBP 86.0e4 21.9 0.6 0.1 1.4e9

IBPIBP 120.0e4 24.2 0.6 0.2 1.5e9

NoisyOr IBPIBP 290.0e4 22.7 0.9 0.3 1.3e9

Chapter 7: Correlated Non-Parametric Latent Feature Models 97

alongside good quantitative performance. These more qualitative benefits are

explored in the next section.

Qualitative Examples In table 7.2, we saw DP clustering had lower error

rates than any of the feature-based models on the UN dataset. However, even

in this case, the structured representation of the correlated feature models can

provide some explanatory power.8 The image in figure 7.9 shows a representa-

tive feature matrix A from the DP-IBP. Each row in the matrix corresponds

to a development statistic; for visualisation the values in each row have been

scaled to [0, 1], each column corresponds to a feature.

We see that the first column, with high GDP and healthcare scores, is

what we would expect to find in highly developed countries. The third column

is representative of countries with an intermediate level of development, and

the final column, with low GDP and high tuberculosis rates, has a pattern

common in developing countries. The other columns highlight specific sets of

statistics: column two augments technology and education, while column four

corresponds to higher private healthcare spending and higher prison popula-

tions (and always occurs in conjunction with some other features).

What distinguishes the DP-IBP from simple clustering is that the features

are shared among clusters. The circles on top of the feature matrix in figure 7.9

represent categories or clusters (only 5 of the 15 are shown). The M matrix is

visualised in the links between the categories and the features. Each column

represents a feature, where the rows are the dimensions of the data. As with

flat clustering, some categories (C2, C5) only use one feature (that is, connect

to only one column). For example, certain developed nations such as Canada

and Sweden are well characterised by only the first feature, and developing

nations such as Mali and Niger are characterised by only the final feature.

However, feature sharing allows other categories to use multiple features.

For example, the United States has high development statistics, like Canada

and Sweden, but it also has, added on, relatively high tuberculosis rates, pri-

vate healthcare spending, and prison populations. Showing what character-

8We stress that as we are using unsupervised methods, the structures found cannot be
considered to be discovering the ‘true’ or ‘real’ structure of dataset. We can only say that
the structures found explain the data.

Chapter 7: Correlated Non-Parametric Latent Feature Models 98

Figure 7.9: Part of a DP-IBP sample from the UN data. The rows in the
image correspond to the development statistics, and columns represent feature
vectors. The top row of circles, with links to various features, are some of the
categories in this sample (there were 15 categories in total). Representative
countries are listed above each category.

istics the United States shares with other countries is more informative than

simply placing it in its own cluster.

The DP-IBP also found informative clusters in the robot data. As with the

UN dataset, the DP-IBP was able to do a more sophisticated clustering that

reflected shared elements in the data. Some of the categories of image tags

discovered are listed below:

C1: hallway, door, trash can, chair, desk,

office, computer, whiteboard

C2: door, trash can, robot, bike,

printer, couch

C3: trash can, monitor, keyboard, book,

Chapter 7: Correlated Non-Parametric Latent Feature Models 99

robot, pen, plant

C4: hallway, door, trash can

Categories C1 and C4 often occurred singly in the data, in the form of simple

clusters that corresponded to hallway and office scenes. Categories C2 and C3

often augmented category C1, reflecting office scenes that also included parts

of a printing area (C2) and close-up views of desk spaces (C3).

7.4 Discussion

We find in particular that the DP-IBP model, combining the unbounded num-

ber of clusters of a DP mixture with the nonparametric shared features of

an IBP, provides a promising method for hierarchical hidden representations

of data. Occupying a regime between pure clustering and pure feature-based

modelling, the DP-IBP can capture dominant categorical qualities of the real-

world datasets but still discover shared structure between clusters. It outper-

forms the standard IBP because allowing categories to share features lets each

feature use raw evidence from more observations and thus grow more refined.

At the same time, forcing observations to be associated with only one category

limits the model’s flexibility. Thus, the DP-IBP has fewer of the identifiability

issues common to feature-based models and produces more relevant categories.

In some situations, the more complex structured models may have been bet-

ter matches for the data—for example, the robot data almost surely contained

situations where multiple categories of noisy features were present. Here, bet-

ter inference techniques could have proved beneficial. Split-merge moves may

help accelerate mixing, but from a limited set of experiments we found that the

benefits were highly data dependent: such moves provided some benefit in the

toy images data set, where replica features tended to be a problem, but proved

to be less useful in the more complex local optima of the real world data.

Inference that uses “soft” assignments—such as variational techniques—may

prove to be more robust to these local optima.

We see an important trade-off when choosing what kind of nonparametric

model to apply. Our work was initially motivated to create a model for sce-

Chapter 7: Correlated Non-Parametric Latent Feature Models 100

narios like the robot data, and thus we desired a generative process that would

explain noisy, multiple-membership correlated feature models. An interesting

question is how one may perform model selection across different choices of non-

parametric priors within this general framework: while these models perform

well when the prior reflects the data—such as in the toy blocks examples—the

structure appropriate for real-world data is much more difficult to ascertain.

7.5 Summary

Our probabilistic setting generates models with an unbounded number of fea-

tures and categories and provides a general framework for modelling a variety

of different types of correlations. The framework can also model other useful

properties such as feature sparsity (that is, many observations being feature-

less). Interesting extensions might include incorporating aspects of the phylo-

genetic IBP (Miller et al., 2008b) or infinite factorial HMM (Van Gael et al.,

2009) to create models that consider correlations both between features and

also between observations, as well as exploring methods to model negative cor-

relations. The work in this paper also provides avenues which could be used

to develop “deep” nonparametric models with multiple unbounded layers of

hidden variables.

In particular, the DP-IBP model, combining nonparametric clustering with

the shared features of an IBP, is a promising method for layered representations

of latent variables. However, given the complexities of performing inference in

these models, more analysis is needed to study the behaviours these models

in real-world applications and to determine the sensitivities of the models to

various hyperpriors. The work presented here is only one step toward achieving

more structured nonparametric models.

Chapter 8

Conclusions and Future Work

In this thesis, we presented several new inference algorithms for the Indian

Buffet Process, enabling the use of the IBP in datasets with up to 100,000

observations. We also described a framework for extending the standard IBP

model to incorporate correlations among the latent features. We conclude

with some final comparisons among the different inference techniques, and a

discussion of future work.

Comparing Sampling and Variational Inference

In chapter 6, we concluded that variational inference was a sensible option

when collapsed Gibbs sampling was not possible. However, the accelerated

sampler of chapter 4 allows for efficient sampling in datasets where Gibbs

sampling was previously computationally intractable. Figure 8.1 shows the

evolution of the training log likelihood for collapsed Gibbs sampling, accel-

erated Gibbs sampling, and variational inference on the Yale dataset. The

Gibbs samplers were run for 250 iterations each; the variational inference was

run until the variational lower bound converged up to a stopping threshold.

Consistent with the results of chapter 6, variational inference finds a rea-

sonable mode faster than collapsed Gibbs sampling. However, the accelerated

sampler finds a better mode faster than the variational inference (note log-scale

on the plot). Thus, we reiterate that variational inference should be used only

101

Chapter 8: Conclusions and Future Work 102

10
1

10
2

10
3

10
4

10
5

10
6

−9

−8

−7

−6

−5

−4

−3
x 10

6

time (s)

tr
ai

ni
ng

 lo
g

lik
el

ih
oo

d

Evolution of training likelihood on the Yale dataset

finite variational
infinite variational
accelerated Gibbs
collapsed Gibbs

Figure 8.1: Evolution of training log likelihood on the Yale dataset. The
accelerated Gibbs sampler finds a better mode faster than variational inference.

when collapsed Gibbs sampling is not possible—either in very large datasets

or in non-conjugate exponential family models.

Comparison to other Deep Models

There exists a vast literature on other ‘deep’ models (PDP Research Group,

1986; Hinton et al., 2006b; Hinton and Salakhutdinov, 2006; Bengio, 2007b),

that is, models with one or more layers of latent structure. One of the most

common is the restricted Boltzmann machine (PDP Research Group, 1986).

A Boltzmann machine is a network of binary nodes. The energy of a node i is

given by

Ei =
∑

j

Wijsj − θi

where W is a symmetric weight matrix, si is the value of node i, and θi is a

threshold parameter. Given the energy, the probability that node i is active is

p(si = 1) =
1

1 + exp(−Ei/T)

Chapter 8: Conclusions and Future Work 103

for some temperature parameter T . If the matching implied by W is bipartite,

the model is called a restricted Boltzmann machine (RBM).1

We compared L2 reconstruction errors on held-out data on the IBP to the

an RBM with 1000 binary hidden units 2. The data were normalised to 0-1 for

processing, and then scaled back to produce the original images. Under these

settings, the RBM had a running time comparable to the accelerated Gibbs

sampler for the Yale, AR Faces, and EEG datasets; it was 10 times fast for

the piano dataset. In all cases, the reconstruction errors were comparable (see

table 8.1; more analysis is needed as to what model is more appropriate for

specific situations.

Table 8.1: L2 reconstruction errors per pixel on held-out data for the RBM
(1000 nodes) and the IBP.
Dataset RBM (1000 nodes) IBP (accelerated

sampler)
IBP (uncollapsed
sampler)

Yale 459.3 459.4 413.0
AR Faces 2128.5 919.9 3836.4
EEG 259230 282108 215174
Piano 0.0009 0.0005 -

Future Work

The IBP has a philosophical elegance that many other latent feature models

lack: the feature-assignment matrix Z has a clear interpretation as which fea-

tures are present in which observations, and the directed model clearly shows

how features and feature assignments generate the observations. Furthermore,

the IBP does not bound the number of active features K; a posterior over the

number of active features is computed as part of the inference process.

1RBMs are closely related to deep belief nets, which have the following form: there are
visible units v and hidden units h. The probability of a vector v is given by

p(v) =
∑

h

p(h|W)p(v|h, W)

for some symmetric weight matrix W .
2Using code from Hinton and Salakhutdinov (2006)

Chapter 8: Conclusions and Future Work 104

For real-world applications, philosophical elegance is only part of the pack-

age. If IBPs are to be accepted outside the small community of nonparamet-

ric Bayes practitioners, rigorous tests must compare the IBPs performance,

both in terms of runtime and solution quality, to other models (deep belief

nets/restricted Boltzmann machines, factor analysis, iterative generalised least

squares) from the literature. We must also test where the truly nonparametric

is useful: in chapter 6, we saw that truncated models often perform as well

as infinite ones, with better computational properties. An interesting infer-

ence problem might be developing a more efficient RJMCMC procedure for

determining the more likely numbers of features quickly.

Regarding the inference itself, this thesis makes important contributions

to scaling IBP inference, especially in conjugate models. However, many re-

alworld applications do not have conjugate models, and making Gaussianity

assumptions about the data can lead to poor results. In addition to noncon-

jugate likelihoods, deeper hierarchical structures, such as those presented in

chapter 7, generally have nonconjugate forms between the layers. Moreover,

these more complex models often suffer from many local optima. Another

area for future work is to improve inference in nonconjugate and hierarchical

models.

More generally, from genetics to social choice, from dynamical systems

to computer vision, researchers have read about IBPs and found its story

compelling. What is needed from the nonparametric Bayes community are the

methods and the rigorous evaluations to fulfil this promise.

Appendix A

Likelihood Models

The IBP provides a prior over feature assignment matrices Z; however, to com-

plete the generative model we also require a likelihood function P (X|Z,A) that

describes how the feature assignments produce the data, where A represents a

set of parameters associated with the likelihood function. Combined with the

IBP prior P (Z) and a prior P (A), the joint probability distribution P (X,Z,A)

is

P (X,Z,A) = P (X|Z,A)P (Z)P (A). (A.1)

Choosing an appropriate likelihood function usually involves a tradeoff be-

tween expressing the data well (application dependent) and computational

tractability. This thesis uses three general-purpose functions in which the like-

lihood P (X|Z,A) is some function of the product ZA. Thus, each row of A

can be interpreted as a vector characterising some latent feature in the en-

vironment. We emphasise that practical applications will likely require more

sophisticated likelihood models.

A.1 Linear-Gaussian

In the linear-Gaussian feature model, we model the dataX as a product ZA+ǫ,

where ǫ is some observation noise in our data. Here, X is a N×D matrix of

observations, Z is the N×K binary matrix of feature assignments, and A is

a K×D matrix of features. We assume that the noise w is independent of Z

105

Appendix A: Likelihood Models 106

and A and uncorrelated across observations. Figure A.1 shows a cartoon of

the model.

X Z A

...

K+

K+
*

D D

~ NN ... + w

Figure A.1: The linear feature model proposes the data X is the product of Z
and A with some noise.

Each element of ǫ is assumed to be an independent, zero-mean Gaussian

with some noise variance σ2
n. Specifically, we assume that the noise is un-

correlated across observations and dimensions. We also place an independent

zero-mean Gaussian prior on each element of A with variance σ2
a. (If the data

is not zero-mean, it can always be centred first.)

A key advantage of the linear-Gaussian model is that it is fully-conjugate.

As a result, we have an analytic expression for P (X|Z):

p(X|Z, σn, σa) (A.2)

=
exp(− 1

2σ2
n
(XT (I − Z(ZTZ + σ2

n

σ2
a
I)−1ZT)X))

(2π)
ND
2 σ

(N−K)D
n σKD

a |ZTZ + σ2
n

σ2
a
I|

D
2

where σ2
n is the noise variance and σ2

a is the feature variance. As seen in equa-

tion A.2, integrating out the features A when computing p(X|Z) correlates the

observations. A naive computation of equation A.2 requires O(N3) operations;

Griffiths and Ghahramani (2005) describe a set of rank-one updates to reduce

this computational cost to O(N2) per call.

The posterior on A given Z and X also has an analytic form:

µA = (ZTZ +
σ2

n

σ2
a

I)−1ZTX (A.3)

ΣA = σ2
n(ZTZ +

σ2
n

σ2
a

I)−1

Appendix A: Likelihood Models 107

where the mean µA has the dimensionality of A (KxD). All dimensions are

independent with identical variances, so the joint covariance is block diagonal

with D identical KxK blocks. We let ΣA be the KxK covariance for A·,d.

When doing inference in the IBP model, the linear-Gaussian likelihood

allows us to integrate out A and sample only Z. A disadvantage of the linear-

Gaussian likelihood model is that it is not invariant to rotations. As features

can contain negative and positive values, parts of features can be used to cancel

parts of other features. Thus, posterior space has many more modes and local

optima.

A.2 Exponential-Gaussian

The exponential-Gaussian model has the form as the linear-Gaussian model,

where the data is modelled as ZA + ǫ. However, instead of a Gaussian prior

on the features A, we apply an exponential prior in which each element of A

is drawn from an independent exponential distribution with rate λ.

Unlike the linear-Gaussian model, the exponential model is not fully con-

jugate. Inference in this model requires that A be explicitly represented. The

probability of a single element of Akd (given all of the other elements) is

P (Akd|Z,A−kd, X) ∝ P (X|Z,A)P (Akd)

where P (X|Z,A) is a Gaussian and P (Akd) is an exponential. Thus, the

product is a truncated Gaussian. While we can no longer integrate out A, we

can at least sample new values of Akd one element at a time from this truncated

Gaussian.

Although the model can no longer be collapsed—that is, we do not have an

expression for P (X|Z)—a key advantage of the exponential-Gaussian model is

that the posterior space has fewer local optima. All features are non-negative,

so features can no longer cancel out other features.

Appendix A: Likelihood Models 108

A.3 Binary-Bernoulli

The previous two models are for real-valued data. For binary data, we model

the probability P (Xnd = 1|Z,A) by a leaky, noisy-or:

P (Xnd = 1|Z,A) = 1− ǫλZnAd (A.4)

where A is also a binary matrix in which each element Akd has an independent

probability of pA to be one.

As with the exponential-Gaussian model, we cannot integrate out A to

find an expression for P (X|Z). However, since each element of A is binary,

we can compute the likelihood with Akd = 1 and Akd = 0 when evaluating

P (Akd|Z,A−kd, X)

Appendix B

Derivations for Variational

Inference in the IBP

Chapter 6 described a variational inference method for the IBP. This ap-

pendix derives the variational lower bound and the variational updates for

terms in (6.1) that belong to the exponential family.

B.1 Variational Lower Bound

We derive expressions for each expectations in Equation (6.1):

1. Each stick is independent, and substituting the form of the beta prior

we get

Ev [log p(vk|α)] = Ev

[

log
(

αvα−1
k

)]

,

= logα + (α− 1) Ev log(vk),

= logα + (α− 1) (ψ(τk1)− ψ(τk1 + τk2)) ,

where ψ(·) is the digamma function.

2. For the feature assignments, which are Bernoulli-distributed given the

feature probabilities, we first break the expectation into the following

109

Appendix B: Derivations for Variational Inference in the IBP 110

parts

Ev,Z [log p(znk|v)] = Ev,Z

[

log p(znk = 1|v)znkp(znk = 0|v)1−znk
]

= EZ [znk] Ev

[

log

k
∏

m=1

vm

]

+ EZ [1− znk] Ev

[

log

(

1−
k
∏

m=1

vm

)]

= νnk

(

k
∑

m=1

ψ(τk2)− ψ(τk1 + τk2)

)

+(1− νnk)Ev

[

log

(

1−
k
∏

m=1

vm

)]

The second line follows from the definition of v, while the third line

follows from the properties of Bernoulli and beta distributions.

3. For the feature distribution, we simply apply the properties of expecta-

tions of Gaussians to get

EA

[

log p(Ak·|σ
2
AI)
]

= EA

[

log

(

1

(2πσ2
A)D/2

exp

(

−
1

2σ2
A

AT
k·Ak·

))]

,

= EA

[

−D

2
log(2πσ2

A)−
1

2σ2
A

AT
k·Ak·

]

,

=
−D

2
log(2πσ2

A)−
1

2σ2
A

(

tr(Φk) + φ̄kφ̄
T
k

)

.

4. The likelihood for a particular observation is identical to the finite model,

so we again have

EZ,A

[

log p(Xn·|Zn·, A, σ
2
nI)
]

= −
D

2
log(2πσ2

n)

−
1

2σ2
n

(

Xn·X
T
n·−2

K
∑

k=1

νnkφ̄kX
T
n·+2

∑

k<k′

νnkνnk′φ̄kφ̄
T
k′+

K
∑

k=1

νnk

(

tr(Φk)+φ̄kφ̄
T
k

)

)

.

Appendix B: Derivations for Variational Inference in the IBP 111

5. The entropy can also be easily computed, since we have chosen exponen-

tial family distributions for our variational approximation:

H [q] = −Eq log

[

K
∏

k=1

qτk
(vk)

K
∏

k=1

qφk
(Ak·)

K
∏

k=1

N
∏

n=1

qνnk
(znk)

]

,

=

K
∑

k=1

Ev(− log qτk
(vk)) +

K
∑

k=1

EA(− log qφk
(Ak·)) +

K
∑

k=1

N
∑

n=1

EZ(− log qνnk
(znk)),

where

Ev(− log qτk
(vk)) = log

(

Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)

− (τk1 − 1)ψ(τk1)

−(τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2).

EA(− log qφk
(Ak·)) =

1

2
log
(

(2πe)D|Φk|
)

.

EZ(− log qνnk
(znk)) = −νnk log νnk − (1− νnk) log(1− νnk).

Putting all the terms together gives us the variational lower bound in Equa-

tion (6.1).

B.2 Parameter Updates

To optimise the parameters, we can directly optimise Equation (6.1). However,

since the conditional updates for the features A and feature assignments Z

remain within the exponential family, so we can update the parameters more

efficiently using equation (6.7).

Appendix B: Derivations for Variational Inference in the IBP 112

1. For the feature distribution at the optimal φ̄k and Φk

log qφk
(Ak·)

= EA−k,Z [log pK(W , X|θ)] + c,

= EA−k,Z

[

log pK(Ak·|σ
2
A) +

N
∑

n=1

log pK(Xn·|Zn·, A, σ
2
n)

]

+ c,

= −
1

2σ2
A

(

Ak·A
T
k·

)

−
1

2σ2
n

N
∑

n=1

EA−k,Z

[

(Xn· − Zn·A) (Xn· − Zn·A)T
]

+ c,

= −
1

2



Ak·

(

1

σ2
A

+

∑N
n=1 νnk

σ2
n

)

AT
k·−2Ak·

(

1

σ2
n

N
∑

n=1

νnk

(

Xn·−

(

∑

l:l 6=k

νnlφ̄l

)))T


+c.

Completing the squares and using Equation (6.7) gives us that for the

optimal φ̄k and Φk, we must have

log qφk
(Ak·) = −

1

2

(

Ak·Φ
−1
k AT

k· − 2Ak·Φ
−1
k φ̄T

k

)

+ c,

which gives us that the updates

φ̄k =

[

1

σ2
n

N
∑

n=1

νnk

(

Xn· −

(

∑

l:l 6=k

νnlφ̄l

))](

1

σ2
A

+

∑N
n=1 νnk

σ2
n

)−1

,

Φk =

(

1

σ2
A

+

∑N
n=1 νnk

σ2
n

)−1

I.

2. The updates for the variational distribution on Z are slightly different.

For ν parameters,

log qνnk
(znk) = Ev,A,Z−nk

[log p(W , X|θ)] + c,

= Ev,A,Z−nk

[

log p(znk|v) + log p(Xn·|Zn·, A, σ
2
n)
]

+ c,

where

Ev,Z−nk
[log p(znk|v)] = znk

k
∑

i=1

(ψ(τi1)−ψ(τi1+τi2))+(1−znk)Ev

[

log

(

1−
k
∏

i=1

vi

)]

Appendix B: Derivations for Variational Inference in the IBP 113

and

EA,Z−nk

[

log p(Xn·|Zn·, A, σ
2
n)
]

= −
1

2σ2
n

[

−2znkφ̄kX
T
n· + znk

(

tr(Φk) + φ̄kφ̄
T
k

)

+ 2znkφ̄k

(

∑

l:l 6=k

νnlφ̄
T
l

)]

+ c.

Therefore

log qνnk
(znk) = znk

[

k
∑

i=1

(ψ(τi1)− ψ(τi1 + τi2))− Ev

[

log

(

1−
k
∏

i=1

vi

)]

−
1

2σ2
n

(

tr(Φk) + φ̄kφ̄
T
k − 2φ̄kX

T
n· + 2φ̄k

(

∑

l:l 6=k

νnlφ̄
T
l

))]

+ c.

From the canonical parameterisation of the Bernoulli distribution, we

get that

log
νnk

1− νnk
=

k
∑

i=1

(ψ(τi1)− ψ(τi1 + τi2))− Ev

[

log

(

1−
k
∏

i=1

vi

)]

−
1

2σ2
n

(

tr(Φk) + φ̄kφ̄
T
k

)

+
1

σ2
n

φ̄k

(

XT
n· −

(

∑

l:l 6=k

νnlφ̄
T
l

))

≡ ϑ,

where the remaining expectation can be computed using either the multi-

nomial approximation or the Taylor series (see chapter 6). This gives us

the update

νnk =
1

1 + e−ϑ
.

3. The updates for τ depend on how we deal with the term Ev

[

log
(

1−
∏k

m=1 vm

)]

;

these are described in detail in chapter 6.

Appendix C

Structured Nonparametric

Latent Feature Models

The IBP is the most basic nonparametric latent feature model: observations

are exchangeable, and features are independent. Recent years have seen many

extensions to create more structured nonparametric latent feature models. One

form of structure, discussed in chapter 7, involves incorporating correlations

between the features. Other extensions have considered how to adjust the spar-

sity of the IBP and how to incorporate various forms of correlations between

the observations.

C.1 Adjusting Sparsity Properties

In the standard construction of the IBP, the concentration parameter α gov-

erns both the number of features that we expect to see in each observation

(α) and the expected total number of features (α log(N)). Ghahramani et al.

(2007) derive a two-parameter extension to introduce additional flexibility. The

expected number of features per observation remains α, however, a new ‘stick-

iness’ parameter β describes to what extent features are likely to be shared

across observations (and thus governs the total number of features we expect

to see).

114

Appendix C: Structured Nonparametric Latent Feature Models 115

More formally, in the buffet construction for the generative process, cus-

tomer n serves himself dish k with probability

p(Znk = 1|Z1:n−1,k) ∝
mk

β + n− 1
.

where mk is the number of customers who have previously tried dish k. Note

that for β = 1, this probability is equivalent to the one-parameter IBP, but

larger values of β will cause customers to choose a broader range of dishes.1

The expected total number of dishes is given by

E[K|N] = α

N
∑

n=1

β

β + n− 1
,

and the probability of a particular left-ordered matrix is given by

P ([Z]) =
(αβ)K+

∏2N−1
h=1 Kh!

exp{−α
N
∑

n=1

β

β + n− 1
}

K+
∏

k=1

B(bk, N − bk + β),

where B(·, ·) is the Beta-function. Observations in the two-parameter IBP

are still exchangeable, and features remain independent. Finally, very recent

work Teh (2009) has investigated a three-parameters extension of the IBP to

allow for power-law behaviour in the feature popularities (both the one and two

parameter constructions have an exponential drop-off in feature popularities).

C.2 Temporal Correlations

When observations come from a time-sequence, it is natural to expect that

features present at time n will influence the features present at the next time

n + 1. The Markov IBP (mIBP) or infinite factorial HMM (Van Gael et al.,

2009) introduces the simplest kind of temporal correlation in which features

present at time n are likely to persist to time n+ 1. The infinite latent events

1A stick-breaking construction for the two parameter IBP has also been derived (John
Paisley, personal communication June 2009), based on the Beta-Bernoulli process interpre-
tation of the IBP (recall from chapter 2 that the Beta process had an additional parameter
c that was set to 1 to produce the IBP).

Appendix C: Structured Nonparametric Latent Feature Models 116

model (ILEM) of Wingate et al. (2009) is a more general model that allows

the presence of a feature at time n + 1 to depend on all the features present

at time n.

The mIBP model has separate parameters pk1 and pk0 for each feature,

where pk1 is the probability p(Z(n, k) = 1|Z(n − 1, k) = 1), and pk0 is the

probability p(Z(n, k) = 1|Z(n− 1, k) = 0). While pk1 can be sampled from an

arbitrary Beta(γ, δ) distribution, pk0 must be generated from Beta(α/k, 1) to

ensure that, for large k, an inactive feature is unlikely to become active. The

process is initialised with Z(0, k) = 0 for all k.

The ILEM is more general model that takes inspiration from the HDP-

HMM (Teh et al., 2006). While the details are somewhat involved, the core

of the generative model is keeping track of Cij , the number of times feature i

caused feature j, and Bj, the number of times any feature caused feature j.

To determine what features will be active at time n+ 1, we loop through each

feature i active at time n and apply the following procedure:

• Sample N ∼ Poisson(λ). This is the number of ‘points’ feature i has to

cause events.

• Sample N times from a Chinese restaurant process in which feature j

is chosen with probability
Cij

Ci+αT
and ‘new’ is chosen with probability

αT

Ci+αT
. Features j chosen by feature i will be active at time n+ 1.

• For every instance ‘new’ in the previous sampling step, choose a previ-

ously initialised feature j with probability
Bj

B+αB
. With probability αB

B+αB

choose a feature j that has never been active before. All of these features

j become active at time n+ 1.

In this way, the ILEM encourages features to activate features that it has

activated in the past and, if it chooses to activate something new, activate

features that other features have activated in the past.

Appendix C: Structured Nonparametric Latent Feature Models 117

C.3 Correlated Observations

Temporal correlations are only one form of correlations one might expect be-

tween observations. For example, if the observations represent user preferences,

prior knowledge about types of users may suggest groups of people whose pref-

erences may have tighter correlations. The Phylogenetic Indian Buffet Process

(pIBP) (Miller et al., 2008b) and its variants (Miller et al., 2008a) use a tree

structure to describe correlations between observations, where nodes that are

closer together in the tree are more likely to share active features.

As with the ILEM, the generative process is somewhat involved, but the

core idea is that a customer chooses dishes not based simply on their popularity,

but based on their popularity among customers that are similar to him. When

sampling a new dish, a customer leaves an annotation so that other customers

know from where in the tree the dish was created. Customers who share

tight similarities with other customers are likely to sample what their friends

sampled and rarely propose new features; in contrast, customers who are highly

dissimilar to their neighbours are likely to propose many new features. In this

way, all customers still have α dishes in expectation, but the rare or unpopular

dishes are spread mostly among the customers who are most unlike the others.

With a proper choice of parameters, the process remains exchangeable among

families (observations that split from the same level of the tree).

C.4 Correlated Features

The previous sections described how to introduce correlations between the

observations. However, in many applications, we may also expect features

to be correlated: for example, notes might often occur together in chords;

sets of objects may tend to cooccur in a scene. Here we review two works

(also referenced in chapter 7) that introduce correlations among the features.

Infinite hierarchical factorial regression (Rai and Daume, 2009) uses an IBP to

model what features are present in an observation and a Kingman’s coalescent

to model correlations. The infinite factor model hierarchy (IFMH) (Courville,

Appendix C: Structured Nonparametric Latent Feature Models 118

2009) is similar to the IBP-IBP model in chapter 7, creating correlations in

the feature assignments through a matrix product. Finally, recent work has

considered unbounded levels of hierarchies, allowing for very deep structured

correlations (Adams, 2009).

One of the earliest steps to correlated nonparametric feature models, the

IHFR models correlations using a two part process. First, a standard IBP

is used to determine what features are active in which observations. Given

a sampled feature assignment matrix Z with K active features, a second N

by K matrix V is fitted using a Kingman’s coalescent to model correlations

between the K columns. For example, if two features i and j are tightly

correlated, then Vni and Vnj will be tightly correlated. The matrices Z and

V are multiplied element-wise to create the final feature-assignment loadings;

the data is modelled as X = (Z ⊙ V)A. Inference in IHFR is efficient, leading

to good performance on several real datasets. However, since the coalescent

on V is defined only after fixing the number of active features K, IHFR is not

fully nonparametric; we cannot think of observations as a few nodes from some

infinite model.

Unlike IHFR, the IFMH is a fully nonparametric model. In the language

of the correlated nonparametric latent feature framework in chapter 7, obser-

vations in the IFMH choose a set of categories C based on the IBP. Next, a

connection vector M is sampled as follows: first, a set of IBP stick-breaking

probabilities πk are drawn, and from these a random variable Mk is drawn

from Beta(cπk, c(1 − πk) + 1) (in contrast, the IBP-IBP model of chapter 7

draws Mk from Bernoulli(πk)). The features Znk are drawn from a noisy-or:

Bernoulli(1−
∏

j(1− CnjMk). Since the Mk gets very small for large k, there

are still only a finite number of Znk = 1 for fixed N . One of the key benefits

of the IFMH over the IBP-IBP is that Mk is continuous-valued, rather than

binary, leading to better behaved inference.

Bibliography

Ryan Adams. personal communication, June 2009.

David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu. Statistical

debugging using latent topic models. 2007.

D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge University

Press, 2004.

Arthur Asuncion, Padhraic Smyth, and Max Welling. Asynchronous dis-

tributed learning of topic models. In Advances in Neural Information Pro-

cessing Systems 21, 2008.

M. J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD

thesis, Gatsby Computational Neuroscience Unit, UCL, 2003.

Yoshua Bengio. Learning deep architectures for ai. In Dept. IRO, Universite

de Montreal, number 1312. 2007a.

Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept.

IRO, Universite de Montreal, 2007b.

D. Blei and M. Jordan. Variational methods for the Dirichlet process. In

Proceedings of the 21st International Conference on Machine Learning, 2004.

D. Blei and J. Lafferty. Correlated topic models. In Advances in Neural

Information Processing Systems, 2006.

S. P. Brooks and G. O. Roberts. Convergence assessment techniques for

Markov Chain Monte Carlo. Statistics and Computing, 8:319–335, 1998.

119

Bibliography 120

Carlos M. Carvalho, Jeffrey Chang, Joseph E. Lucas, Joseph R. Nevins, Quanli

Wang, and Mike West. High-dimensional sparse factor modelling: Appli-

cations in gene expression genomics. Journal of the American Statistical

Association, 103(484), 2008.

C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Oluko-

tun. Map-reduce for machine learning on multicore. In Advances in Neural

Information Processing Systems, page 281. MIT Press, 2007.

Wei Chu, Zoubin Ghahramani, Roland Krause, and David L. Wild. Identifying

protein complexes in high-throughput protein interaction screens using an

infinite latent feature model. In Pacific Symposium on Biocomputing, pages

231–242, 2006.

Aaron Courville. personal communication, June 2009.

Aaron Courville. The hierarchical indian buffet process. Nonparametric Bayes

Workshop at ICML/UAI/COLT, 2008.

Desai, Solande, Reeve, and Vanneman. India human development survey. In

United Nations Development Programme, number ICPSR 22626. 2005.

F. Doshi and J. Van Gael. Nonparametric bayesian methods for finding soft-

ware bugs. In CRISM Workshop for High Dimensional Data, 2008.

F. Doshi-Velez and Z. Ghahramani. Accelerated inference for the Indian buffet

process. In International Conference on Machine Learning, 2009.

F. Doshi-Velez, K. T. Miller, J. Van Gael, and Y. W. Teh. Variational infer-

ence for the indian buffet process. In Proc. of the Conference on Artificial

Intelligence and Statistics, 2009.

Finale Doshi-Velez and Zoubin Ghahramni. Correlated nonparametric latent

feature models. In Conference on Uncertainty in Artificial Intelligence, 2009.

David J. Earl and Michael W. Deem. Parallel tempering: Theory, applications,

and new perspectives, 2005.

Bibliography 121

Thomas S. Ferguson. A bayesian analysis of some nonparametric problems.

The Annals of Statistics, 1(2):209–230, 1973.

J. Van Gael, Y. W. Teh, and Z. Ghahramani. The infinite factorial hidden

markov model. Nonparametric Bayes Workshop at ICML/UAI/COLT, 2008.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian

Data Analysis. Chapman & Hall/CRC, 2003.

A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many:

Illumination cone models for face recognition under variable lighting and

pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643–660, 2001.

Z. Ghahramani, T. Griffiths, and P. Sollich. Bayesian nonparametric latent

feature models. In Bayesian Statistics, volume 8, 2007.

Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste:

A constant time collaborative filtering algorithm. Information Retrieval, 4

(2), 2001.

Dilan Görür, Frank Jäkel, and Carl Edward Rasmussen. A choice model with

infinitely many latent features. In ICML ’06: Proceedings of the 23rd in-

ternational conference on Machine learning, pages 361–368, New York, NY,

USA, 2006. ACM.

Peter J. Green. Reversible jump markov chain monte carlo computation and

bayesian model determination. Biometrika, 82:711–732, 1995.

T. Griffiths and Z. Ghahramani. Infinite latent feature models and the In-

dian buffet process. In Technical Report 2005-001, Gatsby Computational

Neuroscience Unit, 2005.

G. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep

belief nets. In Neural Computation. 2006a.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, July 2006.

Bibliography 122

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning

algorithm for deep belief nets. Neural Comp., 18(7):1527–1554, July 2006b.

Ulrich Hoffmann, Jean-Marc Vesin, Touradj Ebrahimi, and Karin Diserens. An

efficient P300-based brain-computer interface for disabled subjects. Journal

of Neuroscience Methods, 167(1):115–125, 2008.

Hemant Ishwaran and Lancelot F. James. Gibbs sampling methods for stick

breaking priors. Journal of the American Statistical Association, 96(453):

161–173, 2001.

Sonia Jain and Radford M. Neal. A split-merge markov chain monte carlo

procedure for the dirichlet process mixture model. Journal of Computational

and Graphical Statistics, 13:158–182, 2000.

I. T. Jolliffe. Principal Component Analysis. Springer, second edition, 2002.

Carlos Guestrin Joseph Gonzalez, Yucheng Low. Residual splash for optimally

parallelizing belief propagation. In David van Dyk and Max Welling, editors,

Proceedings of the Twelfth International Conference on Artificial Intelligence

and Statistics, volume 5, pages 177–184. JMLR, 2009.

D. Knowles and Z. Ghahramani. Infinite Sparse Factor Analysis and Infinite

Independent Components Analysis. Lecture Notes in Computer Science,

4666:381, 2007.

Tom Kollar. personal communication, 2008.

Wei Li, David Blei, and Andrew McCallum. Nonparametric bayes pachinko

allocation. In UAI 07, 2007.

Aleix M. Mart’inez and Avinash C. Kak. PCA versus lDA. IEEE Trans.

Pattern Anal. Mach. Intelligence, 23:228–233, 2001.

Edward Meeds, Zoubin Ghahramani, Radford M. Neal, and Sam T. Roweis.

Modeling dyadic data with binary latent factors. In Advances in Neural

Information Processing Systems 19. 2007.

Bibliography 123

K. Miller, T. Griffiths, and M. Jordan. Variations on non-exchangeable non-

parametric priors for latent feature models. Nonparametric Bayes Workshop

at ICML/UAI/COLT, 2008a.

K. Miller, T. Griffiths, and M. Jordan. The phylogenetic indian buffet process:

A non-exchangeable nonparametric prior for latent features. UAI, 2008b.

Ramesh Nallapati, William Cohen, and John Lafferty. Parallelized variational

EM for Latent Dirichlet Allocation: An experimental evaluation of speed and

scalability. In ICDMW ’07: Proceedings of the Seventh IEEE International

Conference on Data Mining Workshops, pages 349–354, Washington, DC,

USA, 2007. IEEE Computer Society. ISBN 0-7695-3033-8. doi: http://dx.

doi.org/10.1109/ICDMW.2007.70.

R. Neal. Markov chain sampling methods for Dirichlet process mixture models.

Journal of Computational and Graphical Statistics, 9:249–265, 2000.

Radford Neal. Connectionist learning of belief networks. In Journal of Artificial

Intelligence, volume 56. 1992.

Radford M. Neal. Probabilistic inference using markov chain monte carlo

methods. Technical report, 1993.

Radford M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–741,

2003.

David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. Dis-

tributed inference for Latent Dirichlet Allocation. In J.C. Platt, D. Koller,

Y. Singer, and S. Roweis, editors, Advances in Neural Information Process-

ing Systems 20, pages 1081–1088. MIT Press, Cambridge, MA, 2008.

John Paisley and Lawrence Carin. Nonparametric factor analysis with beta

process priors. In ICML ’09: Proceedings of the 26th Annual International

Conference on Machine Learning, pages 777–784, New York, NY, USA, 2009.

ACM.

Bibliography 124

CORPORATE PDP Research Group. Parallel distributed processing: explo-

rations in the microstructure of cognition, vol. 1: foundations. MIT Press,

Cambridge, MA, USA, 1986.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman,

1988.

Graham E. Poliner and Daniel P. W. Ellis. A discriminative model for poly-

phonic piano transcription. EURASIP J. Appl. Signal Process., 2007(1):

154–154, 2007.

Piyush Rai and Hal Daume. The infinite hierarchical factor regression model.

In NIPS, 2009.

C. R. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,

second edition, 2004.

R. N. Shepard and P. Arabie. Additive clustering - representation of similarities

as combinations of discrete overlapping properties. Psychol. Rev., 86(2):87–

123, 1979.

Charles Spearman. ”general intelligence,” objectively determined and mea-

sured. American Journal of Psychology, 15:201–293, 1904.

David Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large scale on-

line Bayesian recommendations. In 18th International World Wide Web

Conference (WWW2009), April 2009.

Y. W. Teh, D. Gorur, and Z. Ghahramani. Stick-breaking construction for the

Indian buffet process. In Proceedings of the 11th Conference on Artificial

Intelligence and Statistic, 2007.

Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierar-

chical dirichlet processes. Journal of the American Statistical Association,

101(476), December 2006.

Yee Whye Teh. personal communication, August 2009.

Bibliography 125

R. Thibaux and M. Jordan. Hierarchical beta processes and the indian buffet

process. AISTATS, 2007.

M. Titsias. The infinite gamma-poisson feature model. In Advances in Neural

Information Processing Systems 19. 2007.

Michalis Titsias. The infinite gamma-poisson feature model. In J.C. Platt,

D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information

Processing Systems 20, pages 1513–1520. MIT Press, Cambridge, MA, 2008.

Amos Tversky. Elimination by aspects: A theory of choice. Psychological

Review, 79(4):281–299, 1972.

N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. 2003.

UN. Human development report. In United Nations Development Programme.

2008.

Jurgen Van Gael, Yee W. Teh, and Zoubin Ghahramani. The infinite facto-

rial hidden markov model. In Advances in Neural Information Processing

Systems 21. 2009.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning, 1

(1-2):1–305, 2008.

Max Welling and Kenichi Kurihara. Bayesian K-means as a “maximization-

expectation” algorithm. In Sixth SIAM International Conference on Data

Mining, 2006.

David Wingate, Noah D. Goodman, Daniel M. Roy, and Joshua B. Tenenbaum.

The infinite latent events model. In Conference on Uncertainty in Artificial

Intelligence, 2009.

John Winn and Christopher M. Bishop. Variational message passing. J. Mach.

Learn. Res., 6:661–694, 2005. ISSN 1533-7928.

Bibliography 126

Frank Wood and Thomas L. Griffiths. Particle filtering for nonparametric

Bayesian matrix factorization. In Advances in Neural Information Processing

Systems 19. MIT Press, 2007.

Frank Wood, Zoubin Ghahramani, and Tom Griffiths. A non-parametric

bayesian method for inferring hidden causes. In Proceedings of the Twenty-

Second Conference on Uncertainty in Artificial Intelligence (UAI, pages 536–

543, 2006.

Richard S. Zemel and Geoffrey E. Hinton. Developing population codes by

minimizing description length. Neural Computation, 7:11–18, 1994.

	Abstract
	Acknowledgements
	Introduction
	The Indian Buffet Process Model
	Restaurant Construction
	Infinite Limit Construction
	Stick-breaking Construction
	Beta-Bernoulli Process Construction
	Summary

	Inference
	Gibbs Sampler
	Collapsed Gibbs Sampler
	MH Proposals and Reversible Jump MCMC
	Slice Sampler
	Particle Filtering
	Summary

	Accelerated Sampling in Conjugate Models
	Intuition
	Formal Derivation
	Per-Iteration Running Times
	Experiments
	Discussion
	Summary

	Parallel Inference
	Inference Procedure
	Comparison to Exact Metropolis
	Analysis of Mixing Properties
	Realworld Experiments
	Summary

	Variational Methods
	Mean Field Approximation
	Computing the Variational Lower Bound
	Taylor Series Bound
	Multinomial Lower Bound

	Parameter Updates
	Taylor Update
	Multinomial Update

	Truncation Bounds
	Log Bound
	Levy-Kintchine Approach

	Experiments and Discussion
	Synthetic Data
	Real Data

	Summary

	Correlated Non-Parametric Latent Feature Models
	General Framework
	Specific Models
	DP-IBP Model
	IBP-IBP Model
	Noisy-Or IBP-IBP Model

	Experiments
	Discussion
	Summary

	Conclusions and Future Work
	Likelihood Models
	Linear-Gaussian
	Exponential-Gaussian
	Binary-Bernoulli

	Derivations for Variational Inference in the IBP
	Variational Lower Bound
	Parameter Updates

	Structured Nonparametric Latent Feature Models
	Adjusting Sparsity Properties
	Temporal Correlations
	Correlated Observations
	Correlated Features

	Bibliography

