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Abstract

We often seek to identify co-occurring hid-
den features in a set of observations. The
Indian Buffet Process (IBP) provides a non-
parametric prior on the features present in
each observation, but current inference tech-
niques for the IBP often scale poorly. The
collapsed Gibbs sampler for the IBP has a
running time cubic in the number of obser-
vations, and the uncollapsed Gibbs sampler,
while linear, is often slow to mix. We present
a new linear-time collapsed Gibbs sampler for
conjugate likelihood models and demonstrate
its efficacy on large real-world datasets.

1. Introduction

Identifying structure is a common problem in machine
learning. For example, given a piece of music, we may
be interested in jointly identifying that the piece con-
sists of a collection of notes and identifying which notes
are played when. Similarly, given a set of images, we
may be interested in extracting the objects that com-
pose the images and indicating in which images the ob-
jects appear. Traditional machine learning approaches
to this problem require the number of underlying fea-
tures as an input. However, in truly unsupervised set-
tings, the number of hidden features is often unknown,
and an inaccurate guess may produce poor results.

The Indian Buffet Process (IBP) (Griffiths & Ghahra-
mani, 2005) is a non-parametric prior on what fea-
tures are present in which observations. Specifically,
the IBP places a prior over feature-assignment matri-
ces Z, where Znk indicates whether feature k is present
in observation n. The number of features in each ob-
servation is finite with probability one, but new fea-
tures as more data are observed. For example, as we
see more images, we expect to see objects not present
in the previous images. This property has made
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the IBP useful for modelling choice behaviour (Görür
et al., 2006), similarity judgements (Navarro & Grif-
fiths, 2008), protein interactions (Chu et al., 2006),
and dyadic data (Meeds et al., 2007).

The IBP provides a principled way to determine the
number of underlying features in a dataset, but its
usefulness has been limited because the inference is
often computationally expensive. Current procedures
for the IBP include collapsed and uncollapsed Gibbs
sampling (Griffiths & Ghahramani, 2005), which may
be augmented with Metropolis split-merge propos-
als (Meeds et al., 2007), slice sampling (Teh et al.,
2007), particle filtering (Wood & Griffiths, 2007), and
variational inference (Doshi-Velez et al., 2009). As the
number of observations increase, collapsed samplers
suffer because the likelihood computations often grow
super-linearly in the number of observations N . Uncol-
lapsed samplers suffer because their harder constraints
mean that they are usually slow to mix.

We present an accelerated Gibbs sampler for the con-
jugate linear-Gaussian model that retains the benefits
of collapsing the feature identities but has a linear per-
iteration running time. Inspired from Maximization-
Expectation clustering (Welling & Kurihara, 2009),
where hard cluster assignments are combined with dis-
tributions over cluster indices, our accelerated sampler
samples the feature assignments Z but keeps a poste-
rior over the feature identities. We use this posterior
to efficiently compute the likelihood of an observation
without being constrained by a single, sampled fea-
ture identity. Our approach easily scales to datasets
of 10,000 observations or 1,500 dimensions. More gen-
erally, we believe that maintaining posteriors over a
few key variables within a sampler has the potential
to speed computations in a variety of applications.

2. Latent Feature Model

The Indian Buffet Process model posits that each ob-
servation can be explained by a set of latent features.
The feature-assignment matrix Z describes what fea-
tures are present in what observations: Znk is 1 if fea-
ture k is present in observation n and 0 otherwise. To
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generate a sample from the IBP, first imagine that the
rows of Z (the observations) are customers and the
columns of Z (the features) are dishes in an infinite
buffet. The first customer takes the first Poisson(α)
dishes. The following customers try previously sam-
pled dishes with probability mk/n, where mk is the
number of people who tried dish k before customer
n. Each customer also takes Poisson(α/n) new dishes.
The value Znk records if customer n tried dish k.

The exchangeability properties of the IBP ensure the
order in which the customers attend the buffet has
no impact on the distribution of Z. Customers will
use “earlier” columns more than “later” ones, but if
features are sampled independently from the column
index, then they will also be exchangeable. Since the
ordering of the columns in Z is arbitrary, it is conve-
nient to define a distribution over [Z], a form of Z that
reorders the columns depending on the history of ob-
servations who have used that feature (see (Griffiths
& Ghahramani, 2005) for details):

p([Z]) =
αK

∏2N
−1

h=1 Kh!
exp {−α

N∑
n=1

1

n
} (1)

K∏
k=1

(N −mk)!(mk − 1)!

N !
,

where K is the number of nonzero columns in Z, mk

is the number of observations using feature k, and Kh

is the number of columns in Z with binary representa-
tion h. We refer to these K features as the initialised
features, that is, the features that have been observed
so far. The parameter α controls the expected num-
ber of features in each observation. Equation 1 ensures
that the number of nonzero columns K will be finite
for finite N with probability one without bounding K.

To complete the model, we now describe how obser-
vations are generated. Let A be the set of features.
In this work, we focus on a linear-Gaussian model in
which the observed data X is generated by

X = ZA + ǫ, (2)

where A is a KxD matrix of K 1xD features, with a
Gaussian prior, and the noise ǫ is independent of Z
and A and uncorrelated across observations (see fig-
ure 1 for an illustration). However, the core ideas of
our algorithm apply to any likelihood model in which
P (X|Z) =

∫
P (X|Z,A)P (A)dA may be computed or

approximated efficiently. For example, A and ǫ could
be drawn from other stable distributions having sup-
port over the entire real line.

While applications may not have an linear-Gaussian
form—for example, Fourier coefficients are non-
negative—the Gaussian prior is often sufficient. Ex-
amples include: A is the frequency signature of a note

X Z A

...

*

D D

~ NN ... + ε
K

K

Figure 1. The latent feature model proposes the data X is
the product of Z and A with some noise.

and Z is when notes are played, A is the characteris-
tic shape of a neuron’s spike and Z is when neurons
are firing, or A is an object and Z is what objects are
present in an image. The noise may come from imper-
fections in the microphone, voltmeter, or camera.

3. Gibbs Sampler

Both collapsed and uncollapsed Gibbs samplers have
been derived for the IBP (Griffiths & Ghahramani,
2005). Both samplers use the exchangeability property
of the IBP to imagine that the current observation n
is the last customer to have entered the buffet. If we
can compute p(X|Z) efficiently, then for all initialised
features k, we can sample Znk via

p(Znk = 1|Z
−nk, X) ∝

mk − Znk

N
p(X|Z) (3)

where mk is the number of previous observations con-
taining feature k. Note that if observation n is the
only observation using feature k, then the Gibbs sam-
pler will always remove it. However, new features may
then be sampled based on

p(knew) ∝ Poisson(knew,
α

N
)p(X|Znew) (4)

where Znew is the feature-assignment matrix with knew

additional columns set to one for feature n. We com-
pute these probabilities to some truncation level kmax.

For the linear-Gaussian model, the collapsed likelihood
P (X|Z) is given by

p(X|Z, σx, σa) (5)

=
exp(− 1

2σ2
x

(XT (I − Z(ZT Z +
σ

2

x

σ2
a

I)−1ZT )X))

(2π)
ND

2 σ
(N−K)D
X

σKD
a |ZT Z +

σ2
x

σ2
a

I|
D

2

where σ2
x is the noise variance and σ2

a is the feature
variance. As seen in equation 5, integrating out the
features A when computing p(X|Z) correlates the ob-
servations. Thus the collapsed Gibbs sampler has a
relatively high computational complexity per itera-
tion. Griffiths and Ghahramani (2005) describe a set
of rank-one updates to reduce this computational cost,
but the updates remain O(N3) per iteration.
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The uncollapsed version of the Gibbs sampler trades a
faster per-iteration runtime for (generally) slower mix-
ing. It represents the features A explicitly and and
alternates between sampling A and sampling Z. The
sampling equations are identical to equations 3 and 4
except that all probabilities are now also conditioned
on A. For example, p(Znk = 1|Z

−nk, X) for exist-
ing features is now proportional to mk−Znk

N
p(X|Z, A).

When considering to add new features, the uncollapsed
sampler draws knew features from the prior p(A),
and then conditions the likelihood on those features.1

When conditioning on A, the likelihood p(X|Z,A)
factors into

∏
n

p(Xn|Zn, A). Thus, if only Znk is
changed, only p(Xn|Zn, A) changes in p(X|Z,A).

In the linear-Gaussian model, p(A|X,Z) is Gaussian2

with mean µA and variance ΣA:

µA = (ZT Z +
σ2

x

σ2
a

I)−1ZT X (6)

ΣA = σ2
x(ZT Z +

σ2
x

σ2
a

I)−1

4. Accelerated Sampling

We describe a sampler that mixes like the collapsed
Gibbs sampler but has a running time like the uncol-
lapsed Gibbs sampler. Computing the collapsed likeli-
hood (equation 5) is expensive because the likelihood
of each Znk depends on the entire dataset. The graph-
ical model in figure 2) illustrates this dependence,
where we have split the observations into two parts.
The “bottom” XW matrix represents a window con-
taining the last W observations and X

−W represents
the other observations. If A is not observed, inference
on ZW depends on both XW and X

−W . In contrast, if
A is observed—as in the uncollapsed Gibbs sampler—
inference on ZW depends only on the corresponding
data XW . (The Z

−W dependence is easy to compute.)

Our accelerated sampler maintains the posterior
p(A|X

−W , Z
−W ). By keeping the posterior, instead of

sampling a fixed value for A, the accelerated sampler
retains the flexibility—that is, the mixing properties—
of the collapsed Gibbs sampler (regardless of W ).
However, similar to the uncollapsed Gibbs sampler,
the posterior blocks the dependence of ZW on X

−W .
As a result, the accelerated Gibbs sampler has similar
runtime to the uncollapsed sampler.

1We found that sampling new features from the prior
seemed to be one of the key factors that slowed down the
mixing of the uncollapsed sampler. Our experiments used
a semi-collapsed Gibbs sampler in which initialised features
were instantiated, but new features were integrated out.

2The mean µA has the dimensionality of A (KxD). All
dimensions are independent with identical variances, so the
joint covariance is block diagonal with D identical KxK

blocks. We let ΣA be the KxK covariance for A
·,d.

A

Z−w X−w

XwZw

α

Figure 2. Graphical model for the IBP, showing the obser-
vations and the feature-assignment matrix split into two
(arbitrary) parts. The observations corresponding to ZW

occur “after” Z
−W and depend on the counts of Z

−W .

Formally, let XW denote some window of observations
containing observation n. The exchangeability of the
IBP allows us to imagine that XW are the final W ob-
servations and Xn is the last observation. Using Bayes
rule, we write the probability p(Znk = 1|Z

−nk, X) as:

p(Znk = 1|Z
−nk, X) ∝ p(Znk|Z−nk)p(X|Z)

=
mk

n

∫
A

p(X|Z,A)p(A)dA.

We split the data into sets XW and X
−W and apply

the conditional independencies from figure 2 to get

p(Znk = 1|Z
−nk, X)

=
mk

n

∫
A

p(XW , X
−W |ZW , Z

−W , A)p(A)dA

=
mk

n

∫
A

p(XW |ZW , A)p(X
−W |Z−W , A)p(A)dA.

Finally, we apply Bayes rule again to p(X
−W |Z−W , A):

p(Znk = 1|Z
−nk, X) (7)

∝
mk

n

∫
A

p(XW |ZW , A)p(A|X
−W , Z

−W )dA

Thus, given p(A|X
−W , Z

−W ), we can compute
p(Znk = 1|Z

−nk, X) exactly without touching X
−W .

In the linear-Gaussian model, the feature posterior
p(A|X

−W , Z
−W ) and likelihood p(XW |ZW , A) are

both Gaussian, and the integral in equation 7 yields

P (Znk|Z−nk, X) (8)

∝
mk

n
N (XW ;ZW µA

−W , ZW ΣA

−W ZT

W +ΣX),

where (µA
−W

,ΣA
−W

) is the mean and covariance of the

feature posterior and ΣX = σ2
xI is the noise variance.

The accelerated sampling procedure, summarized in
Algorithm 1, only uses a small window of observa-
tions XW at one time. We first compute the fea-
ture posterior given all of the data using equation 6.
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Algorithm 1 Accelerated Gibbs Sampler

Initialize Z.
Compute p(A|Z,X).
for each iteration do

S ← {1 . . . N}
while S is not empty do

Sample and remove W elements from S.
Compute p(A|Z

−W , X
−W ) from p(A|Z,X).

for each observation n in W do

Sample Znk according to equation 9.
Sample new features for each observation n
according to equation 4.

end for

Update p(A|Z,X) from p(A|Z
−W , X

−W ).
end while

end for

Next, we randomly choose W observations as our win-
dow. Given the full feature posterior p(A|X,Z) =
N (µA,ΣA), the posterior p(A|X

−W , Z
−W ) with the

window XW removed is given by

ΣA

−W = (I−ΣAZT

W (ZW ΣAZT

W−ΣX)−1ZW )ΣA

µA

−W = b(µA−ΣAZT

W (ZW ΣAZT

W +ΣX)−1XW )

where b = (I−ΣAZT
W

(ZW ΣAZT
W

+ΣX)−1ZW ΣA)−1.
Now each Znk in ZW may be sampled using equation 9.
New features are sampled using equation 4.3

Each sampling step requires the computation of
P (XW |ZW ) = N (XW ;ZW µA

−W
, ZW ΣA

−W
ZT

W
+ ΣX).

If only one element Znk of ZW changes, the new
(ΣX

W
)−1 and its determinant can be computed by a

pair of rank-one updates; new features may also be
incorporated into the covariance via a single rank-one
update. If the Woodbury formulas are used, the up-
dates require O(W 2) elementary operations. Griffiths
and Ghahramani (2005) show an O(K2) update is also
possible. However, the O(W 2) inversions will be faster
because we expect K to grow with the number of ob-
servations while W can be fixed to remain small.

Once we have completed sampling the window, we re-
compute the full feature posterior p(A|X,Z):

µA = µA

−W + ΣA

−W ZT

W

·(ZW ΣA

−W ZT

W + ΣX)−1(Xi − ZW µA

−W )

ΣA = (I − ΣA

−W ZT

W (ZW ΣA

−W ZT

W + ΣX)−1ZW )ΣA

−W

For each iteration, the sampler then chooses W new
observations without replacement and repeats until all
N observations have been updated.

3In practice, using the information form P A = (ΣA)−1,
hA = PµA results in slightly more stable updates. We
convert P A

−W and hA
−W to ΣA

−W and µA
−W before computing

likelihoods, so the computational complexity is unchanged.

5. Per-Iteration Running Times

We consider the number of addition and multipli-
cation operations for one sweep through an NxK
feature-assignment matrix Z under a linear-Gaussian
likelihood model (ignoring the addition of new fea-
tures). The running time of the collapsed Gibbs sam-
pler is dominated by the computation of the exponent
XT (I−Z(ZT Z+Iσ2

x/σ2
a)−1ZT )X. If only one element

of Z is changed, then the inverse (ZT Z + Iσ2
x/σ2

a)−1

may be updated in O(K2) time. However, the remain-
ing matrix products require O(N2K) and O(N2D) op-
erations respectively. Thus, for NK elements, the run-
ning time for large N is O(NK(N2K + N2D)).

The uncollapsed Gibbs sampler requires many fewer
operations per element: p(Xn|Zn, A) is independent
of the remaining observations and only requires the
computation of ZnA, which is O(KD). The features A
are resampled once per iteration. Computing the mean
and variance for A given Z requires steps that O(K3+
NK2 + NKD), but the O(NK2D) time required to
sample NK elements dominates these terms.

Finally, as with the collapsed Gibbs sampler, the ac-
celerated Gibbs sampler’s per-iteration running time
also has a dominant term from computing the like-
lihood. If Woodbury inversions are used, the like-
lihood computations are O(W 2 +DW 2), for a com-
plexity O(NKDW 2) for sampling all the Znk. How-
ever, the feature posterior must also be updated N/W
times, and each update requires steps of complexity
O(W 3+W 2K+WK2). Thus, the overall complexity
is O(N(KDW 2+K2)), and the optimal value for W
is 1.4 Like the uncollapsed Gibbs sampler, the accel-
erated sampler’s complexity is linear in N .

Table 1 summarises the running times. Both the un-
collapsed and accelerated Gibbs sampler are linear in
N , but the accelerated Gibbs sampler has a slightly
better complexity in K and D. The lower order depen-
dence is beneficial for scaling because we expect K to
grow with N . While constants and lower-order terms
are important, our experiments confirm the lower com-
plexity is significant in the larger datasets.

6. Experiments

We compared the computational efficiency and infer-
ence quality of the collapsed Gibbs sampler, the semi-
collapsed Gibbs sampler (an uncollapsed Gibbs sam-
pler that integrates over the new features when sam-
pling knew), and the accelerated Gibbs sampler. All
samplers were optimised to take advantage of rank-
one updates and vectorisation.

4We included W in our original formulation because in
general the optimal choice of W will depend on the relative
costs of computing the feature posterior and the likelihood.
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Table 1. Per-iteration running times for large N and a
linear-Gaussian likelihood model, given an NxK matrix
Z and D-dimensional data.

Algorithm Running Time
Collapsed Gibbs O(N3(K2+KD))
Uncollapsed Gibbs O(NDK2)
Accelerated Gibbs O(N(KDW 2+K2))
Accelerated Gibbs, W=1 O(N(K2 + KD))

Per-iteration runtimes were used to evaluate compu-
tational efficiency. Since Gibbs sampling produces
a sequence of correlated samples, another important
metric was the degree of independence between suc-
cessive samples: more independent samples indicate
faster mixing. With the synthetic data, we ran 5 chains
in parallel to evaluate the effective number of indepen-
dent samples per actual sample (Gelman et al., 2003).
This quantity will be 1 if successive samples are inde-
pendent and less than 1 otherwise. Experiments with
real-world data took longer to complete, so we esti-
mated the burn-in time instead. In both cases, the
number of features K and the training log-likelihood
were the chain statistics used to evaluate mixing.

We evaluated the inference quality by first holding out
approximately 100D Xnd values during the initial in-
ference. No observation had all of its dimensions miss-
ing, and no dimension had all of its observations miss-
ing. The quality of the inference was measured by eval-
uating the test log-likelihood and the L2 reconstruc-
tion error of the missing elements. The test metrics
were averaged from the final five samples.

Synthetic Data The synthetic data were generated
from the IBP prior (α = 2) and the linear-Gaussian
model (µA = 0, σa = 2, σx = .2 , D = 10). We ran 5
chains from different starting positions for each sam-
pler with N equal to 50, 100, 250, and 500 for 1000
iterations. Figure 3 shows the evolution of the per-
iteration runtime as the number of observations grows
(note the log-log scale). The slopes of the lines indi-
cate the order of the runtime polynomial. The semi-
collapsed and accelerated Gibbs samplers have nearly
identical slopes, while the per-iteration running time of
the collapsed Gibbs sampler scales much more poorly.

Figure 4 plots the effective sample count (per sam-
ple) of for each sampler. Again, as expected, the
semi-collapsed Gibbs sampler had the lowest effective
sample count, and the accelerated Gibbs sampler and
the collapsed Gibbs sampler had similar counts. From
these two plots, we see that the accelerated Gibbs sam-
pler mixes like the collapsed Gibbs sampler but has a
run-time like the uncollapsed Gibbs sampler.
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Figure 3. Per iteration runtime vs. number of observations
(note the log scale on the x-axis).
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Figure 4. Effective number of samples vs. dataset size.

Table 2. Performance statistics on data from the prior.
Each value is an average over 5 chains.
Evaluation
Statistic

Collapsed
Gibbs

Semi-
collapsed
Gibbs

Accelerated
Gibbs

Iteration Time 90.273 1.302 1.566
Effective N 0.020 0.019 0.020

L2 Test Error 0.710 4.534 1.780
Test log Likeli-
hood

-24.557 -13.977 -26.936

The running times and quality criteria are summarised
in table 2. The accelerated Gibbs sampler’s running
time is on par with the semi-collapsed Gibbs sampler
and nearly two orders of magnitude faster than the
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collapsed Gibbs sampler. It does not achieve the best
test likelihoods or reconstruction errors, but they are
always on par with collapsed Gibbs sampler.

Real Data Table 3 summarises the real-world data
sets. All datasets were first centred to have 0-mean.
Values for the hyperparameters σa and σx were fixed to
.75σ and .25σ, respectively, where σ was the standard
deviation of the observations across all dimensions. We
set α = 2 in all experiments. Each sampler ran for 500
iterations or up to 150 hours.

Table 3. Descriptions of datasets.
Dataset N D Description
Block-Imagesa

(Wood & Grif-
fiths, 2007)

1000 36 noisy overlays
of four binary
shapes on a grid

Emoticonsb 702 1032 different smiley
faces

Yale (Georghiades
et al., 2001)

722 1032 faces with vari-
ous lighting

AR (Mart’inez &
Kak, 2001)

2600 1598 faces with light-
ing, accessories

EEG (Hoffmann
et al., 2008)

4400 32 EEG recording
on various tasks

Piano (Poliner &
Ellis, 2007)

10000 161 DFT of a piano
recording

aThe block images are not a real-world dataset, but they
do not come from the linear-Gaussian model.

bObtained from www.smileyset.com; post-processed to
normalise image size and centre.

Figure 5 plots how the log-joint probability log p(X,Z)
of the training data evolves for all six datasets (note
the log-scale on the time axis). In almost all the
datasets, the accelerated Gibbs sampler equilibrates
to the same log-joint probability as the semi-collapsed
Gibbs sampler but orders of magnitude faster. The
plots suggest the time allowed was not sufficient for
the collapsed Gibbs sampler to complete burning-in,
though it seems to be approaching a similar joint prob-
ability. For the higher dimensional and larger datasets
in the bottom row, the collapsed Gibbs sampler often
failed to complete even one iteration in 150 hours. The
semi-collapsed sampler also suffered in the higher di-
mensional datasets. The accelerated Gibbs sampler
always completed its run in less than two hours.

Table 4 shows the per-iteration running times and the
measures on the missing data for the six datasets. A
dash indicates insufficient iterations were completed
to compute the statistic. The speed benefit of the ac-
celerated Gibbs sampler is particularly apparent on
these larger datasets: often it is two orders of magni-
tude faster per-iteration than the collapsed sampler.
However, its test L2 reconstruction error and likeli-

Table 4. Results on realworld data sets. Dashes indicate
values that could not be computed in the time allotted.
Data Set Collapsed

Gibbs
Semi-
collapsed
Gibbs

Accelerated
Gibbs

Iteration Time
Images 1526.4 38.1 7.6

Emoticons 10205.4 32.8 19.0

Yale 8759.0 18.1 25.5
AR Faces - 13291.8 120.9

EEG 112692.3 13.0 21.9
Piano - - 221.5

Burn-in Count
Images 12.0 2.0 4.0
Emoticons 35.0 82.0 42.0
Yale 45.0 184.0 133.0
AR Faces - - 31.0

EEG - - 29.0

Piano - - 25.0

L2 Test Error
Images 0.1066 0.1239 0.0555

Emoticons 5905.8 11781.1 5612.7

Yale 459.4 413.0 435.9
AR Faces - 3836.4 919.9

EEG 267292.3 282108.1 215174.5

Piano - - 0.0005

Test Likelihood
Images -2.0 -1.7 -2.0
Emoticons -14.4 -12.0 -14.2
Yale -17.8 -15.8 -16.0
AR Faces - -13.3 -13.7
EEG -26274.0 -3621.5 -14133.3
Piano - - -7.0

hood remains on-par or better than either sampler.
For slightly troublesome EEG dataset, most of the
likelihood loss came from 4 dimensions of 4 observa-
tions. These four troublesome dimensions had a vari-
ance about two orders of magnitude larger than the
remaining dimensions (the other datasets were more
homogenous). All samplers had to manage this issue,
but the accelerated Gibbs sampler’s heavy reliance on
rank-one updates made it particularly sensitive to ill-
conditioning from extreme situations.

Finally, figures 6 and 7 show qualitative results on the
emoticon and AR faces datasets. Our primary objec-
tive here was to show that the accelerated sampler
finds reasonable features (rather than discover previ-
ously unknown structure in the data). Each figure
decomposes three observations into features found by
the sampler (all features contribute equally in the ad-
ditive model). The sampler finds features associated
with the emoticon’s expression (first column of ‘Parts’)
and features that make up emoticon’s accessories. In
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(a) Block Images: N = 1000, D = 36
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(b) Emoticons: N = 702 , D = 1032
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(c) Yale Faces: N = 722 , D = 1032
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(d) AR Faces: N = 2600 , D = 1598
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(e) EEG: N = 4400 , D = 32
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(f) Piano: N = 10000 , D = 161

Figure 5. Evolution of the log joint-probability vs. time for several datasets.

Original Reconstructed Parts

Figure 6. Some reconstructed emoticons: the expression is
a different feature than the type of the face.

the larger AR Faces dataset, the sampler finds fea-
tures corresponding to lighting conditions, facial fea-
tures, and accessories such as scarves or sunglasses.
These decompositions are similar to those found by
the other samplers.

7. Discussion

The accelerated Gibbs sampler attained similar test
likelihood and reconstruction errors as the existing
Gibbs samplers but did so faster than either approach.
Its per-iteration runtime was two orders of magnitude
faster than the collapsed Gibbs sampler. While it is
difficult to judge the convergence of the samplers from
a single run, the accelerated Gibbs sampler’s training
likelihoods were generally on par with the other sam-

OriginalReconstructed Parts

Figure 7. Some reconstructed AR faces: faces contain fea-
tures for the face, lighting, scarves, and sunglasses.

plers, suggesting that the gains in speed were achieved
without sacrifices in performance.

The difference between the NK2D term in the run-
ning time of the uncollapsed Gibbs sampler and the
N(K2 + KD) of the accelerated Gibbs sampler be-
comes more pronounced as the dimensionality of the
observations and the number of features increases. If
K grows logarithmically with N , as posited by the
IBP prior, then large datasets will impact the com-
plexity because K will be larger. For example, in the
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AR Faces dataset, where D is 1598 and feature counts
ranged between 15-80, the difference between the two
expected running times is one to two orders of mag-
nitude. (Of course, implementation details affect the
differences in per-iteration running times, but the ex-
periments confirm this speed-up factor.5)

Loss of precision during the rank-one updates is the
primary implementation concern for the accelerated
sampler. This effect was particularly apparent in the
EEG dataset because the dimensions had widely vary-
ing variances, leading to ill-conditioned matrices. An
important question is how often expensive full-updates
of the feature posterior and data posterior must be
completed; we did so once per run and once per win-
dow, respectively. While a window size W of 1 pro-
duces an optimal runtime, larger windows might slow
the degradation due to repeated rank-one updates.

Our comparison focused on performance relative to
other Gibbs samplers. Regarding other IBP inference
techniques, we expect it to mix faster than the slice
sampler, as the slice sampler mixes more slowly than
the collapsed Gibbs sampler (Teh et al., 2007). Well-
designed MH-proposals may make a Metropolis sam-
pler efficient in some domains, and other domains may
be well-suited for particle filtering, but one advantage
of the accelerated Gibbs sampler is its simplicity: nei-
ther MH-proposals nor a particle count is needed to
perform principled, effective inference. However, an
interesting question is if population Monte Carlo tech-
niques can be used to merge the benefits of our accel-
erated Gibbs sampler and particle filtering.

8. Conclusion

We presented a new accelerated Gibbs sampler for the
Indian Buffet Process with the mixing properties of
the collapsed Gibbs sampler but the running time of
the uncollapsed Gibbs sampler. The key insight was
to allow data to share information only through the
statistics on the feature posterior. Thus, likelihoods
of feature assignments could efficiently be computed
using local computations without sacrificing the flex-
ibility of a collapsed sampler. The accelerated Gibbs
sampler scaled to inference for several large, real-world
datasets. An interesting future direction may be to ex-
plore how maintaining distributions over parameters
may help accelerate other MCMC inference methods.
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