L arge Scale Nonparametric Bayesian | nference:
Data Par allelisation in the I ndian Buffet Process

Finale Doshi-Velez* David Knowles* Shakir M ohamed*
University of Cambridge University of Cambridge University of Cambridge
Cambridge, CB21PZ, UK Cambridge, CB21PZ, UK Cambridge, CB21PZ, UK

finale@l ummt. edu dak33@am ac. uk snmb94@am ac. uk

Zoubin Ghahramani
University of Cambridge
Cambridge, CB21PZ, UK

zoubi n@ng. cam ac. uk

Abstract

Nonparametric Bayesian models provide a framework for lilexprobabilistic
modelling of complex datasets. Unfortunately, the higimelsional averages re-
quired for Bayesian methods can be slow, especially withutit@ounded repre-
sentations used by nonparametric models. We address thengeof scaling
Bayesian inference to the increasingly large datasetsdfaumeal-world appli-
cations. We focus on parallelisation of inference in theidndBuffet Process
(IBP), which allows data points to have an unbounded numbsparse latent
features. Our novel MCMC sampler divides a large data setdmt multiple
processors and uses message passing to compute the dtebabbds and pos-
teriors. This algorithm, the first parallel inference scledior IBP-based models,
scales to datasets orders of magnitude larger than haviepsévbeen possible.

1 Introduction

From information retrieval to recommender systems, frogintformatics to financial market anal-
ysis, the amount of data available to researchers has egbliodrecent years. While large, these
datasets are often still sparse: For example, a biologigtirage expression levels from thousands
of genes from only a few people. A ratings database may contdlions of users and thousands
of movies, but each user may have only rated a few movies. dh sattings, Bayesian methods
provide a robust approach to drawing inferences and makiadigtions from sparse information.
At the heart of Bayesian methods is the idea that all unknowantities should be averaged over
when making predictions. Computing these high-dimendiemarage is thus a key challenge in
scaling Bayesian inference to large datasets, espectltyonparametric models.

Advances in multicore and distributed computing provide answer to this challenge: if each pro-
cessor can consider only a small part of the data, then iméerim these large datasets might become
more tractable. However, sudata parallelisationof inference is nontrivial—while simple models
might only require pooling a small number of sufficient sttis [1], inference in more complex
models might require the frequent communication of comhégh-dimensional probability distri-
butions between processors. Building on work on approx@naalynchronous multicore inference
for topic models [2], we develop a message passing framefoodiata-parallel Bayesian inference
applicable to a variety of models, including matrix factation and the Indian Buffet Process (IBP).

* Authors contributed equally.

Nonparametric models are attractive for large datase@usecthey automatically adapt to the com-
plexity of the data, relieving the researcher from the neexpecify aspects of the model such as the
number of latent factors. Much recent work in nonparamd&egesian modelling has focused on
the Chinese restaurant process (CRP), which is a discitébdiion that can be used to assign data
points to an unbounded number of clusters. However, marynedd datasets have observations
that may belong to multiple clusters—for example, a gene naa Imultiple functions; an image
may contain multiple objects. The IBP [3] is a distributioreoinfinite sparse binary matrices that
allows data points to be represented by an unbounded nurfisparse latent features or factors.
While the parallelisation method we present in this papepieable to a broad set of models, we
focus on inference for the IBP because of its unique chadlsragnd potential.

Many serial procedures have been developed for inferentteeifBP, including variants of Gibbs

sampling [3, 4], which may be augmented with Metropolistsplerge proposals [5], slice sam-
pling [6], particle filtering [7], and variational inferead8]. With the exception of the accelerated
Gibbs sampler of [4], these methods have been applied teetataith less than 1,000 observations.

To achieve efficient paralellisation, we exploit an ideaergtly introduced in [4], which maintains

a distribution over parameters while sampling. Coupledhwimessage passing scheme over pro-
cessors, this idea enables computations for inference thstébuted over many processors with
few losses in accuracy. We demonstrate our approach on &pratith 100,000 observations. The
largest application of IBP inference to date, our work optiesuse of the IBP and similar models
to a variety of data-intensive applications.

2 Latent Feature M odel

The IBP can be used to define models in which each observatiassociated with a set of latent
factors or features. A binary feature-assignment matrisepresents which observations possess
which hidden features, whetg,,,, = 1 if observationn has featurés and Z,,;, = 0 otherwise.
For example, the observations might be images and the higdéures could be possible objects in
those images. Importantly, the IBP allows the set of suckipteshidden features to be unbounded.

To generate a sample from the IBP, we first imagine that the @ (the observations) are cus-
tomers and the columns ¢&f (the features) are dishes in an infinite buffet. The firstausr takes
the first Poissony) dishes. The following customers try previously sampleshds with probability
my /n, wheremy, is the number of people who tried digtbefore customen. Each customer also
takes Poisson(/n) new dishes. The valug, records if customen tried dishk. This generative
process allows an unbounded set of features but guarahigtes finite dataset will contain a finite
number of features with probability one. The process is elamangeable in that the order in which
customers visit the buffet has no impact on the distributib@. Finally, if the effect of possessing
a feature is independent of the feature index, the modessetchangeable in the columnsaf

We associate with the feature assignment matria feature matrixA with rows that parameterise
the effect that possessing each feature has on the datax tBa&e matrices, we write the probability
of the data a(X|Z, A). Our work requires thaP(A|X, Z) can be computed or approximated
efficiently by an exponential family distribution. Spec#ily, we apply our techniques to both a
fully-conjugate linear-Gaussian model and non-conjug@aeoulli model.

Linear Gaussian Model. We model anV x D real-valued data matriX as a product:
X =ZA+e, (1)

where Z is the binary feature-assignment matrix adds a K by D real-valued matrix with an
independent Gaussian prio¥(0,c2) on each element (see cartoon in Figure 1(a)). Each element
of the N by D noise matrixe is independent with & (0, 2) distribution. GivenZ and X, the
posterior on the feature$ is Gaussian, given by mean and covariance

o2 \ 71 o2 \ 71
p = <ZTZ + U;I) zZTx x4 =02 (ZTZ + U;I))

Bernoulli Model. We use a leaky, noisy-or likelihood for each element of\ar D matrix X:

P(Xna=12,4) =1 ¢ A Dk Ana)

. <27 Root S
&

D K D
X 7 A
K > é\o‘ 2N %,
* & B
N ~ N e + &
P3 P4

(a) Representation of the linear-Gaussian model(b) Message passing process. Pro-
The dataX is generated from the product of the cessors send sufficient statistics of
feature assignment matrig and feature matripd. the likelihood up to the root, which
In the Bernoulli model, the produ¢t A adjusts the calculates and sends the (exact) pos-
probability of X =1 terior back to the processors.

Figure 1: Diagrammatic representation of the model strecimd the message passing process.

Each element of thel matrix is binary with independerernoulli(p4) priors. The parameteks
and A\ determine how “leaky” and how “noisy” the or-function isspectively. Typical hyperpa-
rameter values are= 0.95 and\ = 0.2. The posteriotP(A|X, Z) cannot be computed in closed
form; however, a mean-field variational posterior in which approximateP(A| X, Z) as product

of independent Bernoulli variablqgklf;f qra(arq) can be readily derived.

3 Paralld Inference

We describe both synchronous and asynchronous proceduraggdroximate, parallel inference in
the IBP that combines MCMC with message passing. We firsitjparthe data among the proces-
sors, usingX? to denote the subset of observationsassigned to processpr We useZ? to denote
the latent features associated with the data on processdni{4], the distributionP(A|X_,,, Z_,,)
was used to derive an accelerated sampler for samglingvheren indexes the:*” observation and
—n is the set of all observations exceptin our parallel inference approach, each procesgsoain-
tains a distributionP? (A| X _,,, Z_,,), a local approximation t&(A|X_,,, Z_,,). The distributions
PP are updated via message passing between the processors.

The inference alternates between three steps:

e Message passingirocessors communicate to compute the ex¥et| X, 7).
e Gibbs samplingprocessors sample a new setfs in parallel.
e Hyperparameter samplinga root processor resamples global hyperparameters

The sampler is approximate because during Gibbs sampliqgoaessors resample elementsbf
at the same time; their posteriaP¥(A| X, Z) are no longer the tru®(A| X, 7).

Message Passing We use Bayes rule to factorise the posterior over featiifey 7, X):

P(A|Z,X) < P(A) [P(x7|27, A) (4)

If the prior P(A) and the likelihoodsP?(X?|Z?, A) are conjugate exponential family models, then
the sufficient statistics aP(A|Z, X)) are the sum of the sufficient statistics of each term on th# rig
side of equation (4). For example, the sufficient statigticthe linear-Gaussian model are means
and covariances; in the Bernoulli model, they are countouof bften each element,; equals one.
The linear-Gaussian messages have GigZ&? + K D), and the Bernoulli messagéX K D), where

K is the number of features. For nonparametric models sudhea®®, the number of featurds
grows a0 (log N). This slow growth means that messages remain small, evéarfpr datasets.

The most straightforward way to compute the full postersoioi arrange processors in a tree archi-
tecture, as belief propagation is then exact. The messfgen processop to processoy is:

Spog = 1P + Z Sr—p
reEN(p)\q

3

where N (p)\q are the processors attachedptesides; andi? are the sufficient statistics from
processop. A dummy neighbour containing the statistics of the priczaanected to (an arbitrarily
designated) root processor. Also passed are the featunésea{l = 3 _ ., Z,, , the popularity of
featurek within processop. (See figure 1(b) for a cartoon.)

Gibbs Sampling In general,Z,;, can be Gibbs-sampled using Bayes rule

The probabilityP(Z,,x|Z_ ;) depends on the size of the datadeand the number of observations
my, using featurek. At the beginning of the Gibbs sampling stage, each procdssothe correct
values ofmy,. We computen, ” = m;, —m?, and, as the processor’s internal feature coutjfsre
updated, approximate,, ~ m, " + m}. This approximation assumes, ” stays fixed during the
current stage (good for popular features).

The collapsedikelihood P(X|Z) integrating out the feature valuesis given by:
PX|2) [PUX|Z0 AYPAIZ-, X o)A
A

where the partial posterid?(A|Z ., X) & (i 7+ In conjugate models?(A|Z_,, X)
can be efficiently computed by subtracting observatitsncontribution to the sufficient statistiés.
For non-conjugate models, we can use an exponential farmstyiltltion Q(A) to approximate
P(A|X, Z) during message passing. A draiv~ Q?(A) is then used to initialise anmncollapsed
Gibbs sampler. The outputted sampleslaire used to compute sufficient statistics for the likelihood
P(X|Z). In both cases, new features are added as described in [3].

Hyperparameter Resampling The IBP concentration parameterand hyperparameters of the
likelihood can also be sampled during inference. Resamplidepends only on the total number of
active features; thus it can easily be resampled at the rebpeopagated to the other processors. In
the linear-Gaussian model, the posteriors on the noiseeatdre variances (starting from gamma
priors) depend on various squared-errors, which can alsofmuted in a distributed fashion.

For more general, non-conjugate models, resampling therpgpameters requires two steps. In
the first step, a hyperparameter value is proposed by thearmbtpropagated to the processors.
The processors each compute the likelihood of the currehpeosposed hyperparameter values and
propagate this value back to root. The root evaluates a ldeliostep for the hyperparameters
and propagates the decision back to the leaves. The twapf@pach introduces a latency in the
resampling but does not require any additional messag@gassinds.

Asynchronous Operation So far we have discussed message passing, Gibbs samplihgyan
perparameter resampling as if they occur in separate phasgsactice, these phases may occur
asynchronously: between its Gibbs sweeps, each procegdatas its feature posterior based on
the most current messages it has received and sends ligélinessages to its parent. Likewise,
the root continuously resamples hyperparameters and gatgmthe values down through the tree.
While another layer of approximation, this asynchronousifof message passing allows faster pro-
cessors to share information and perform more inferencb@ndata instead of waiting for slower
processors.

Implementation Note When performing parallel inference in the IBP, a few factoegdhto be
considered with care. Other parallel inference for nonpatac models, such as the HDP [2],
simply matched features by their index, that is, assumeidhia’” feature on processgrwas also
thei*" feature on processat In the IBP, we find that this indiscriminate feature mergisgften
disastrous when adding or deleting features: if none of Bseivations in a particular processor are
using a feature, we cannot simply delete that column of Z &iftithe other features over—doing
so destroys the alignment of features across processors.

In the IBP, only the linear-Gaussian model exhibits this conjugate struddlawever, many other matrix
factorization models (such as PCA) often have this conjugate form.

4 Comparison to Exact Metropolis

Because all?’s are sampled at once, the posterif¥g A| X, Z) used by each processor in section 3
are no longer exact. Below we show how Metropolis—Hastimdld)(steps can make the parallel
sampler exact, but introduce significant computationattoyads both in computing the transition
probabilities and in the message passing. We argue thaigtitgi do exact inference is a poor
use of computational resources (especially as any finitenchifl not be exact); empirically, the
approximate sampler behaves similarly to the MH sampleteafimding higher likelihood regions
in the data.

Exact Parallel Metropolis Sampler. Ideally, we would simply add an MH accept/reject step after
each stage of the approximate inference to make the sanxalet. &nfortunately, the approximate
sampler makes several non-independent random choicestirs&ge of the inference, making the
reverse proposal inconvenient to compute. We circumvésidbue by fixing the random seed, mak-
ing the initial stage of the approximate sampler a detestimfunction, and then add independent
random noise to create a proposal distribution. This amproaakes both the forward and reverse
transition probabilities simple to compute.

Formally, letZ» be the matrix output after a set of Gibbs sweepsZéin We use all theZ?’s to
propose a neviz’ matrix. The acceptance probability of the proposal is

P(X|Z"P(Z")Q(Z' — Z)

min(l, P(X|2)P(2)Q(Z — Z)

); (®)

where the likelihood term® (X |Z) and P(Z) are readily computed in a distributed fashion. For
the transition distributior), we note that if we set the random seedhen the matrix2? from the
Gibbs sweeps in the processor is some deterministic funofithe input matrix2?. The proposal
ZP' is a (stochastic) noisy representationsfin which for example

P(ZV, =1)=.99 if Z°, =1, PZ, =1)=.01 if Z° =0 (6)

whereK should be at least the number of featureg/in We sethl’;c = 0fork > K. (See cartoon
in figure 2.)

To compute the backward probability, we tak& and apply the same number of Gibbs sampling
sweeps with the same random seedThe resultingZ?’ is a deterministic function oZ?’. The
backward probabilit)Q(Zp' — ZP) which is the probability of going fronZ?’ to Z? using 6.
While the transition probabilities can be computed in a iisted, asynchronous fashion, all of the
processors must synchronise when deciding whether to eiteeproposal.

Experimental Comparison To compare the exact Metropolis and approximate infereack-t
nigues, we ran each inference type on 1000 block images a3 simulated processors. Each
test was repeated 25 times. For each of the 25 tests, we erbatd out dataset by setting elements
of the last 100 images as missing values. For the first 50 tesgjeés, we set all even numbered
dimensions as the missing elements, and every odd numbenetigion as the missing values for
the last 50 images. Each sampler was run for 10,000 itesatigih 5 Gibbs sweeps per iteration;
statistics were collected from the second half of the ch&arkeep the probability of an acceptance
reasonable, we allowed each processor to change only santdlqf itsZ?: the feature assignments
Z, for 1, 5, or 10 data points each during each sweep.

In table 1, we see that the approximate sampler runs abotirfies faster than the exact samplers
while achieving comparable (or better) predictive likelills and reconstruction errors on held-
out data. Both the acceptance rates and the predictiveéhidads fall as the exact sampler tries
to take larger steps, suggesting that the difference betulee approximate and exact sampler’s
performance on predictive likelihood is due to poor mixingthe exact sampler. Figure 4 shows
empirical CDFs for the number of featurkes1BP concentration parameter the noise variance?,
and the feature varianee . The approximate sampler (black) produces similar CDFeo/arious

exact Metropolis samplers (gray) for the variances; thecentration parameter is smaller, but the

feature counts are similar to the single-processor case.

Method Time (s) | Test Ly, | Test Log| MH Accept
Error Likelihood | Proportion

b ~p N MH,n=1 717 0.0468 | 0.1098 0.1106
z- o ZEJUL Z MH,n=5 | 1075 0.0488 | 0.0893 0.0121
Gibbs with Random
cedseed noise MH, n=10 | 1486 0.0555 | 0.0196 0.0062
| Approximate] 179 [0.0487 [0.1292 [- |
Figure 2: Cartoon of MH
proposal Table 1: Evaluation of exact and approximate methods.

nnnnnnnnnnnnnnnnnnnnnnnnn

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

(a) Active feature countt (b) IBP Concentratiome (c) Noise variance2 (d) Feature variance?

Figure 3: Empirical CDFs: The solid black line is the apprmate sampler; the three solid gray lines
are the MH samplers with equal to 1, 5, and 10 (lighter shades indicate largerhe approximate
sampler and the MH samplers for smaltehave similar CDFs; the = 10 MH sampler’s differing
CDF indicates it did not mix in 7500 iterations (reasonaliee its acceptance rate was 0.0062).

5 Analysisof Mixing Properties

We ran a series of experiments on 10,000 36-dimensionak ioages of [3] to study the effects
of various sampler configurations on running time, perfaroea and mixing time properties of
the sampler. 5000 elements of the data matrix were held®uést data. Figure 4 shows test
log-likelihoods using 1, 7, 31 and 127 parallel processomaiated in software, using 1000 outer
iterations with 5 Gibbs inner iterations each. The paraéhplers have similar test likelihoods as
the serial algorithm with significant savings in running éimThe characteristic shape of the test
likelihood, similar across all testing regimes, indicdtess the features are learned. Initially, a large
number of features are added, which provides improvemerntsei test likelihood. A refinement
phase, in which excess features are pruned, provides funtipeovements.

Figure 4 shows hairiness-index plots for each of the tegcafter thinning and burn-in. The hairi-
ness index, based on the method of CUSUM for monitoring MCM@vergence [9, 10], monitors
how often the derivatives of sampler statistics—in our c#s® number of features, the test likeli-
hood, andh—change in sign; infrequent changes in sign indicate thatdihepler may not be mixed.
The outer bounds on the plots are the 95% confidence boundasin@ibx stays within the bounds
suggesting that the chains are mixing.

Finally, we considered the trade-off between mixing anchimig time as the number of outer it-
erations and inner Gibbs iterations are varied. Each caatibim of inner and outer iterations was
set so that the total number of Gibbs sweeps through the dagab®00. Mixing efficiency was

Test Loglikelihood for inner = 5 and outer = 1000 iterations Processors = 1 Processors = 7

2] iR
/’ % 0' I'E’U'
-0.5[.|

20 40 60 80100 20 40 60 80 100
/ Processors = 31 Processors = 127

Test loglikelihood

—s—Proc=1

-151

——proc=7 |9 §

—=—Proc =31
—e— Proc = 127

- T
<1 0 1 2 3 4 5 20 40 60 80100 20 40 60 80100
Time (s)

Figure 4: Change in likelihood for various numbers of presces over the simulation time. The
corresponding hairiness index plots are shown on the left.

6

——i=50, 0 =100
=0-'i=20,0=250
—+—i=10, 0=500

4 \ s
10 2 GRSt —&—i=5,0=1000 |3
N TR -0 -i=1,0=5000
N <L
N oo +
10° b

o

Total Time (s)

Effective Samples per Outer lter.

20 30 7
#Inner Iterations # Processors

Figure 5: Effects of changing the number of inner iterations (a) The effective sample size (b)
Total running time (Gibbs and Message passing).

Table 2: Test log-likelihoods on real-world datasets far $erial, synchronous and asynchronous
inference types.

Dataset N D Description Serial Synch Async
p=1 p=16 p =16
AR Faces [11]| 2600 | 1598 | faces with lighting, accest -4.74 -4.77 -4.84
sories (real-valued)
Piano [12] 57931 | 161 | STDFT of a piano recording -1.435 -1.182 -1.228
(real-valued)
Flickr [13] 100000 | 1000 | indicators of image tags — -0.0584
(binary-valued)

measured via the effective number of samples per sample \lith evaluates what fraction of
the samples are independent (ideally, we would want all $&sip be independent, but MCMC
produces dependent chains). Running time for Gibbs sagplas taken to be the time required by
the slowest processor (since all processors must synaerbefore message passing); the total time
reflected the Gibbs time and the message-passing time. Asrségure 5, completing fewer inner
Gibbs iterations per outer iteration results in faster mgxiwhich is sensible as the processors are
communicating about their data more often. However, hafémgr inner iterations requires more
frequent message passing; as the number of processorsdmtange, the cost of message passing
becomes a limiting factd.

6 Real-world Experiments

We tested our parallel scheme on three real world datasetslénnode cluster using the Matlab
Distributed Computing Engine, using 3 inner Gibbs itenagi@er outer iteration. The first dataset
was a set of 2,600 frontal face images with 1,598 dimensiatg [While not extremely large,
the high-dimensionality of the dataset makes it challepdor other inference approaches. The
piano dataset [12] consisted of 57,931 samples from a I®&mkional short-time discrete Fourier
transform of a piano piece. Finally, the binary-valued Kilidataset [13] indicated whether each
of 1000 popular keywords occurred in the tags of 100,000 asdgpm Flickr. Performance was
measured using test likelihoods and running time. Testiigeds look only at held-out data and
thus they allow us to ‘honestly’ evaluate the model’s fit. [Be@bsummarises the data and shows that
all approaches had similar test-likelihood performance.

In the faces and music datasets, the Gibbs time per iteriatiproved almost linearly as the number
of processors increased (figure 6). For example, we obsertdd-speedup fgr = 16 in the music
dataset. Meanwhile, the message passing time remainetlesmalwith 16 processors—7% of the
Gibbs time for the faces data and 0.1% of the Gibbs time fonihsic data. However, waiting for
synchronisation became a significant factor in the synawsrsampler. Figure 6(c) compares the
times for running inference serially, synchronously anghakronously with 16 processors. The

2\We believe part of the timing results may be an artifact, as the simulationstireates the message passing
time. In the actual parallel system (section 6), the cost of messagegass negligible.

i
)
=1

1200 x10
I sampling
[waiting

I sampling
[waiting

[
o
=)
=
o
=3
=}

80

60

log joint

40
.’ = = = serial P=1

synchronous P=16
‘‘‘‘‘ asynchronous P=16

mean time per iteration/s
(=2}
(=]
o

20

mean time per outer iteration/s

o

-2.8
1 2 4 8 16 1 2 4 8 16 1072 10° 10° 10*

number of processors number of processors time/s

(&) Timing analysis for faces (b) Timing analysis for music (c) Timing comparison for different
dataset dataset approaches

Figure 6: Bar charts comparing sampling time and waitingtifor synchronous parallel inference.

asynchronous inference is 1.64 times faster than the sgnobis case, reducing the computational
time from 11.8s per iteration to 7.2s.

7 Discussion and Conclusion

As datasets grow, parallelisation is an increasingly etitra and important feature for doing infer-
ence. Not only does it allow multiple processors/multicehnologies to be leveraged for large-
scale analyses, but it also reduces the amount of data aociatesl structures that each processor
needs to keep in memory. Existing work has focused both oargétechniques to efficiently split
variables across processors in undirected graphical m@ti4] and factor graphs [15] and specific
models such as LDA [16, 17]. Our work falls in between: we tage properties of a specific kind
of parallelisation—data parallelisation—for a fairly broeldss of models.

Specifically, we describe a parallel inference procedusedliows nonparametric Bayesian models
based on the Indian Buffet Process to be applied to largseiatarhe IBP poses specific challenges
to data parallelisation in that the dimensionality of theresentation changes during inference and
may be unbounded. Our contribution is an algorithm for getesllelisation that leverages a com-
pact representation of the feature posterior that apprabdiy decorrelates the data stored on each
processor, thus limiting the communication bandwidth leemprocessors. While we focused on
the IBP, the ideas presented here are applicable to a moeeay@noblems in unsupervised learning
including bilinear models such as PCA, NMF, and ICA.

Our sampler is approximate, and we show that in conjugatestapid behaves similarly to an ex-
act sampler—but with much less computational overhead. Meryas seen in the Bernoulli case,
variational message passing for non-conjugate data dosgralys produce good results if the ap-
proximating distribution is a poor match for the true featposterior. Determining when variational
message passing is successful is an interesting questitutdoe work. Other interesting directions
include approaches for dynamically optimising the netwogkology (for example, slower proces-
sors could be moved lower in the tree). Finally, we note thatddle ground between synchronous
and asynchronous operations as we presented them mightylséeansthat gives each processor a
certain amount of time, instead of a certain number of itenat to do Gibbs sweeps. Further study
along these avenues should lead to even more efficient dasdlgd Bayesian inference techniques.

References

[1] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukan, “Map-reduce for machine
learning on multicore,” indvances in Neural Information Processing Systgm&81, MIT
Press, 2007.

[2] A. Asuncion, P. Smyth, and M. Welling, “Asynchronoustdilsuted learning of topic models,”
in Advances in Neural Information Processing System20Q8.

[3] T. Griffiths and Z. Ghahramani, “Infinite latent featuredels and the Indian buffet process,”
in Advances in Neural Information Processing Systerk 16, NIPS, 2006.

[4] F. Doshi-Velez and Z. Ghahramani, “Accelerated infeeifor the Indian buffet process,” in
International Conference on Machine Learnjr&09.

[5] E. Meeds, Z. Ghahramani, R. Neal, and S. Roweis, “Modgetiyadic data with binary latent
factors,” inAdvances in Neural Information Processing Systarok 19, pp. 977-984, 2007.

[6] Y. W. Teh, D. Griir, and Z. Ghahramani, “Stick-breaking construction fa thdian buffet
process,” inProceedings of the Intl. Conf. on Artificial IntelligencedaStatistics vol. 11,
pp. 556-563, 2007.

[7] F. Wood and T. L. Griffiths, “Particle filtering for nonpametric Bayesian matrix factoriza-
tion,” in Advances in Neural Information Processing Systerok 19, pp. 1513-1520, 2007.

[8] F. Doshi-Velez, K. T. Miller, J. Van Gael, and Y. W. Teh, &¥ational inference for the In-
dian buffet process,” ilProceedings of the Intl. Conf. on Artificial Intelligenceda8tatistics
vol. 12, pp. 137-144, 2009.

[9] S. P.Brooks and G. O. Roberts, “Convergence assessawmtiues for Markov Chain Monte
Carlo,” Statistics and Computingol. 8, pp. 319-335, 1998.

[10] C. R. Robert and G. Casellglonte Carlo Statistical MethodsSpringer, second ed., 2004.

[11] A. M. Mart'inez and A. C. Kak, “PCA versus LDA JEEE Trans. Pattern Anal. Mach. Intelli-
gencevol. 23, pp. 228-233, 2001.

[12] G. E. Poliner and D. P. W. Ellis, “A discriminative modek polyphonic piano transcription,”
EURASIP J. Appl. Signal Processgol. 2007, no. 1, pp. 154-154, 2007.

[13] T. Kollar and N. Roy, “Utilizing object-object and olgescene context when planning to find
things.,” inInternational Conference on Robotics and Automatop09.

[14] C. G.Joseph Gonzalez, Yucheng Low, “Residual splasbgtmally parallelizing belief prop-
agation,” inProceedings of the Twelfth International Conference oiifigidl Intelligence and
Statistics(D. van Dyk and M. Welling, eds.), vol. 5, pp. 177-184, JMLRP2.

[15] D. Stern, R. Herbrich, and T. Graepel, “Matchbox: Lasgale online Bayesian recommenda-
tions,” in 18th International World Wide Web Conference (WWW208p)il 2009.

[16] R. Nallapati, W. Cohen, and J. Lafferty, “Parallelizeatiational EM for Latent Dirichlet Al-
location: An experimental evaluation of speed and scatghbiin ICDMW '07: Proceedings
of the Seventh IEEE International Conference on Data MiWarkshops(Washington, DC,
USA), pp. 349-354, IEEE Computer Society, 2007.

[17] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Dibtited inference for Latent Dirich-
let Allocation,” in Advances in Neural Information Processing System&l2Platt, D. Koller,
Y. Singer, and S. Roweis, eds.), pp. 1081-1088, Cambridde NUT Press, 2008.

