
Large Scale Nonparametric Bayesian Inference:
Data Parallelisation in the Indian Buffet Process

Finale Doshi-Velez∗

University of Cambridge
Cambridge, CB21PZ, UK
finale@alum.mit.edu

David Knowles∗

University of Cambridge
Cambridge, CB21PZ, UK
dak33@cam.ac.uk

Shakir Mohamed∗

University of Cambridge
Cambridge, CB21PZ, UK
sm694@cam.ac.uk

Zoubin Ghahramani
University of Cambridge
Cambridge, CB21PZ, UK

zoubin@eng.cam.ac.uk

Abstract

Nonparametric Bayesian models provide a framework for flexible probabilistic
modelling of complex datasets. Unfortunately, the high-dimensional averages re-
quired for Bayesian methods can be slow, especially with theunbounded repre-
sentations used by nonparametric models. We address the challenge of scaling
Bayesian inference to the increasingly large datasets found in real-world appli-
cations. We focus on parallelisation of inference in the Indian Buffet Process
(IBP), which allows data points to have an unbounded number of sparse latent
features. Our novel MCMC sampler divides a large data set between multiple
processors and uses message passing to compute the global likelihoods and pos-
teriors. This algorithm, the first parallel inference scheme for IBP-based models,
scales to datasets orders of magnitude larger than have previously been possible.

1 Introduction

From information retrieval to recommender systems, from bioinformatics to financial market anal-
ysis, the amount of data available to researchers has exploded in recent years. While large, these
datasets are often still sparse: For example, a biologist may have expression levels from thousands
of genes from only a few people. A ratings database may contain millions of users and thousands
of movies, but each user may have only rated a few movies. In such settings, Bayesian methods
provide a robust approach to drawing inferences and making predictions from sparse information.
At the heart of Bayesian methods is the idea that all unknown quantities should be averaged over
when making predictions. Computing these high-dimensional average is thus a key challenge in
scaling Bayesian inference to large datasets, especially for nonparametric models.

Advances in multicore and distributed computing provide one answer to this challenge: if each pro-
cessor can consider only a small part of the data, then inference in these large datasets might become
more tractable. However, suchdata parallelisationof inference is nontrivial—while simple models
might only require pooling a small number of sufficient statistics [1], inference in more complex
models might require the frequent communication of complex, high-dimensional probability distri-
butions between processors. Building on work on approximate asynchronous multicore inference
for topic models [2], we develop a message passing frameworkfor data-parallel Bayesian inference
applicable to a variety of models, including matrix factorization and the Indian Buffet Process (IBP).

∗ Authors contributed equally.

1

Nonparametric models are attractive for large datasets because they automatically adapt to the com-
plexity of the data, relieving the researcher from the need to specify aspects of the model such as the
number of latent factors. Much recent work in nonparametricBayesian modelling has focused on
the Chinese restaurant process (CRP), which is a discrete distribution that can be used to assign data
points to an unbounded number of clusters. However, many real-world datasets have observations
that may belong to multiple clusters—for example, a gene may have multiple functions; an image
may contain multiple objects. The IBP [3] is a distribution over infinite sparse binary matrices that
allows data points to be represented by an unbounded number of sparse latent features or factors.
While the parallelisation method we present in this paper is applicable to a broad set of models, we
focus on inference for the IBP because of its unique challenges and potential.

Many serial procedures have been developed for inference inthe IBP, including variants of Gibbs
sampling [3, 4], which may be augmented with Metropolis split-merge proposals [5], slice sam-
pling [6], particle filtering [7], and variational inference [8]. With the exception of the accelerated
Gibbs sampler of [4], these methods have been applied to datasets with less than 1,000 observations.

To achieve efficient paralellisation, we exploit an idea recently introduced in [4], which maintains
a distribution over parameters while sampling. Coupled with a message passing scheme over pro-
cessors, this idea enables computations for inference to bedistributed over many processors with
few losses in accuracy. We demonstrate our approach on a problem with 100,000 observations. The
largest application of IBP inference to date, our work opensthe use of the IBP and similar models
to a variety of data-intensive applications.

2 Latent Feature Model

The IBP can be used to define models in which each observation is associated with a set of latent
factors or features. A binary feature-assignment matrixZ represents which observations possess
which hidden features, whereZnk = 1 if observationn has featurek andZnk = 0 otherwise.
For example, the observations might be images and the hiddenfeatures could be possible objects in
those images. Importantly, the IBP allows the set of such possible hidden features to be unbounded.

To generate a sample from the IBP, we first imagine that the rows of Z (the observations) are cus-
tomers and the columns ofZ (the features) are dishes in an infinite buffet. The first customer takes
the first Poisson(α) dishes. The following customers try previously sampled dishes with probability
mk/n, wheremk is the number of people who tried dishk before customern. Each customer also
takes Poisson(α/n) new dishes. The valueZnk records if customern tried dishk. This generative
process allows an unbounded set of features but guarantees that a finite dataset will contain a finite
number of features with probability one. The process is alsoexchangeable in that the order in which
customers visit the buffet has no impact on the distributionof Z. Finally, if the effect of possessing
a feature is independent of the feature index, the model is also exchangeable in the columns ofZ.

We associate with the feature assignment matrixZ, a feature matrixA with rows that parameterise
the effect that possessing each feature has on the data. Given these matrices, we write the probability
of the data asP (X|Z,A). Our work requires thatP (A|X,Z) can be computed or approximated
efficiently by an exponential family distribution. Specifically, we apply our techniques to both a
fully-conjugate linear-Gaussian model and non-conjugateBernoulli model.

Linear Gaussian Model. We model anN×D real-valued data matrixX as a product:

X = ZA + ǫ, (1)

whereZ is the binary feature-assignment matrix andA is a K by D real-valued matrix with an
independent Gaussian priorN(0, σ2

a) on each element (see cartoon in Figure 1(a)). Each element
of the N by D noise matrixǫ is independent with aN(0, σ2

n) distribution. GivenZ andX, the
posterior on the featuresA is Gaussian, given by mean and covariance

µA =

(

ZT Z +
σ2

x

σ2
a

I

)−1

ZT X ΣA = σ2
x

(

ZT Z +
σ2

x

σ2
a

I

)−1

(2)

Bernoulli Model. We use a leaky, noisy-or likelihood for each element of anN×D matrixX:

P (Xnd = 1|Z,A) = 1 − ǫ λ
∑

k
ZnkAkd . (3)

2

X Z A

...

*

D D

~ NN ... + ε
K

K

(a) Representation of the linear-Gaussian model.
The dataX is generated from the product of the
feature assignment matrixZ and feature matrixA.
In the Bernoulli model, the productZA adjusts the
probability ofX = 1

prior

po
ste

rio
r

sta
tis

tic
s

statisticsposterior

posterior

statistics

po
ste

rio
r

sta
tis

tic
s

P3 P4

P2P1

Root

(b) Message passing process. Pro-
cessors send sufficient statistics of
the likelihood up to the root, which
calculates and sends the (exact) pos-
terior back to the processors.

Figure 1: Diagrammatic representation of the model structure and the message passing process.

Each element of theA matrix is binary with independentBernoulli(pA) priors. The parametersǫ
andλ determine how “leaky” and how “noisy” the or-function is, respectively. Typical hyperpa-
rameter values areǫ = 0.95 andλ = 0.2. The posteriorP (A|X,Z) cannot be computed in closed
form; however, a mean-field variational posterior in which we approximateP (A|X,Z) as product
of independent Bernoulli variables

∏K,D

k,d qkd(akd) can be readily derived.

3 Parallel Inference

We describe both synchronous and asynchronous procedures for approximate, parallel inference in
the IBP that combines MCMC with message passing. We first partition the data among the proces-
sors, usingXp to denote the subset of observationsX assigned to processorp. We useZp to denote
the latent features associated with the data on processorp. In [4], the distributionP (A|X−n, Z−n)
was used to derive an accelerated sampler for samplingZn, wheren indexes thenth observation and
−n is the set of all observations exceptn. In our parallel inference approach, each processorp main-
tains a distributionP p(A|X−n, Z−n), a local approximation toP (A|X−n, Z−n). The distributions
P p are updated via message passing between the processors.

The inference alternates between three steps:

• Message passing:processors communicate to compute the exactP (A|X,Z).
• Gibbs sampling:processors sample a new set ofZp’s in parallel.
• Hyperparameter sampling:a root processor resamples global hyperparameters

The sampler is approximate because during Gibbs sampling, all processors resample elements ofZ
at the same time; their posteriorsP p(A|X,Z) are no longer the trueP (A|X,Z).

Message Passing We use Bayes rule to factorise the posterior over featuresP (A|Z,X):

P (A|Z,X) ∝ P (A)
∏

p

P (Xp|Zp, A) (4)

If the prior P (A) and the likelihoodsP (Xp|Zp, A) are conjugate exponential family models, then
the sufficient statistics ofP (A|Z,X) are the sum of the sufficient statistics of each term on the right
side of equation (4). For example, the sufficient statisticsin the linear-Gaussian model are means
and covariances; in the Bernoulli model, they are counts of how often each elementAkd equals one.
The linear-Gaussian messages have sizeO(K2 +KD), and the Bernoulli messagesO(KD), where
K is the number of features. For nonparametric models such as the IBP, the number of featuresK
grows asO(log N). This slow growth means that messages remain small, even forlarge datasets.

The most straightforward way to compute the full posterior is to arrange processors in a tree archi-
tecture, as belief propagation is then exact. The messages from processorp to processorq is:

sp→q = lp +
∑

r∈N(p)\q

sr→p

3

whereN(p)\q are the processors attached top besidesq and lp are the sufficient statistics from
processorp. A dummy neighbour containing the statistics of the prior isconnected to (an arbitrarily
designated) root processor. Also passed are the feature countsmp

k =
∑

n∈Xp Zp
nk, the popularity of

featurek within processorp. (See figure 1(b) for a cartoon.)

Gibbs Sampling In general,Znk can be Gibbs-sampled using Bayes rule

P (Znk|Z−nk,X) ∝ P (Znk|Z−nk)P (X|Z).

The probabilityP (Znk|Z−nk) depends on the size of the datasetN and the number of observations
mk using featurek. At the beginning of the Gibbs sampling stage, each processor has the correct
values ofmk. We computem−p

k = mk −mp
k, and, as the processor’s internal feature countsmp

k are
updated, approximatemk ≈ m−p

k + mp
k. This approximation assumesm−p

k stays fixed during the
current stage (good for popular features).

ThecollapsedlikelihoodP (X|Z) integrating out the feature valuesA is given by:

P (X|Z) ∝

∫

A

P (Xn|Zn, A)P (A|Z−n,X−n)dA,

where the partial posteriorP (A|Z−n,X−n) ∝ P (A|Z,X)
P (Xn|Zn,A) . In conjugate models,P (A|Z−n,X−n)

can be efficiently computed by subtracting observationn’s contribution to the sufficient statistics.1

For non-conjugate models, we can use an exponential family distribution Q(A) to approximate
P (A|X,Z) during message passing. A drawA ∼ Q−p(A) is then used to initialise anuncollapsed
Gibbs sampler. The outputted samples ofA are used to compute sufficient statistics for the likelihood
P (X|Z). In both cases, new features are added as described in [3].

Hyperparameter Resampling The IBP concentration parameterα and hyperparameters of the
likelihood can also be sampled during inference. Resampling α depends only on the total number of
active features; thus it can easily be resampled at the root and propagated to the other processors. In
the linear-Gaussian model, the posteriors on the noise and feature variances (starting from gamma
priors) depend on various squared-errors, which can also becomputed in a distributed fashion.

For more general, non-conjugate models, resampling the hyperparameters requires two steps. In
the first step, a hyperparameter value is proposed by the rootand propagated to the processors.
The processors each compute the likelihood of the current and proposed hyperparameter values and
propagate this value back to root. The root evaluates a Metropolis step for the hyperparameters
and propagates the decision back to the leaves. The two-stepapproach introduces a latency in the
resampling but does not require any additional message passing rounds.

Asynchronous Operation So far we have discussed message passing, Gibbs sampling, and hy-
perparameter resampling as if they occur in separate phases. In practice, these phases may occur
asynchronously: between its Gibbs sweeps, each processor updates its feature posterior based on
the most current messages it has received and sends likelihood messages to its parent. Likewise,
the root continuously resamples hyperparameters and propagates the values down through the tree.
While another layer of approximation, this asynchronous form of message passing allows faster pro-
cessors to share information and perform more inference on their data instead of waiting for slower
processors.

Implementation Note When performing parallel inference in the IBP, a few factors need to be
considered with care. Other parallel inference for nonparametric models, such as the HDP [2],
simply matched features by their index, that is, assumed that theith feature on processorp was also
the ith feature on processorq. In the IBP, we find that this indiscriminate feature mergingis often
disastrous when adding or deleting features: if none of the observations in a particular processor are
using a feature, we cannot simply delete that column of Z and shift the other features over—doing
so destroys the alignment of features across processors.

1In the IBP, only the linear-Gaussian model exhibits this conjugate structure. However, many other matrix
factorization models (such as PCA) often have this conjugate form.

4

4 Comparison to Exact Metropolis

Because allZp’s are sampled at once, the posteriorsP p(A|X,Z) used by each processor in section 3
are no longer exact. Below we show how Metropolis–Hastings (MH) steps can make the parallel
sampler exact, but introduce significant computational overheads both in computing the transition
probabilities and in the message passing. We argue that trying to do exact inference is a poor
use of computational resources (especially as any finite chain will not be exact); empirically, the
approximate sampler behaves similarly to the MH sampler while finding higher likelihood regions
in the data.

Exact Parallel Metropolis Sampler. Ideally, we would simply add an MH accept/reject step after
each stage of the approximate inference to make the sampler exact. Unfortunately, the approximate
sampler makes several non-independent random choices in each stage of the inference, making the
reverse proposal inconvenient to compute. We circumvent this issue by fixing the random seed, mak-
ing the initial stage of the approximate sampler a deterministic function, and then add independent
random noise to create a proposal distribution. This approach makes both the forward and reverse
transition probabilities simple to compute.

Formally, letẐp be the matrix output after a set of Gibbs sweeps onZp. We use all theẐp’s to
propose a newZ ′ matrix. The acceptance probability of the proposal is

min(1,
P (X|Z ′)P (Z ′)Q(Z ′ → Z)

P (X|Z)P (Z)Q(Z → Z ′)
), (5)

where the likelihood termsP (X|Z) andP (Z) are readily computed in a distributed fashion. For
the transition distributionQ, we note that if we set the random seedr, then the matrixẐp from the
Gibbs sweeps in the processor is some deterministic function of the input matrixZp. The proposal
Zp′ is a (stochastic) noisy representation ofẐp in which for example

P (Zp′
nk = 1) = .99 if Ẑp

nk = 1, P (Zp′
nk = 1) = .01 if Ẑp

nk = 0 (6)

whereK should be at least the number of features inẐp. We setZp′

nk = 0 for k > K. (See cartoon
in figure 2.)

To compute the backward probability, we takeZp′ and apply the same number of Gibbs sampling
sweeps with the same random seedr. The resultingẐp′ is a deterministic function ofZp′

. The
backward probabilityQ(Zp′

→ Zp) which is the probability of going fromZp′ to Zp using 6.
While the transition probabilities can be computed in a distributed, asynchronous fashion, all of the
processors must synchronise when deciding whether to accept the proposal.

Experimental Comparison To compare the exact Metropolis and approximate inference tech-
niques, we ran each inference type on 1000 block images of [3]on 5 simulated processors. Each
test was repeated 25 times. For each of the 25 tests, we createa held out dataset by setting elements
of the last 100 images as missing values. For the first 50 test images, we set all even numbered
dimensions as the missing elements, and every odd numbered dimension as the missing values for
the last 50 images. Each sampler was run for 10,000 iterations with 5 Gibbs sweeps per iteration;
statistics were collected from the second half of the chain.To keep the probability of an acceptance
reasonable, we allowed each processor to change only small parts of itsZp: the feature assignments
Zn for 1, 5, or 10 data points each during each sweep.

In table 1, we see that the approximate sampler runs about fivetimes faster than the exact samplers
while achieving comparable (or better) predictive likelihoods and reconstruction errors on held-
out data. Both the acceptance rates and the predictive likelihoods fall as the exact sampler tries
to take larger steps, suggesting that the difference between the approximate and exact sampler’s
performance on predictive likelihood is due to poor mixing by the exact sampler. Figure 4 shows
empirical CDFs for the number of featuresk , IBP concentration parameterα, the noise varianceσ2

n,
and the feature varianceσ2

a. The approximate sampler (black) produces similar CDFs to the various
exact Metropolis samplers (gray) for the variances; the concentration parameter is smaller, but the
feature counts are similar to the single-processor case.

5

ZpZp Zp’

Gibbs with
fixed seed

Random
noise

Figure 2: Cartoon of MH
proposal

Method Time (s) Test L2

Error
Test Log
Likelihood

MH Accept
Proportion

MH, n = 1 717 0.0468 0.1098 0.1106
MH, n = 5 1075 0.0488 0.0893 0.0121
MH, n = 10 1486 0.0555 0.0196 0.0062
Approximate 179 0.0487 0.1292 -

Table 1: Evaluation of exact and approximate methods.

5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for IBP Concentration

Feature Count

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

(a) Active feature countk

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for IBP Concentration

IBP Concentration Parameter

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

(b) IBP Concentrationα

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for Noise Variance

Noise Variance

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

(c) Noise varianceσ2

x

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF for Feature Variance

Feature Variance

C
um

ila
tiv

e
P

ro
ba

bi
lit

y

Single Processor

Approximate Sampling

Exact Sampling, various windows

(d) Feature varianceσ2

a

Figure 3: Empirical CDFs: The solid black line is the approximate sampler; the three solid gray lines
are the MH samplers withn equal to 1, 5, and 10 (lighter shades indicate largern. The approximate
sampler and the MH samplers for smallern have similar CDFs; then = 10 MH sampler’s differing
CDF indicates it did not mix in 7500 iterations (reasonable since its acceptance rate was 0.0062).

5 Analysis of Mixing Properties

We ran a series of experiments on 10,000 36-dimensional block images of [3] to study the effects
of various sampler configurations on running time, performance, and mixing time properties of
the sampler. 5000 elements of the data matrix were held-out as test data. Figure 4 shows test
log-likelihoods using 1, 7, 31 and 127 parallel processors simulated in software, using 1000 outer
iterations with 5 Gibbs inner iterations each. The parallelsamplers have similar test likelihoods as
the serial algorithm with significant savings in running time. The characteristic shape of the test
likelihood, similar across all testing regimes, indicateshow the features are learned. Initially, a large
number of features are added, which provides improvements in the test likelihood. A refinement
phase, in which excess features are pruned, provides further improvements.

Figure 4 shows hairiness-index plots for each of the test cases after thinning and burn-in. The hairi-
ness index, based on the method of CUSUM for monitoring MCMC convergence [9, 10], monitors
how often the derivatives of sampler statistics—in our case,the number of features, the test likeli-
hood, andα—change in sign; infrequent changes in sign indicate that thesampler may not be mixed.
The outer bounds on the plots are the 95% confidence bounds. The index stays within the bounds
suggesting that the chains are mixing.

Finally, we considered the trade-off between mixing and running time as the number of outer it-
erations and inner Gibbs iterations are varied. Each combination of inner and outer iterations was
set so that the total number of Gibbs sweeps through the data was 5000. Mixing efficiency was

−1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

T
es

t l
og

lik
el

ih
oo

d

Time (s)

Test Loglikelihood for inner = 5 and outer = 1000 iterations

20 40 60 80100

0

0.5

1

Processors = 1

H
ai

rin
es

s
In

de
x

20 40 60 80 100

0

0.5

1

Processors = 7

H
ai

rin
es

s
In

de
x

20 40 60 80100

0

0.5

1

Processors = 31

H
ai

rin
es

s
In

de
x

20 40 60 80100

0

0.5

1

Processors = 127

H
ai

rin
es

s
In

de
x

Proc = 1

Proc = 7

Proc = 31

Proc = 127

Figure 4: Change in likelihood for various numbers of processors over the simulation time. The
corresponding hairiness index plots are shown on the left.

6

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

E

ffe
ct

iv
e

S
am

pl
es

 p
er

 O
ut

er
 It

er
.

#Inner Iterations

Proc = 1

Proc = 7

Proc = 31

Proc = 127

1 7 31 127
10

1

10
2

10
3

10
4

10
5

Processors

T
ot

al
 T

im
e

(s
)

i = 50, o = 100

i = 20, o = 250

i = 10, o = 500

i = 5, o = 1000

i = 1, o = 5000

Figure 5: Effects of changing the number of inner iterationson: (a) The effective sample size (b)
Total running time (Gibbs and Message passing).

Table 2: Test log-likelihoods on real-world datasets for the serial, synchronous and asynchronous
inference types.

Dataset N D Description Serial
p = 1

Synch
p = 16

Async
p = 16

AR Faces [11] 2600 1598 faces with lighting, acces-
sories (real-valued)

-4.74 -4.77 -4.84

Piano [12] 57931 161 STDFT of a piano recording
(real-valued)

-1.435 -1.182 -1.228

Flickr [13] 100000 1000 indicators of image tags
(binary-valued)

— -0.0584

measured via the effective number of samples per sample [10], which evaluates what fraction of
the samples are independent (ideally, we would want all samples to be independent, but MCMC
produces dependent chains). Running time for Gibbs sampling was taken to be the time required by
the slowest processor (since all processors must synchronize before message passing); the total time
reflected the Gibbs time and the message-passing time. As seen in figure 5, completing fewer inner
Gibbs iterations per outer iteration results in faster mixing, which is sensible as the processors are
communicating about their data more often. However, havingfewer inner iterations requires more
frequent message passing; as the number of processors becomes large, the cost of message passing
becomes a limiting factor.2

6 Real-world Experiments

We tested our parallel scheme on three real world datasets ona 16 node cluster using the Matlab
Distributed Computing Engine, using 3 inner Gibbs iterations per outer iteration. The first dataset
was a set of 2,600 frontal face images with 1,598 dimensions [11]. While not extremely large,
the high-dimensionality of the dataset makes it challenging for other inference approaches. The
piano dataset [12] consisted of 57,931 samples from a 161-dimensional short-time discrete Fourier
transform of a piano piece. Finally, the binary-valued Flickr dataset [13] indicated whether each
of 1000 popular keywords occurred in the tags of 100,000 images from Flickr. Performance was
measured using test likelihoods and running time. Test likelihoods look only at held-out data and
thus they allow us to ‘honestly’ evaluate the model’s fit. Table 2 summarises the data and shows that
all approaches had similar test-likelihood performance.

In the faces and music datasets, the Gibbs time per iterationimproved almost linearly as the number
of processors increased (figure 6). For example, we observeda 14x-speedup forp = 16 in the music
dataset. Meanwhile, the message passing time remained small even with 16 processors—7% of the
Gibbs time for the faces data and 0.1% of the Gibbs time for themusic data. However, waiting for
synchronisation became a significant factor in the synchronous sampler. Figure 6(c) compares the
times for running inference serially, synchronously and asynchronously with 16 processors. The

2We believe part of the timing results may be an artifact, as the simulation overestimates the message passing
time. In the actual parallel system (section 6), the cost of message passing was negligible.

7

1 2 4 8 16
0

20

40

60

80

100

120

number of processors

m
ea

n
tim

e
pe

r
ou

te
r

ite
ra

tio
n/

s

sampling
waiting

(a) Timing analysis for faces
dataset

1 2 4 8 16
0

200

400

600

800

1000

1200

number of processors

m
ea

n
tim

e
pe

r
ite

ra
tio

n/
s

sampling
waiting

(b) Timing analysis for music
dataset

10
−2

10
0

10
2

10
4

−2.8

−2.6

−2.4

−2.2

−2

−1.8
x 10

7

time/s

lo
g

jo
in

t

serial P=1
synchronous P=16
asynchronous P=16

(c) Timing comparison for different
approaches

Figure 6: Bar charts comparing sampling time and waiting times for synchronous parallel inference.

asynchronous inference is 1.64 times faster than the synchronous case, reducing the computational
time from 11.8s per iteration to 7.2s.

7 Discussion and Conclusion

As datasets grow, parallelisation is an increasingly attractive and important feature for doing infer-
ence. Not only does it allow multiple processors/multicoretechnologies to be leveraged for large-
scale analyses, but it also reduces the amount of data and associated structures that each processor
needs to keep in memory. Existing work has focused both on general techniques to efficiently split
variables across processors in undirected graphical models [14] and factor graphs [15] and specific
models such as LDA [16, 17]. Our work falls in between: we leverage properties of a specific kind
of parallelisation—data parallelisation—for a fairly broadclass of models.

Specifically, we describe a parallel inference procedure that allows nonparametric Bayesian models
based on the Indian Buffet Process to be applied to large datasets. The IBP poses specific challenges
to data parallelisation in that the dimensionality of the representation changes during inference and
may be unbounded. Our contribution is an algorithm for data-parallelisation that leverages a com-
pact representation of the feature posterior that approximately decorrelates the data stored on each
processor, thus limiting the communication bandwidth between processors. While we focused on
the IBP, the ideas presented here are applicable to a more general problems in unsupervised learning
including bilinear models such as PCA, NMF, and ICA.

Our sampler is approximate, and we show that in conjugate models, it behaves similarly to an ex-
act sampler—but with much less computational overhead. However, as seen in the Bernoulli case,
variational message passing for non-conjugate data doesn’t always produce good results if the ap-
proximating distribution is a poor match for the true feature posterior. Determining when variational
message passing is successful is an interesting question for future work. Other interesting directions
include approaches for dynamically optimising the networktopology (for example, slower proces-
sors could be moved lower in the tree). Finally, we note that amiddle ground between synchronous
and asynchronous operations as we presented them might be a system that gives each processor a
certain amount of time, instead of a certain number of iterations, to do Gibbs sweeps. Further study
along these avenues should lead to even more efficient data-parallel Bayesian inference techniques.

8

References

[1] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun, “Map-reduce for machine
learning on multicore,” inAdvances in Neural Information Processing Systems, p. 281, MIT
Press, 2007.

[2] A. Asuncion, P. Smyth, and M. Welling, “Asynchronous distributed learning of topic models,”
in Advances in Neural Information Processing Systems 21, 2008.

[3] T. Griffiths and Z. Ghahramani, “Infinite latent feature models and the Indian buffet process,”
in Advances in Neural Information Processing Systems, vol. 16, NIPS, 2006.

[4] F. Doshi-Velez and Z. Ghahramani, “Accelerated inference for the Indian buffet process,” in
International Conference on Machine Learning, 2009.

[5] E. Meeds, Z. Ghahramani, R. Neal, and S. Roweis, “Modeling dyadic data with binary latent
factors,” inAdvances in Neural Information Processing Systems, vol. 19, pp. 977–984, 2007.

[6] Y. W. Teh, D. G̈orür, and Z. Ghahramani, “Stick-breaking construction for the Indian buffet
process,” inProceedings of the Intl. Conf. on Artificial Intelligence and Statistics, vol. 11,
pp. 556–563, 2007.

[7] F. Wood and T. L. Griffiths, “Particle filtering for nonparametric Bayesian matrix factoriza-
tion,” in Advances in Neural Information Processing Systems, vol. 19, pp. 1513–1520, 2007.

[8] F. Doshi-Velez, K. T. Miller, J. Van Gael, and Y. W. Teh, “Variational inference for the In-
dian buffet process,” inProceedings of the Intl. Conf. on Artificial Intelligence and Statistics,
vol. 12, pp. 137–144, 2009.

[9] S. P. Brooks and G. O. Roberts, “Convergence assessment techniques for Markov Chain Monte
Carlo,” Statistics and Computing, vol. 8, pp. 319–335, 1998.

[10] C. R. Robert and G. Casella,Monte Carlo Statistical Methods. Springer, second ed., 2004.

[11] A. M. Mart’inez and A. C. Kak, “PCA versus LDA,”IEEE Trans. Pattern Anal. Mach. Intelli-
gence, vol. 23, pp. 228–233, 2001.

[12] G. E. Poliner and D. P. W. Ellis, “A discriminative modelfor polyphonic piano transcription,”
EURASIP J. Appl. Signal Process., vol. 2007, no. 1, pp. 154–154, 2007.

[13] T. Kollar and N. Roy, “Utilizing object-object and object-scene context when planning to find
things.,” inInternational Conference on Robotics and Automation, 2009.

[14] C. G. Joseph Gonzalez, Yucheng Low, “Residual splash for optimally parallelizing belief prop-
agation,” inProceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics(D. van Dyk and M. Welling, eds.), vol. 5, pp. 177–184, JMLR, 2009.

[15] D. Stern, R. Herbrich, and T. Graepel, “Matchbox: Largescale online Bayesian recommenda-
tions,” in 18th International World Wide Web Conference (WWW2009), April 2009.

[16] R. Nallapati, W. Cohen, and J. Lafferty, “Parallelizedvariational EM for Latent Dirichlet Al-
location: An experimental evaluation of speed and scalability,” in ICDMW ’07: Proceedings
of the Seventh IEEE International Conference on Data MiningWorkshops, (Washington, DC,
USA), pp. 349–354, IEEE Computer Society, 2007.

[17] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed inference for Latent Dirich-
let Allocation,” in Advances in Neural Information Processing Systems 20(J. Platt, D. Koller,
Y. Singer, and S. Roweis, eds.), pp. 1081–1088, Cambridge, MA: MIT Press, 2008.

9

