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Abstract

The Partially Observable Markov Decision Process (POMDRBnéwork has
proven useful in planning domains where agents must balaciens that pro-
vide knowledge and actions that provide reward. Unfortelyamost POMDPs
are complex structures with a large number of parametersnany real-world
problems, both the structure and the parameters are diffxsbecify from do-
main knowledge alone. Recent work in Bayesian reinforcéheanning has made
headway in learning POMDP models; however, this work hagelgirfocused on
learning the parameters of the POMDP model. We define an teffOMDP
(iPOMDP) model that does not require knowledge of the sizéhefstate space;
instead, it assumes that the number of visited states el gis the agent explores
its world and only models visited states explicitly. We derstoate the iPOMDP
on several standard problems.

1 Introduction

The Partially Observable Markov Decision Process (POMDBjiehhas proven attractive in do-
mains where agents must reason in the face of uncertaingubedt provides a framework for
agents to compare the values of actions that gather infomand actions that provide immedi-
ate reward. Unfortunately, modelling real-world problemssPOMDPs typically requires a domain
expert to specify both the structure of the problem and aelawgmber of associated parameters,
and both of which are often difficult tasks. Current methadeeinforcement learning (RL) focus
on learning the parameters online, that is, while the ageatiing in its environment. Bayesian
RL [1, 2, 3] has recently received attention because it altve agent to reason both about uncer-
tainty in its model of the environment and uncertainty witkeinvironment itself. However, these
methods also tend to focus on learning parameters of anoema@nt rather than the structure.

In the context of POMDP learning, several algorithms [4, 5/]6have applied Bayesian methods
to reason about the unknown model parameters. All of thegmaphes provide the agent with the
size of the underlying state space and focus on learningahsition and observatiémlynamics for
each state. Even when the size of the state space is knoweyboyust making the agent reason
about a large number of unknown parameters at the beginiithg tearning process is fraught with
difficulties. The agent has insufficient experience to fitrgéanumber of parameters, and therefore
much of the model will be highly uncertain. Trying to plan @nd/ast model uncertainty often
requires significant computational resources; moreober,computations are often wasted effort
when the agent has very little data. Using a point estimateefnodel instead—that is, ignoring
the model uncertainty—can be highly inaccurate if the expprtor assumptions are a poor match
for the true model.

7] also learns rewards.



We propose a nonparametric approach to modelling the steuadf the underlying space—
specifically, the number of states in the agent’s world—wlilbbws the agent to start with a simple
model and grow it with experience. Building on the infinitelddén Markov model (iIHMM) [8], the
infinite POMDP (iPOMDP) model posits that the environmenttains of an unbounded number of
states. The agent is expected to stay in a local region; hewas time passes, it may explore states
that it has not visited before. Initially, the agent will @rfsimple, local models of the environment
corresponding to its limited experience (also conducivéasd planning). It will dynamically add
structure as it accumulates evidence for more complex rmodéhally, a data-driven approach to
structure discovery allows the agent to agglomerate stdthsdentical dynamics (see section 4 for
a toy example).

2 The Infinite POMDP Model

A POMDP consists of the n-tupleS,4,0.T.Q,Ry}. S, A, andO are

sets of states, actions, and observations. The transitiwtion7'(s'|s, a)

defines the distribution over next-statéso which the agent may transi-

tion after taking actiom from states. The observation functiof(o|s’, a)

is a distribution over observatiomsthat may occur in state after taking e
actiona. The reward functiorR(s, a) specifies the immediate reward for

each state-action pair (see figure 1 for a slice of the graphodel). The

factory € [0, 1) weighs the importance of current and future rewards. ’

We focus on discrete state and observation spaces (gesirggal contin-

uous observations is straightforward) and finite actiorcepaThe size of Figure 1: A time-slice
the state space is unknown and potentially unbounded. BEmsitions, ,fine POMDP model.
observations, and rewards are modelled with an iHMM.

The Infinite Hidden Markov Model A standard hidden Markov model (HMM) consists of the n-
tuple {S,0,7,Q}, where the transitio’(s’|s) and observatiof2(o|s’) distributions only depend
on the hidden state. When the number of hidden states is fimiteligcrete, Dirichlet distributions
may be used as priors over the transition and observatidribdisons. The iHMM [9] uses a
hierarchical Dirichlet Process (HDP) to define a prior ovétiis where the number of underlying
states is unboundeédTo generate a model from the iHMM prior, we:

1. Draw the mean transition distributi@n~ Stick(\).
2. Draw observation&(:|s,a) ~ H for eachs, a.
3. Draw transitiong’(+|s, a) ~ DP(«, T') for eachs, a.

where )\ is the DP concentration parameter aHdis a prior over observation distributions. For
example, if the observations are discrete, thenould be a Dirichlet distribution.

Intuitively, the first two steps define the observation dsition and an overall popularity for each
state. The second step uses these overall state popslévitlefine individual state transition distri-
butions. More formally, the first two steps involve a dréiy ~ DP(\, H), where the atoms af,
are(), andT are the associated stick-lengthRecall that in the stick breaking procedure, tie
stick-length, T, is given byw, Hf:_ll(l — v;), wherev; ~ Beta(1,\). While the number of states
is unbounded], decreases exponentially with meaning that “later” states are less popular. This
construction ofl; also ensures that . T, = 1. The top part of figure 2 shows a cartoon of a few
elements ofl” and{).

The second step of the iHMM construction involves defining tifansition distributiond™(-|s) ~
DP(«, T) for each state, wherea, the concentration parameter for the DP, determines hosello
the sampled distributioff’(-|s) matches the mean transition distributidn Becausé’ puts higher
probabilities on states with smaller indicd%,s’|s) will also generally put more mass on earliér
(see lower rows of figure 2). Thus, the generating processdssca notion that the agent will spend
most of its time in some local region. However, the longerdhent acts in this infinite space, the
more likely it is to transition to somewhere new.

2The iIHMM models in [8] and [9] are formally equivalent [10].
3A detailed description of DPs and HDPs is beyond the scope of this pdpaseprefer to [11] for back-
ground on Dirichlet processes and [9] for an overview of HDPs.



Infinite POMDPs To extend the iHMM framework to . T, T T3 Ty
iPOMDPs, we must incorporate actions and rewards into tl% | | |
generative model. To incorporate actions, we draw an ob-

servation distributiorf)(:|s,a) ~ H for each actioru and Qld]l Qzﬂ]] Qgﬂ]] Q4,dﬂ
each state. Similarly, during the second step of the gener-

ative process, we draw a transition distributibs’[s, a) ~ .. ‘
DP(a, T) for each state-action pdir. 1

HMMs have one output—observations—while POMDPg,
also output rewards. We treat rewards as a secondary set %f
observations. For this work, we assume that the set of pos-
sible reward values is given, and we use a multinomial dis-
tribution to describe the probabilitR(r|s, a) of observing _. . ] )

rewardr after taking actior: in states. As with the obser- Frl]gure 2 thMM; Trt')e first rovg.
vations, the reward distributior’? are drawn from Dirichlet shows each state's observation dis-
distribution H . We use multinomial distributions for con-1iPution X, and the mean transi-
venience: however, other reward distributions (such asGaf°" distributionT". Later rows show
sians) are easily incorporate in this framework. €ach state’s transition distribution.

I I N

In summary, the iPOMDP prior requires that we specify

e a set of actions! and observation®,

e agenerating distributiofl for the observation distributions ariély for the rewards (these
generating distributions can have any form; the choicedépiend on the application),

e a mean transition concentration factoand a state transition concentration factoand

e adiscount facto.

To sample a model from the iPOMDP prior, we first sample themigsnsition distributioril” ~
Stick(A). Next, for each state and actioru, we sample

e T(-|s,a) ~ DP(a,T),
o Q(:|s,a) ~ H,
e R(:|s,a) ~ Hpg.

Samples from the iPOMDP prior have an infinite number of stdiet fortunately all of these states
do not need to be explicitly represented. During a finitetitiie the agent can only visit a finite
number of states, and thus the agent can only make inferahces a finite number of states. The
remaining (infinite) states are equivalent from agent'spective, as, in expectation, these states
will exhibit the mean dynamics of the prior. Thus, the onlytpaf the infinite model that need to
be initialised are those corresponding to the states thet dge visited as well as a catch-all state
representing all other states. In reality, of course, thenadoes not know the states it has visited:
we discuss joint inference over the unknown state histodythe model in section 3.1.

3 Planning

As in the standard Bayesian RL framework, we recast the prololf POMDP learning as planning
in a larger ‘model-uncertainty’ POMDP in which both the traedel and the true state are unknown.
We outline below our procedure for planning in this joint spaf POMDP models and unknown
states and the detail each step—nbelief monitoring and asttattion—in sections 3.1 and 3.2.

Because the true state is hidden, the agent must choosdiitssabased only on past actions and
observations. Normally the best action to take at tirdepends on the entire history of actions and
observations that the agent has taken so far. However, dhability distribution over current states,
known as théelief is a sufficient statistic for a history of actions and oba#&ons. In discrete state
spaces, the belief at tinte+ 1 can be computed from the previous beligf, the last actior, and
observatiory, by the following application of Bayes rule:

b1 (s)=Qols,a) Y T(sls', a)be(s')/ Pr(o]b, a), @)

s'eS

“We use the same base measkiéo draw all observation distributions; however, a separate meaglyres
could be used for each action if one had prior knowledge about the®cpebservation distribution for reach
action. Likewise, one could also draw a sepafiatdor each action.
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wherePr(olb,a)=3 s Qo|s',a)> " s T(s'|s,a)b:(s). However, it is intractable to express the
joint beliefb over models and states with a closed-form expression. Wmexgippate the belief with

a set of sampled modets = {T, 2, R}, each with weightv(m). Each model sample: maintains

a belief over stated,, (s). The states are discrete, and thus the béligfs) can be updated using
equation 1. Details for sampling the modelsare described in section 3.1.

Given the belief, the agent must choose what action to choese One approach is to solve the
planning problem offline, that is, determine a good actiarefery possible belief. If the goal is to
maximize the expected discounted reward, then the optiolayas given by:

‘/t(b) = r;leajf Qt(ba CL), (2)
Qi(b,a) = R(b,a)+v Y Pr(ofb,a)V;(b"°), (3)
o€O

where the value functiofr (b) is the expected discounted reward that an agent will redéive
current belief isb and Q(b, a) is the value of taking action in belief b. The exact solution to
equation 3 is only tractable for tiny problems, but many agpnation methods [12, 13, 14] have
been developed to solve POMDPs offline.

While we might hope to solve equation 3 over the state spacesivigge model, it is intractable to
solve over the joint space of states and infinite models—théetngpace is so large that standard
point-based approximations will generally fail. Moregviémakes little sense to find the optimal
policy for all models when only a few models are likely. THere, instead of solving 3 offline,
we build a forward-looking search tree at each time step[(&dor a review of forward search in
POMDPSs). The tree computes the value of action by invegtigat number of steps into the future.
The details of the action selection are discussed in se8tin

3.1 Belief Monitoring

As outlined in section 3, we approximate the joint belief ostates and models through a set of
samples. In this section, we describe a procedure for saguplset of models: = {T, 2, R} from

the true belief, or posterior, over modélg.hese samples can then be used to approximate various
integrations over models that occur during planning; inlitimé of infinite samples, the approxima-
tions will be guaranteed to converge to their true valuessifiplify matters, we assume that given

a modelm, itis tractable to maintain a closed-form beligf(s) over states using equation 1. Thus,
models need to be sampled, but beliefs do not.

Suppose we have a set of modelghat have been drawn from the belief at timeTo get a set of
models drawn from the belief at time-1, we can either draw the models directly from the new belief
or adjust the weights on the model set at tiire® that they now provide an accurate representation
of the belief at timeg + 1. Adjusting the weights is computationally most straightfard: directly
following belief update equation 1, the importance weiglkt:) on modelmn is given by:

wif (m) o< Qo|m, a)w,(m), 4)

whereQ(o|m, a)=3" . s Q(o|s, m, a)b,,(s), and we have usell(m’|m,a) = 4,,(m’) because the
true model does not change.

The advantage of simply reweighting the samples is that d¢tiefupdate is extremely fast. How-
ever, new experience may quickly render all of the currend@hgamples unlikely. Therefore, we
must periodically resample a new set of models directly ftbencurrent belief. The beam-sampling
approach of [16] is an efficient method for drawing samplesifan iHMM posterior. We adapt this
approach to allow for observations with different tempafaifts (since the reward, depends on
the states;, whereas the observatien is conditioned on the statg ;) and for transitions indexed
by both the current state and the most recent action. Theaogss of our sampler follows directly
from the correctness of the beam sampler [16].

The beam-sampler is an auxiliary variable method that dsamgples from the iPOMDP posterior.
A detailed description of beam sampling is beyond the scopeispaper; however, we outline the
general procedure below. The inference alternates bettheea phases:

SWe will use the wordposteriorandbelief interchangeably; both refer to the probability distribution over
the hidden state given some initial belief @¥or) and the history of actions and observations.



e Sampling slice variables to limit trajectories to a finite number of hidden states.
Given a transition model” and a state trajectorysi, ss,...}, an auxiliary variable
uy ~ Uniform([0, min(7'(+|s¢, a))]) is sampled for each time The final columrk of the
transition matrix is extended via additional stick-bremkiuntil max(7'(sx|s,a)) < wuy.).
Only transitionsT’(s'|s, a) > u, are considered for inference at tirhé

e Sampling a hidden state trajectory. Now that we have a finite model, we apply forward
filtering-backward sampling (FFBS) [18] to sample the uhdeg state sequence.

e Sampling a model. Given a trajectory over hidden states, transition, obsemwaand
reward distributions are sampled for the visited stategr(iy makes sense to sample dis-
tributions for visited states, as we do not have informatibout unvisited states). In this
finite setting, we can resample the transiti@r{s|s, a) using standard Dirichlet posteriors:

T(-|s,a) ~ Dirichlet(T5* + ni*, T5% + n3®, .., T* + i, > T3, (5)
i=k+1

wherek is the number ofctiveor used stated* is the prior probability of transitioning
to statei from states after taking actioruz, andn;“ is the number of observed transitions
to statei from s aftera. The observations and rewards are resampled in a similanenan
for example, if the observations are discrete with Diriciplgors:

Q(-|s,a) ~ Dirichlet(H; 4+ n**, Hy 4+ n°*", ..., H|p| + n?1°1*%). (6)

As with all MCMC methods, initial samples (from theirn-in period) are biased by sampler’s start
position; only after the sampler has mixed will the samplesdpresentative of the true posterior.

Finally, we emphasize that the approach outline above isnplaag approach and not a maximum

likelihood estimator; thus the samples, drawn from the tigdaelief, capture the variation over

possible models. The representation of the belief is natésapproximate due to our use of

samples, but the samples are drawn from the true currerdgfbatio other approximations have

been made. Specifically, we are not filtering: each run of genbsampler produces samples from
the current belief. Because they are drawn from the truespostall samples have equal weight.

3.2 Action Selection

Given a set of models, we apply a stochastic forward seartiteimodel-space to choose an action.
The general idea behind forward search [15] is to use a faleoking tree to compute action-
values. Starting from the agent’s current belief, the trembhes on each action the agent might
take and each observation the agent might see. At each actits) the agent computes its expected
immediate rewardi(a) = E,,[E,,[R(-]s, a)]].

From equation 3, the value of taking actieimn beliefb is

Q(a,b) = R(a,b) +7 Y _ Qolb,a) max Q(a’, b*) ™

whereb® is the agent’s belief after taking actiarand seeing observatienfrom beliefb. Because
action selection must be completed online, we use equatiorupdate the belief over models via
the weightsw(m). Equation 7 is evaluated recursively for eagfu’, b*°) up to some deptit.

The number of evaluations grows with1||O|)?, so doing a full expansion is feasible only for very
small problems. We approximate the true value stochabtibglsampling only a few observations
from the distributionP(ola) = 3", P(ola, m)w(m). Equation 7 reduces to

Qa.b) = Rla,) + 75 X maxQ(a’, b @®

whereN is the number of sampled observations an thei!” sampled observation.

Once we reach a prespecified depth in the tree, we must appatithe value of the leaves. For
each modein in the leaves, we can compute the valdig:, b,,,, m) of the actioru by approximately

®For an introduction to slice sampling, refer to [17].



solving offline the POMDP model that represents. We approximate the value of acti@s

Q(a,b) = Y~ w(m)Q(a,by,m). 9)

m

This approximation is always an overestimate of the valadt assumes that the uncertainty over
models—but not the uncertainty over states—will be resolndatie following time step (similar to
the QMDP [19] assumptior) As the iPOMDP posterior becomes peaked and the uncertaiaty o
models decreases, the approximation becomes more exact.

The quality of the action selection largely follows from theunds presented in [20] for planning
through forward search. The key difference is that now oliebeepresentation is particle-based:;
during the forward search we approximate an expected renarer all possible models with re-
wards from the particles in our set. Because we can guarémeeur models are drawn from the
true posterior over models, this approach is a standard &4Gatlo approximation of the expecta-
tion. Thus, we can apply the central limit theorem to stat the estimated expected rewards will

be distributed around the true expectation with approxéfyatormal noiseV (0, %2), wheren is
the number of POMDP samples amélis a problem-specific variance.

4 Experiments

We begin with a series of illustrative examples demonstgathe properties of the iPOMDP. In
all experiments, the observations were given vague hypampeters (1.0 Dirichlet counts per ele-
ment), and rewards were given hyperparameters that ergmdieaked distributions (0.1 Dirichlet
counts per element). The small counts on the reward hypsrpaers encoded the prior belief that
R(-]s, a) is highly peaked, that is, each state-action pair will §kedve one associated reward value.
Beliefs were approximated with sample set of 10 models. Ndodlere resampled between episodes
and reweighted during episodes. A burn-in of 500 iteratiwas used for the beam sampler when
drawing these models directly from the belief. The forwaedrch was expanded to a depth of 3.
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Figure 3: Various comparisons of the lineworld and loopwariodels. Loopworld infers only
necessary states, ignoring the more complex (but irretegsmicture.

Avoiding unnecessary structure: Lineworld and Loopworld. We designed a pair of simple envi-
ronments to show how the iPOMDP infers states only as it catindiuish them. The first, lineworld
was a length-six corridor in which the agent could eithevetdeft or right. Loopworld consisted
of a corridor with a series of loops (see figure 3(a)); now tend could travel though the upper or
lower branches. In both environments, only the two ends@ttrridors had unique observations.

"We also experimented with approximatitifa, b) ~ 80 — percentile({w(m)Q(a,bm,n )}). Taking
a higher percentile ranking as the approximate value places a higherorahetions with larger uncertainty.
As the values of the actions become more well known and the discrepdmatigeen the models decreases, this
criterion reduces to the true value of the action.



Actions produced the desired effect with probability 0. 8servations were correct with probability
0.85 (that is, 15% of the time the agent saw an incorrect @htien). The agent started at the left
end of the corridor and received a reward of -1 until it reactie opposite end (reward 10).

The agent eventually infers that the lineworld environmemnsists of six states—based on the
number of steps it requires to reach the goal—although in #iy stages of learning it infers
distinct states only for the ends of the corridor and grodggsrhiddle region as one state. The
loopworld agent also shows a growth in the number of states time (see figure 3(b)), but it
never infers separate states for the identical upper anerlovanches. By inferring states as they
needed to explain its observations—instead of relying oreag@cified number of states—the agent
avoided the need to consider irrelevant structure in the@ment. Figure 3(c) shows that the agent
(unsurprisingly) learns optimal performance in both eswinents.

Adapting to new situations: Tiger-3. The iPOMDP’s flexibility also lets it adapt to new situations
In the tiger-3 domain, a variant of the tiger problem [19] #ueent had to choose one of three doors
to open. Two doors had tigers behind them= —100) and one door had a small reward=€ 10).

At each time step, the agent could either open a door or listethe “quiet” door. It heard the
correct door correctly with probability 0.85.

The reward was unlikely to be behind the third dgoH .2),
but during the first 100 episodes, we artificially ensured tha _,, Evolution of Reward
the reward was always behind doors 1 or 2. The improving

rewards in figure 4 show the agent steadily learning the dy- -¢
namics of its world; it learned never to open door 3. The di§
in 4 following episode 100 occurs when we next allowed thg

reward to be behind all three doors, but the agent quickB-0
adapts to the new possible state of its environment. Tﬁqlzo
iPOMDP enabled the agent to first adapt quickly to its sim-

plified environment but add complexity when it was needed.-1o;

50 100 150 200 250
Episode Count

Broader Evaluation. We next completed a set of experi-
ments on POMDP problems from the literature. Tests had
200 episodes of learning, wh_ich interleavgd actjng and r?'gure 4: Evolution of reward from
sampling models, and 100 episodes of testing with the magly, 3

els fixed. During learning, actions were chosen stochasti-

cally based on its value with probability 0.05 and compietahdomly with probability 0.01. Oth-
erwise, they were chosen greedily (we found this small amofirmndomness was needed for ex-
ploration to overcome our very small sample set and seangtihsle We compared accrued rewards
and running times for the iPOMDP agent against (1) an agextkiiew the state count and used
EM to train its model, (2) an agent that knew the state coudthat used the same forward-filtering
backward-sampling (FFBS) algorithm used in the beam sagliner loop to sample models, and
(3) an agent that used FFBS with ten times the true numbeatefsstFor situations where the number
of states is not known, the last case is particularly intexgs—we show that simply overestimating
the number of states is not necessarily the most efficieatieal

Table 1 summarises the results. We see that the iPOMDP offiens ia smaller number of states than
the true count, ignoring distinctions that the history does support. The middle three columns
show the speeds of the three controls relative the iPOMDPat® the iPOMDP generally uses
smaller state spaces, we see that most of these values aterghan 1, indicating the iPOMDP is

faster. (Inthe largest problem, dialog, the oversized FF®8el did not complete running in several
days.) The latter four columns show accumulated rewardsegehat the iPOMDP is generally on
par or better than the methods that have access to the ttaespte size. Finally, figure 5 plots the
learning curve for one of problems, shuttle.

5 Discussion

Recent work in learning POMDP models include[23], whichsugeet of Gaussian approximations
to allow for analytic value function updates in the POMDPaand [5], which jointly reasons

over the space Dirichlet parameter and states when plaimitigcrete POMDPs. Sampling based
approaches include Medusa [4], which learns using stageieg) and [7], which learns using policy
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Figure 5: Evolution of reward for shuttle. During traininigf(), we see that the agent makes fewer
mistakes toward the end of the period. The boxplots on tte sgow rewards for 100 trials after
learning has stopped; we see the iIPOMDP-agent’s rewartbdisbn over these 100 trials is almost
identical an agent who had access to the correct model.

Table 1: Inferred states and performance for various probleThe iPOMDP agent (FFBS-Inf)
often performs nearly as well as the agents who had knowletifee true number of states (EM-
true, FFBS-true), learning the necessary number of state$ fiaster than an agent for which we
overestimate the number of states (FFBS-big).

Metric States Relative Training Time Performance

Problem Truel FFBS-|| EM- | FFBS-| FFBS-|| EM- FFBS-| FFBS-| FFBS-
Inf true | true big true true big Inf

Tiger[19] 2 2.1 041 | 0.70 | 1.50 277 | 049 | 424 | 4.06

Shuttle[21] 8 2.1 182 | 1.02 | 3.56 10 10 10 10

Network[19] 7 4.36 156 | 1.09 | 4.82 1857 | 7267 | 6843 | 6508

Gridworld[19] || 26 | 7.36 3.57 | 248 | 59.1 -25 -51 -67 -13

(adapted)

Dialog[22] 51 | 2 0.67 | 5.15 | - -3023 | -1326 | - -1009

(adapted)

queries. All of these approaches assume that the numbeideflyimg states is known; all but [7]
focus on learning only the transition and observation nadel

In many problems, however, the underlying number of stateg not be known—or may require
significant prior knowledge to model—and, from the perspeatif performance, is irrelevant. The
iPOMDP model allows the agent to adaptively choose the cexityl of the model; any expert
knowledge is incorporated into the prior: for example, thadblet counts on observation param-
eters can be used to give preference to certain observa®nell as encode whether we expect
observations to have low or high noise. As seen in the reghiksiPOMDP allows the complex-
ity of the model to scale gracefully with the agent’s expeci Future work remains to tailor the
planning to unbounded spaces and refine the inference forBfOMsampling.

Past work has attempted to take advantage of structure inIF3NR4, 25], but learning that struc-
ture has remained an open problem. By giving the agent anwnaleal state space—but strong
locality priors—the iPOMDP provides one principled framelwdo learning POMDP structure.
Moreover, the hierarchical Dirichlet process construttiescribed in section 2 can be extended to
include more structure and deeper hierarchies in the transi

6 Conclusion

We presented the infinite POMDP, a new model for Bayesian Rtaitially observable domains.

The iPOMDP provides a principled framework for an agent teifpmore complex models of its

world as it gains more experience. By linking the compleritthe model to the agent’s experience,
the agent is not forced to consider large uncertainties—wtém be computationally prohibitive—

near the beginning of the planning process, but it can laderecup with accurate models of the
world when it requires them. An interesting question may atsapply these methods to learning
large MDP models within the Bayes-Adaptive MDP framewor&][2
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