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Modelling is fundamental to many fields of science and engineering. A model can
be thought of as a representation of possible data one could predict from a system.
The probabilistic approach to modelling uses probability theory to express all aspects
of uncertainty in the model. The probabilistic approach is synonymous with Bayesian
modelling, which simply uses the rules of probability theory in order to make predictions,
compare alternative models, and learn model parameters and structure from data. This
simple and elegant framework is most powerful when coupled with flexible probabilistic
models. Flexibility is achieved through the use of Bayesian nonparametrics. This article
provides an overview of probabilistic modelling and an accessible survey of some of
the main tools in Bayesian nonparametrics. The survey covers the use of Bayesian
nonparametrics for modelling unknown functions, density estimation, clustering, time
series modelling, and representing sparsity, hierarchies, and covariance structure. More
specifically it gives brief non-technical overviews of Gaussian processes, Dirichlet
processes, infinite hidden Markov models, Indian buffet processes, Kingman’s coalescent,
Dirichlet diffusion trees, and Wishart processes.
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1. Introduction

Modelling is central to the sciences. Models allow one to make predictions, to
understand phenomena, and to quantify, compare and falsify hypotheses.

Modelling is also at the core of intelligence. Both artificial and biological
systems that exhibit intelligence must be able to make predictions, anticipate
outcomes of their actions, and update their ability to make predictions in light of
new data. It is hard to imagine how a system could do this without building models
of the environment that the system interacts with. It is thus not surprising that
many theories in cognitive science are based around the idea of building internal
models (Wolpert et al., 1995; Knill and Richards, 1996; Griffiths and Tenenbaum,
2006).

A model is simply a compact representation of possible data one could observe.
As such it may be more interpretable than the observed data itself, providing a
useful representation of data. A model must be able to make forecasts of possible
future data, otherwise it seems impossible to falsify a model in light of new data.
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I will use the term forecast in a very general way to refer to the process of making
any claims about unobserved data on the basis of observed data; I will also
use predict interchangeably with forecast. For all nontrivial phenomena, forecasts
have to include some representation of the forecasting uncertainty. Deterministic
forecasts (e.g. tomorrow’s high temperature will be 17 degrees C) are too brittle
and therefore easy to falsify.

Ideally, a model should also be adaptive. By adaptive I mean that the
forecasts of the model should change depending on the data observed so far. Such
adaptation, or learning, should hopefully have the effect of making the model’s
forecasts be better aligned with actual data. For example, if the forecasts are in
the form of probability distributions, adaptation should have the effect that the
forecast probability assigned to what actually happens should increase after the
model has seen more data, although this cannot be generally guaranteed.

It is clear that all forecasts need to represent uncertainty. Observable data is
generally corrupted by noise in the measurement process, and this noise needs to
be incorporated in the forecast uncertainty. But uncertainty lurks at many other
levels in any model. The amount of noise in the measurement process may itself
be unknown. The model may have a number of parameters which are unknown.
The structure of the model itself may be uncertain, or there may be multiple
plausible competing models for the data. The forecasting system should ideally
produce forecasts that incorporate all reasonable sources of uncertainty. As we
will see, the Bayesian framework provides a natural and coherent approach for
representing and manipulating all forms of uncertainty in modelling.

2. The Bayesian framework

The fundamental idea in Bayesian modelling is to use the mathematics of
probability theory to represent and manipulate all forms of uncertainty in the
model. This is a surprisingly simple yet powerful idea.

The good news is that there are only two rules of probability theory one needs
to remember, the sum rule and the product rule.1 Consider a pair of random
variables x and y taking on values in some spaces X and Y respectively. The sum
rule states that if I know the joint probability of two random variables, x and y,
I can obtain the marginal probability of x by summing over all possible values of
y,

P (x) =
∑
y∈Y

P (x, y).

If y is continuous we simply replace the sum with an integral. If I have a model
for the joint probability distribution of the high temperature in London and
Cambridge I can obtain the marginal distribution for the high temperature in
Cambridge summing out London’s temperature.

The product rule states that the joint probability of x and y can be
decomposed into the product of the marginal probability of x and the conditional

1 With apologies to probabilists and statisticians my presentation and notation will eschew
formality in favour of didactic clarity.
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probability of y given x (or the other way around):

P (x, y) = P (x)P (y|x) = P (y)P (x|y).

Combining the sum and product rule and rearranging a bit we obtain Bayes rule
as a corollary:

P (y|x) =
P (x|y)P (y)

P (x)
=

P (x|y)P (y)∑
y′∈Y

P (x|y′)P (y′)

Let us now use these equations in a canonical modelling context. We will use
D to represent the observable data. Often we talk about the data being a set
consisting of a number of “data points” or measurements, D= {x1, . . . , xN} but
this is in no way a necessary assumption. For example, the data could be a single
image, an observed graph, or an ordered sequence of measurements rather than
a set. Our model will be indexed by m and we may want to consider multiple
alternative models, e.g. m, m′ etc. Each model usually has a number of free
parameters, which we will denote with θ which can be a vector if needed.

First we need to make sure that the model m is well defined, in the sense that
it can predict or forecast data. As previously discussed we use probability theory
to represent the model forecasts. For any given setting of the model parameters,
the model must be able to produce a forecast of the form

P (D|θ,m).

This probability of the data as a function of the parameters is the likelihood of
the parameters. With the likelihood, for any given setting of the parameters we
are in the position of making forecasts. However, the model m is not fully defined
until we specify a “range” for the parameter values, θ. A linear regression model
which states that the slope can take values between −1 and +1 is a very different
model from one which specifies that the slope can take values between −100 and
+100. In fact, to fully specify a model, we need to do a bit more than specify the
range of parameters, we need to define a distribution over this range. Only then
will our model m be able to make forecasts. We see this by writing the forecast
probability of the model using the sum and product rules:

P (D|m)
sum
=

∫
P (D, θ|m)dθ

prod
=

∫
P (D|θ,m)P (θ|m)dθ (2.1)

The expression P (D|m) is variously called the marginal likelihood, model evidence,
or integrated likelihood. The prior over the parameters, P (θ|m), plays the role
of specifying the range as described above (for example it could be uniform on
[−1,+1]) in the form of a distribution over the allowable values of the parameters.
Without a prior our model is not well-defined: we cannot generate or forecast
data until we know how to choose values for θ.2 Once the prior and likelihood
are defined, and only then, is the model m fully specified in the sense that it can
generate possible data sets.

People often object to Bayesian methods on the basis that it forces one to
define priors on the parameters. This, in my opinion, is completely misguided.

2 Of course, our model may have a fixed value of θ, e.g. 7.213, which corresponds to a delta
function prior.
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All models make assumptions; without assumptions it is impossible to make
any forecasts or predictions from observed data. The first stage of the Bayesian
modelling framework is to explicitly state all assumptions using the language
of probability theory. Specifying both the prior and likelihood is a necessary
requirement so that the model is well defined. In fact, the distinction between
prior and likelihood is arbitrary3; both are essential parts of the model.

People also object to the use of priors on the parameters on the grounds that
they don’t think of the parameters as being “random” variables. For example, if one
is estimating the mass of a planet from astronomical data, the mass of the planet
is not “random” in the colloquial sense of the word.4 This is a misunderstanding
of the semantics of probabilities in Bayesian modelling. Probabilities are used to
represent our uncertainty about unknown quantities. They are just as good at
modelling uncertainty for repeatable experiments such as the outcome of a roll of
a die, as they are for modelling uncertainty in the mass of a planet. Incidentally,
both forms of uncertainty are fundamentally subjective; one’s uncertainty about
a roll of a die depends on one’s knowledge of the exact initial conditions of the
roll, in just the same way as the uncertainty about the mass of the planet depends
on knowledge of the observational data on the planet’s orbit.

Finally, people trained in the sciences are uncomfortable with the very notion
of subjectivity in data analysis and modelling. This again is deeply misguided:
all models involve assumptions, and all conclusions drawn from data analysis are
conditional on assumptions. The probabilistic framework forces the scientist to
be completely transparent about the assumptions, by expressing all assumptions
as distributions on unknown quantities. These assumptions can then be easily
contested, and the same data can be reanalysed under different modelling
assumptions (and priors). The fact that conclusions could change depending on
the assumptions is essential to good scientific practice. Fortunately, given enough
data, the effect of the prior is generally overcome by the likelihood and posterior
conclusions will converge (Doob, 1949; Le Cam, 1986; Van der Vaart, 2000). This
is directly analogous to the progress of science, where of many possible hypotheses
only the ones consistent with the data will survive. Bayesian modelling is subjective
but not arbitrary: given a full specification of the model, and the data, there is
only one way to reason about any quantity of interest.

Modelling thus becomes a very simple procedure:
• write down your assumptions (possible models, parameters, noise processes,

etc), representing all forms of uncertainty using the language of probability
theory

3 Consider for example a model which defines the probability of the data (i.e. the likelihood)
using a student t-distribution. For a single data point, this can be equivalently expressed as a
model with a Gaussian likelihood and a Gamma prior on the precision of that Gaussian.

4 I don’t like the term ’random variable’ because it suggest that there is some true source
of randomness driving some process. To give another example, people would naturally and
understandably flinch at the idea of calling something like the millionth digit of π or the number
of people alive today a random variable. The notion that Bayesians consider true parameters
to be “random variables” makes the framework less intuitive that it actually is. It is much more
natural to use the term uncertain. Clearly I can be uncertain about the million’th digit of π even
though its value is not random at all. My uncertainty about this digit will change after I look
it up on the web, but presumably will not go to zero as there is always the chance of someone
having made a mistake somewhere.
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• given the data, use probability theory to make inferences about any
unknown quantities in your model, or to make predictions from the model.

This process lends itself very naturally to a sequential processing of data.
Your posterior after observing some data Dold, P (θ|Dold,m) is your prior before
observing new data, Dnew:

P (θ|Dnew,Dold,m)∝ P (Dnew|Dold, θ,m)P (θ|Dold,m).

The sum and product rule also tell us how to make predictions from a model.
Consider predicting some unknown quantity x (e.g. the next data point) given
observed data D and model m:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ. (2.2)

This is a very intuitively satisfying expression which tells us that our predictions or
forecasts are a weighted average of the forecasts from different parameter values,
weighted by the posterior probability of each parameter value given the data
observed so far. For parametric models, this simplifies since given the parameters
forecasts are independent of the observed data: P (x|θ,D,m) = P (x|θ,m). We will
revisit this point as we discuss parametric vs nonparametric models in Section 3.
If we are considering a number of models m, m′, etc, then by the sum and product
rules, our forecasts are an average over models weighted by their posteriors.

The probabilistic modelling framework also provides intuitive answers to
problems in model comparison. Assuming a set of competing probabilistic models
M, given some observed data we can evaluate the posterior probability of a
particular model m,

P (m|D) =
P (D|m)P (m)

P (D)
=

P (D|m)P (m)∑
m′∈M P (D|m′)P (m′)

.

Note the prominent role played by the marginal likelihood, P (D|m).
Importantly, this marginal likelihood captures a preference for simpler models

known as Bayesian Occam’s Razor (Jefferys and Berger, 1992; MacKay, 2003;
Rasmussen and Ghahramani, 2001). Consider a set of nested models, for example
different order polynomials (e.g. constant, linear, quadratic, cubic, etc.) used to
fit some regression relationship (Figure 1). Clearly a higher order model such as
the cubic polynomial is strictly more complex than a lower order model such as
the linear polynomial. Model fitting procedures based on optimisation (such as
maximum likelihood methods or penalised likelihood methods) need to take great
care not to overfit the data by fitting the parameters of an overly complex model
to a relatively small data set. Overfitting is not a problem for fully Bayesian
methods, as there is no “fitting” of the model to the data. We only have the
sum rule and the product rule to work with, there is no “optimise” rule in
probability theory. A more complex model, say one that has more parameters,
simply spreads its predictive probability mass over more possible data sets than
a simpler model. If all models are specified as probability distributions over data
sets, since probability distributions have to sum to one, all models have the same
amount of probability mass to spread over possible data (Figure 2). Given a
particular data set, it therefore becomes possible to reject both models that are
too simple or too complex simply by using the rules of probability theory.
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Figure 1. Marginal likelihoods, Occam’s razor, and overfitting: Consider modelling a function y=
f(x) + ε describing the relationship between some input variable x, and some output or response
variable y. (left) The red dots in the plots on the left side are a data set of eight (x, y) pairs of
points. There are many possible f that could model this given data. Let’s consider polynomials
of different order, ranging from constant (M = 0), linear (M = 1), quadratic (M = 2), etc to
seventh order (M = 7). The blue curves depict maximum liklihood polynomials fit to the data
under Gaussian noise assumptions (i.e. least squares fits). Clearly the M = 7 polynomial can fit
the data perfectly, but it seems to be overfitting wildly, predicting that the function will shoot
off up or down between neighbouring observed data points. In contrast, the constant polynomial
may be underfitting, in the sense that it might not pick up some of the structure in the data. The
green curves indicate 20 random samples from the Bayesian posterior of polynomials of different
order given this data. A Gaussian prior was used for the coefficients, and an inverse gamma
prior on the noise variance (these conjugate choices mean that the posterior can be analytically
integrated). The samples show that there is considerable posterior uncertainty given the data,
and also that the maximum likelihood estimate can be very different from the typical sample
from the posterior. (right) The normalised model evidence or marginal likelihood for this model is
plotted as a function of the model order, P (Y |M), where the data set Y are the eight observed
output y values. Note that given the data, model orders ranging from M = 0 to M = 3 have
considerably higher marginal likelihood that other model orders, which seems plausible given
the data. Higher order models, M > 3, have relatively much smaller marginal likelihood which
is not visible on this scale. The decrease in marginal likelihood as a function of model order is
a reflection of the automatic Occam’s razor which results from Bayesian marginalisation.
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Figure 2. An illustration of Occam’s Razor. Consider all possible data sets of some fixed size n.
Competing probabilistic models correspond to alternative distributions over the data sets. Here
we have illustrated three possible models which spread their probability mass in different ways
over these possible data sets. A complex model (shown in blue) spreads its mass over many more
possible data sets, while a simple model (shown in green) concentrates its mass on a smaller
fraction of possible data . Since probabilities have to sum to one, the complex model spreads
its mass at the cost of not being able to model simple data sets as well as a simple model—this
normalisation is what results in an automatic Occam’s razor. Given any particular data set,
here indicated by the dotted line, we can use the marginal likehood to reject both overly simple
models, and overly complex models. This figure is inspired by a figure from MacKay (1991), and
an actual realisation of this figure on a toy classification problem is discussed in Murray and
Ghahramani (2005).

This approach to Bayesian model comparison can be used to solve a vast range
of problems in learning the structure of complex models. For example, it has been
used to learn the number of clusters in a mixture model (Roberts et al., 1998;
Ghahramani and Beal, 2000), finding relevant variables or features in a prediction
problem (MacKay, 1994; Neal, 1998), discovering the number of states in a hidden
Markov model (MacKay, 1997), and learning the dependency structure between
variables in a probabilistic graphical model (Friedman and Koller, 2003).

The above approach to model comparison relies on the ability to enumerate
a set of models M to be compared. This is often reasonable in scientific
settings where there are a number of competing hypotheses to explain some
phenomenon. Bayesian Occam’s razor ensures that overly complex models are
adequately penalised when doing model comparison. However, the complexity
of real-world phenomena often requires us to consider complex models that are
flexible enough to capture the structure in real data. Flexible models are not
only more realistic, but will also generally result in more reasonable forecasts
than simpler models. Bayesian nonparametrics provides a natural framework for
defining flexible models.

3. Nonparametric models

The best way to understand nonparametric models is by first reminding ourselves
of what parametric models are. A parametric model has some finite set of
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parameters θ. Given these parameters, future predictions, x, are independent of
the observed data:

p(x|θ,D) = p(x|θ).
The parameters therefore capture everything there is to know about the data that
is relevant for predicting future data.

We can think of all models as information channels from past data D to future
predictions x. The parameters in a parametric model constitute a bottleneck in
this information channel. The complexity of the model, and the capacity of the
channel, is bounded, even if the amount of observed data becomes unbounded.
Parametric models are therefore not generally very flexible.

In contrast a nonparametric model assumes that the data distribution cannot
be defined in terms of such a finite set of parameters. However, often we can think
of nonparametric models as being defined in terms of an infinite dimensional θ.
More formally, the infinite dimensional θ is often represented as a function. The
term nonparametric is therefore a bit of a misnomer; it’s not that nonparametric
models don’t have parameters, in fact they have infinitely many parameters.
Because of this, nonparametric models cannot be explicitly represented in terms
of their parameters.

From the information channel viewpoint, we have removed the bottleneck. The
amount of information that θ can capture about the data D grows as the amount
of data grows. This makes nonparametric models more flexible than parametric
models. 5

There is another way to view the difference between parametric and
nonparametric models. Predictions from a parametric model are explicitly and
compactly summarised through the parameters θ, P (x|θ). Nonparametric models,
in contrast, cannot be summarised in this way. Because of this predictions from
a nonparametric are necessarily memory-based, P (x|D); to make predictions we
need to store or remember a growing amount of information about the training
data, D.

Nonparametric models are inextricably tied to the notion of exchangeability.
A sequence is exchangeable if its joint distribution is invariant under arbitrary
permutation of the indices. Consider modelling a data set {x1, . . . , xN} under
the assumption that the ordering of the elements is uninformative. This data
set may be a collection of documents, images, or any other sort of object
collected in a manner such that either the ordering is irrelevant or completely
unknown.6 De Finetti’s theorem states that a sequence is exchangeable if and only
if there exists some θ such that the elements xn are independently and identically
distributed (iid) from some unknown distribution indexed by θ (Kallenberg, 2005).
Importantly, θ may need to be infinite dimensional as it needs to index the space
of probability measures (non-negative functions that normalise to one).

5 To the best of my knowledge, this information channel view of nonparametric modelling is
not explicitly articulated in the literature, although to be sure, there are a number of strong links
between Bayesian inference and information theory (Zellner, 1988; MacKay, 2003). These ideas
could certainly be further formalised by explicitly attempting to measure or estimate the channel
capacity of different models. This would help provide a further definition of the complexity of a
model, measured in bits per data point, which in many ways is more satisfactory than definitions
that rely on counting parameters.

6 There are generalisations of exchangeability to handle time series and arrays.
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The consequence of de Finetti’s theorem is that if we want to model
exchangeable data in full generality, we need to consider putting distributions
on unknown probability measures.

Distributions on measures, functions, and other infinite dimensional objects,
are thus central to Bayesian nonparametric modelling. Many of these distributions
are infinite dimensional versions of their finite dimensional counterparts, and in
fact a good strategy for deriving Bayesian nonparametric models is to start from
a parametric model and “take the infinite limit” (Neal, 2000). Distributions on
infinite dimensional objects are the main subject of study in stochastic process
theory, and therefore much of the terminology used in Bayesian nonparametrics
is borrowed from this field.7

Two of the classical building blocks for Bayesian nonparametric models are the
Gaussian process and the Dirichlet process. I will give an overview of these models
in sections 4 and 5, with an emphasis on their applications to general problems in
machine learning and statistics, including regression, classification, clustering, and
density estimation (these problems will also be described in those sections). I will
also cover newer building blocks that can represent nonparametric distributions
over sparse matrices, hierarchies, covariances, and time series (sections 6 to 9).
In order to give a broad overview I will necessarily have to avoid going in much
depth into any of the specific topics, providing instead pointers to the relevant
literature. Admittedly, my overview is based on my personal view of the field,
and is therefore biased towards areas of Bayesian nonparametrics to which my
colleagues and I have contributed, and misses other important areas.

4. Modelling functions, classification and regression: Gaussian processes

Gaussian processes (GPs) are a distribution over functions which can be used
in numerous contexts where one’s model requires one to represent an unknown
function (Rasmussen and Williams, 2006). One dimensional GPs indexed by
time are familiar to many fields: Brownian motion, Wiener processes, Ornstein-
Uhlenbeck processes, linear Gaussian state-space models, and many random
walks, are all examples of GPs. For historical reasons, GPs are also sometimes
associated with spatial statistics, for example modelling temperature as a function
of spatial location. Within machine learning, GPs are often used for nonlinear
regression and classification.

Consider the following simple model for nonlinear regression

yn = f(xn) + εn.

Here, we wish to model the relationship between an input (or covariate) x and
an output (or response variable) y. The subscript n indexes data points in our
data set D, εn is some additive noise, and crucially, f is the unknown regression
function we wish to learn about from data.

7 The word “process” usually evokes the idea of something evolving temporally, but it’s
important to note that stochastic processes can be indexed by time, space, or any other index
space. Many of the uses of stochastic processes in Bayesian nonparametrics do not correspond
to indexing by time.
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Assume we have a distribution over functions f and we evaluate the marginal
distribution it assigns to the vector f = (f(x1), . . . f(xN )). If, for any choice
of input points, (x1, . . . , xN ), the marginal distribution over f is multivariate
Gaussian, then the distribution over the function f is said to be a Gaussian
process. In other words, a GP is an infinite dimensional generalisation of the
multivariate Gaussian. Analogously to the Gaussian, a GP is parameterised by a
mean function, and a covariance function.

The application of GPs to regression is straightforward. Starting with a prior
on functions p(f) we condition on the data to obtain a posterior p(f |D). When
the noise ε is assumed to be Gaussian, all computations reduce to operations
on N dimensional Gaussians. The infinitely many other dimensions of f can be
marginalised out analytically.

Classification problems correspond to predicting categorical response or
output variables, e.g. y ∈ {cat,dog}. GP regression can be modified to do
classification simply by introducing a link function that maps the real values
f(x) into probabilities over the classes. Computing p(f |D) exactly becomes
intractable but many good methods exist for approximating the required
integrals (section 10).

5. Density estimation and clustering:
Dirichlet processes and Chinese restaurant processes

We now consider two distinct problems—density estimation and clustering—
and describe a close link between the two when approached from a Bayesian
nonparametric modelling approach.

Density estimation refers to the problem of inferring an unknown density p
from data D= {x1, . . . , xN}. Let us first consider a very simple situation where
the data points belong to a discrete and finite space with K possible values,
x∈X = {1, . . . ,K}. Any distribution on X can be represented by aK-dimensional
non-negative vector p that sums to one. To infer p from D we need a reasonable
prior on finite distributions. The Dirichlet distribution is a natural choice which
takes the form:

P (p|α,h) =
1

Z

K∏
k=1

pαhk−1k .

Here Z is a normalising constant, h is the mean of p and α> 0 controls
the dispersion around the mean. A very attractive property of the Dirichlet
distribution is that it is conjugate in the sense that the posterior P (p|D, α,h)
is also Dirichlet. Another nice property is that for all but pathological choices
of the parameters it has good coverage in the sense that it puts some nonzero
probability mass near all possible values of p.

The Dirichlet process (DP) extends the Dirichlet distribution to countable or
uncountably infinite spaces X . It has the property that for any finite partition of
X = (X1, . . .XK) it marginalises to a K-dimensional Dirichlet distribution on the
measure (i.e. mass) assigned to each element of the partition (Ferguson, 1973).
We write that the probability measure G is drawn from a Dirichlet process prior
as G∼DP(α,H) analogously to our notation for the Dirichlet distribution. An
excellent introduction to the Dirichlet process is provided by Teh (2010).
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Conjugacy and good coverage suggest that the DP could be a very good
general purpose nonparametric density estimator. Unfortunately, the distributions
drawn from a DP prior are, with probability one, discrete so they don’t have a
density. In fact, a draw from a DP prior can be represented in the following way:

G=

∞∑
k=1

πkδxk (5.1)

where the sum is an infinite sum, the πk are masses that sum to one, δ is the
Dirac-delta function, and the xk are locations for those probability masses drawn
iid from the base measure H which controls the mean of G. To alleviate the
problem of discreteness, the DP is often used as a prior on the parameters of
a mixture model, with the whole model now called a Dirichlet process mixture
(DPM) (Antoniak, 1974; Ferguson, 1983; Lo, 1984; Neal, 2000).

The particular example of a Dirichlet process mixture of Gaussians, also known
as an infinite Gaussian mixture model (Rasmussen, 2000) is widely used for both
density estimation and clustering. Clustering refers to the problem of finding
groupings of objects or data points such that similar objects belong to the same
group and dissimilar objects belong to different groups. An example application
of clustering is finding groups of similar celestial objects in a large astronomical
survey. Posed abstractly in this way, clustering is not a well-defined problem (how
many groups should we find? what does “similar” mean?). However, if we restrict
ourselves to assuming that each cluster can be captured by some parameterised
probability distribution over data points, such as a Gaussian, then clustering
becomes a well-defined probabilistic inference problem. Bayesian nonparametric
clustering using Dirichlet process mixtures is a natural extension of classical
clustering algorithms such as the EM algorithm for finite mixture models or k-
means (Duda and Hart, 1973). In a finite mixture model, the data is assumed to
come from a distribution composed of K components:

p(x|π,θ) =
K∑
k=1

πkp(x|θk) (5.2)

with mixing weights π that sum to one, and parameters θk for each component.
An infinite mixture model considers the limit of K→∞, and has the property
that it allows the number of observed clusters to grow with the number of observed
data points. A DPM can be obtained as an infinite limit of a finite mixture model
in many ways, but let us consider the following construction:

xn ∼ p(x|θn)

θn ∼ G

G ∼ DP(α,H).

Because G is discrete, the values of θn will repeat, which results in a clustering
of the data points. By equation (5.1), the πk correspond to the mixing weights
of the infinitely many clusters, which can be compared to the finite counterpart
(equation 5.2). The distribution over partitions of the data points induced by the
DPM is known as a Chinese Restaurant Process (CRP; Aldous (1985)).
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The DPM, apart from being mathematically elegant, has some practical
advantages over traditional clustering algorithms. There can be computational
advantages to running a single instance of a DPM inference algorithm which
automatically infers the number of clusters, rather than having to run multiple
instances of an algorithm to compare different hypotheses on the number of
clusters. Moreover, at test time, the DPM always allows for the possibility that
a new test point (e.g. a new astronomical object) belongs to a cluster that was
not observed in the training data. This makes DPM predictions somewhat more
robust to outliers.

6. Discrete state time series: infinite hidden Markov models

Many processes of interest produce sequential data for which models that assume
exchangeability are inadequate. For example, natural language text, protein amino
acid sequences, financial time series, and natural sounds all have sequential
structure which is important to model.

One of the most widely used models for times series is the hidden Markov
model (HMM). An HMM assumes that a series of observations (x1, . . . , xT ) was
generated by a process which can be in one of K different discrete states at each
point in time, st ∈ {1, . . . ,K}. Moreover, in an HMM, st fully captures the state of
the system at time t in the sense that given st the future evolution of the system
does not depend on the state at times previous to t; this is the Markov property:
P (st+1|s1, . . . , st) = P (st+1|st). Finally, the observations are assumed to be drawn
independently given the hidden states, through an emission process P (xt|st).

An example of an interesting application of HMMs in the physical and
biological sciences is the modelling of single ion channel kinetics (Chung et al.,
1990). Here, the measured time series of currents from an ion channel are modelled
by assuming that at each point in time the channel macromolecule can be in one
of many different conformational states, and that there is a transition matrix
defining the probability of transitioning between each of these states.

Learning an HMM involves inferring both parameters of the transition process
P (st+1|st), which is in general a K ×K transition matrix, and parameters of the
emission process, P (xt|st) (Rabiner and Juang, 1986). The problem of learning
the structure of an HMM corresponds to inferring the number of hidden states,
K, from data. Rather than doing model selection over varying K, we would like
to develop a nonparametric approach to HMMs where the model has countably
infinitely many hidden states at its disposal. This can be useful both when we
don’t believe that any finite HMM can capture the data generating process well,
and in situations where we believe that the data was actually generated from
a finite-state process, but we simply don’t know how many states this process
should have.8

8 There is a subtle but important distinction between assuming an infinite model, and
assuming a finite but potentially unbounded model. The difference comes to light when we
consider what we expect to happen in the limit of infinitely large data sets. In the former
case, the posterior will have visited infinitely many distinct states, while in the latter case, the
posterior should converge on some finite number of states.
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The key insight that allows one to develop a nonparametric HMM is that
the finite HMM is a time series generalisation of finite mixture models. At each
time step, the HMM assumes that the observation xt was generated by one of
K mixture components, where st indicated the component (or cluster) used. The
only difference between HMMs and mixture models is that the mixture indicators
in an HMM depend on the ones at the previous time step.

Using this insight, Beal et al. (2002) developed the infinite HMM model
(iHMM). The basic idea was to consider a Bayesian HMM with countably
infinitely many states. The main difficulty was to define a sensible prior on the
parameters of the ∞×∞ transition matrix. In the finite K dimensional case,
one would typically use independent symmetric Dirichlet prior distributions for
each row of the transition matrix (where a kth row corresponds to the vector
of all outgoing transition probabilities from state k). In the infinite limit, the
independent Dirichlet prior doesn’t result in a sensible model, as under this
prior, with probability one, the HMM will keep transitioning to new states rather
than revisiting previous states. The solution developed in Beal et al (Beal et al.,
2002) was to couple the rows by using a hierarchical Dirichlet process, a solution
analogous to a reinforced urn process in probability theory (Fortini and Petrone,
2012). This work was followed up in the elegant paper by Teh et al (Teh et al.,
2006) which further developed the hierarchical Dirichlet process and proposed an
improved MCMC sampler for the iHMM.

Since the original paper, there have been a number of conceptual and
algorithmic developments of the infinite HMM. The beam sampler provides an
efficient way of sampling the iHMM by using dynamic programming forward-
backward style message passing (Van Gael et al., 2008a).9 Parallel and distributed
implementations of the iHMM allow larger scale deployments (Bratieres et al.,
2010). The block diagonal iHMM is an extension which groups the hidden
states into clusters of states, effectively hierarchically partitioning the state-space
(Stepleton et al., 2009). The infinite HMM can be extended to have a power-law
structure on the hidden states by using the Pitman-Yor process (Van Gael and
Ghahramani, 2011; Blunsom and Cohn, 2011) and has been successfully applied
to diverse problems such as language modelling (Blunsom and Cohn, 2011), and
speaker diarization (Fox et al., 2008).

7. Sparse matrices and overlapping clusters:
Indian buffet processes

One limitation of Dirichlet process mixtures, the infinite HMM, and clustering
models in general, is that each data point is modelled as belonging to one of a set
of mutually exclusive clusters. Although the nonparametric variants are flexible,
in that they allow countably infinitely many clusters, they don’t allow a data
point to belong to multiple clusters at the same time – they fundamentally define
distributions over partitions of the data.

We would like building blocks for our models that can allow overlapping
cluster membership. For example, to understand a person’s network of friendships
we really need models which can capture the idea that a person can belong

9 The beam sampler is available in the software package http://mloss.org/software/view/205/
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simultaneously to many possible social groupings based on workplace, family,
housing location, high school, hobbies, etc. This type of hidden structure in data
is sometimes called factorial structure (Hinton and Zemel, 1994; Saund, 1994;
Ghahramani, 1995).

The Indian buffet process (IBP; (Griffiths and Ghahramani, 2006, 2011)) is
a probabilistic object which can be used to represent nonparametric factorial
structure. There are a number of ways of understanding and deriving the IBP.
Let’s start with a sparse binary matrix view of IBPs.

Consider an N ×K binary matrix, Z, where we can think of the rows of the
matrix as corresponding to objects or data points, and the columns as features
or clusters. An element of this matrix znk = 1 may denote that object n possesses
hidden feature k, (or belongs to cluster k), and features (clusters) are not mutually
exclusive in that an object can have multiple features. We wish to define a very
simple distribution that is exchangeable over the objects (rows). A very simple
choice is to assume that the columns are independent. We can therefore model
each column through a single unknown parameter, θk, representing the frequency
of feature k, p(znk = 1|θk) = θk. Full specification for this model requires some
choice for the prior distribution of θk. A natural choice is the beta distribution
(the special case of a Dirichlet when there are only two outcomes) which happens
to be conjugate to the Bernoulli likelihood, allowing θk to be integrated out.

Like in the previous cases, we wish to consider models with infinitely many
possible features or clusters, so we therefore have to examine the limit K→∞.
The beta distribution has two parameters α, β and the mean of the beta
distribution is α/(α+ β). For fixed α,β, and N in the limit K→∞, the matrix
Z will have infinitely many ones in it, which makes it computationally and
statistically of limited interest. However, consider scaling the first parameter of the
beta distribution and setting the second parameter to 1, i.e. using a beta(α/K,1)
prior for each θk.10 In this case, the limit on the distribution of Z has a number
of nice properties (a) the number of ones in each row is distributed as Poisson(α);
(b) the total expected number of ones is αN ; (c) the number of nonzero columns
grown as O(α logN); and (d) the rows are exchangeable. This distribution is the
Indian Buffet Process.

Note that the distribution described above has infinitely many columns of
zeros. Since the columns are all iid, once we sample a matrix, we can reorder its
columns into a more usable representation such as the one shown in Figure 3.
In many applications we are specifically interested in sparse binary matrices; for
example to represent which factors are non-zero in sparse latent factor models
(Knowles and Ghahramani, 2007), for binary matrix factorisation (Meeds et al.,
2007), or to represent the adjacency matrix in a graph (Adams et al., 2010).
However, it sometimes useful to view the IBP as a more abstract probabilistic
object. Whereas the Chinese Restaurant Process is an infinitely exchangeable
distribution over partitions of a set of objects, the IBP is an infinitely exchangeable
distribution over subsets of a set of objects. Each object belongs to Poisson(α)
subsets (or clusters), and as N increases, both the number of subsets grows
(logarithmically) and the size of each subset grows (linearly) with N .

Since its introduction, many interesting properties and extensions of the IBP
have been uncovered. Since the IBP defines an exchangeable distribution, it has

10 It is not hard to reintroduce the second parameter to get the two-parameter IBP.
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Figure 3. A sample from an IBP matrix, with columns reordered. Each row has on average 10
ones. Note the logarithmic growth of nonzero columns with rows. For the “restaurant” analogy
where customers enter a buffet with infinitely many dishes you can refer to the original IBP
papers.

a de Finetti mixing distribution; for the IBP Thibaux and Jordan (Thibaux and
Jordan, 2007) showed that this is the beta process (Hjort, 1990). An important
extension of the IBP is the three-parameter model which exhibits a power law
growth in the number of clusters (Teh and Görür, 2009).

Nonparametric models which use the IBP to define sparse latent variables
have been applied to a number of different problems, as reviewed in Griffiths and
Ghahramani (2011). A very interesting application of the IBP is to the problem of
network modelling: modelling the connections between objects or entities in social,
biological and physical networks (Newman, 2010). While many models of networks
are based on the idea of discovering communities or clusters of the nodes, the IBP
allows each node to belong to multiple overlapping communities or clusters, a
property which can be exploited to obtain improved predictive performance in
tasks such as link prediction (Miller et al., 2009; Mørup et al., 2011; Palla et al.,
2012).

Figure 4 shows a useful visualisation of the relationship between a number
of models. Here we can see that the Dirichlet process mixture (section 5), the
infinite HMM (section 6) and the IBP (section 7) can all be related to each
other. Combining the key features of all models results in the infinite factorial
HMM, a Bayesian nonparametric time series model with factorial hidden structure
(Van Gael et al., 2008b).
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Figure 4. A diagram representing how some models relate to each other. We start from finite
mixture models and consider three different ways of extending them. Orange arrows correspond
to time series versions of static (iid) models. Blue arrows correspond to Bayesian nonparametric
versions of finite parameteric models. Green arrows correspond to factorial (overlapping subset)
versions of clustering (non-overlapping) models.

8. Hierarchies: Kingman’s coalescent,
and Dirichlet and Pitman-Yor Diffusion Trees

It is useful to distinguish between flat clustering models and hierarchical clustering
models. In the former, data are partitioned into clusters, while in the latter, these
clusters in turn are also partitioned into superclusters in a hierarchical manner.
This results in a tree (or dendrogram) where at the top level we have a single
root node corresponding to one coarse cluster with all the data points, while at
the bottom we have leaves corresponding to fine clusters with a single data point
in each cluster (Duda and Hart, 1973).

Such hierarchical clustering models are useful for many reasons. Firstly,
many natural phenomena are well-modelled through hierarchies. For example,
the evolution of biological organisms results in phylogenetic trees which are well-
modelled by a hierarchy, and real-world objects can often be decomposed into
parts, subparts, etc. Second, hierarchies allow one to tie together parameters of
complex models so as to improve generalisation in learning. For example, if one
is building statistical models of patient outcome across a country, it might be
natural to group together parameters of regions, cities, hospitals, and individual
doctors, corresponding to multiple levels of a hierarchy. Third, hierarchies provide
good abstractions for interpretability of complex models. For example, rather than
trying to understand what the hundreds of states in an HMM each do, it would
be useful to have an HMM which partitions the states in a coarse to fine hierarchy
so that one can start out by interpreting the coarse states and gradually move
down to the fine states.
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Note that while hierarchical clustering models are often described in terms of
hierarchies over data points, in the above examples we have seen that hierarchies
can be useful more generally over internal components of models, such as hidden
states of an HMM, or parameters of a model.

We have seen that the Dirichlet process mixture model (and the associated
Chinese Restaurant Process) can be used to define Bayesian nonparametric models
for flat clustering. Are there equivalent Bayesian nonparametric models which
result in hierarchical clusterings?

The answer is yes. Here we very briefly touch upon two frameworks for
generating hierarchies which can be used in nonparametric models. For the
nonparametric setting, the key requirement is that the models define an infinitely
exchangeable distribution over the data points. For this to hold, the models must
be projective in the sense that marginalising over the (N + 1)th point should result
in a coherent model over N points (Orbanz, 2009).

The first solution is given by Kingman’s coalescent (Kingman, 1982). This
model has been widely used for modelling population genetics (Donnelly and
Tavare, 1995) and more recently in the machine learning community for
hierarchical clustering (Teh et al., 2008). The coalescent defines distributions over
trees by starting with every data point in its own cluster and considering a process
that merges clusters backwards in time until only one cluster remains. The key
property of the coalescent is that for each pair of clusters the event that they
merge is independent of the event that any other pair merges, and the time to
this event is drawn from an exponential distribution with constant rate (which we
can set to 1 without loss of generality). This process is well-defined in the limit
of N →∞ data points, and defines an infinitely exchangeable distribution over
points.

A second solution is given by the Dirichlet Diffusion Tree (DDT; Neal
(2003)). Like Kingman’s coalescent, the DDT also defines a tree by considering
a Markovian process evolving in time; however, the DDT starts at time t= 0
and evolves forward for 1 unit of time.11 We denote the evolution of the nth
point in time via xn(t). The first data point starts at a location x1(0) = 0 and
follows a Brownian motion process, ending up at some point drawn marginally
from a unit variance Gaussian, x1(1)∼N(0, 1). The second data point exactly
follows the path of the first data point until a divergence event occurs, after
which point its path is independent of the path of the first point. The time
to divergence is parameterised through a hazard function, an object commonly
used in survival analysis. Subsequent data points follow the paths of previous
data points, diverging according to a scaled form of the hazard function, and
when reaching a branch point choosing a branch with probability proportional
to the number of points that chose that branch before. This process defines
an exchangeable distribution over data points, parameterised by the unknown
tree. Using the DDT prior, the problem of hierarchical clustering becomes one of
inferring the unknown tree given some data.

11 Note that both in the coalescent and in the DDT “time” is an indexing variable used to
generate a tree structure, and need not correspond to a real notion of time.
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Both Kingman’s coalescent and the Dirichlet diffusion tree generate binary
trees with probability one.12 A generalisation of the DDT that allows arbitrary
branching of the trees is given by the Pitman-Yor diffusion tree (PYDT; (Knowles
and Ghahramani, 2011). The process is generalised to allow, at each branch point,
for the new data point either to follow the path of one of the previous points, or
to create a new branch. Like the Pitman Yor process (Pitman and Yor, 1997) the
PYDT has two parameters controlling its branching structure. Certain settings of
these parameters result in the DDT, while other settings recover the distribution
over trees induced by Kingman’s coalescent. The tree distribution induced by
the PYDT is the multifurcating Gibbs fragmentation tree (McCullagh et al.,
2008), the most general Markovian exchangeable distribution over trees. General
distributions over hierarchies and other clustering structures can also be derived
through the elegant theory of fragmentation-coagulation processes (Teh et al.,
2011).

9. Covariance matrices: Generalised Wishart processes

Often we are interested in modelling the relationship between a number of
variables. One can express relationships between variables in many different
ways, but perhaps the simplest representation of dependence is the covariance
matrix, Σ, a symmetric positive (semi)definite matrix representing second order
statistics of the variables. The covariance matrix plays a key role in parameterising
many distributions, most notably the multivariate Gaussian but also extensions
such as the multivariate t-distribution or more generally elliptical distributions
(Muirhead, 1982).

In certain applications, we wish to model how such a covariance matrix might
depend on some other variables. For example, in econometrics and finance, one is
often interested in modelling a time-varying covariance matrix Σ(t)—this is the
key object of interest in the field of multivariate stochastic volatility (Asai et al.,
2006). More generally, we would like to place distributions on covariance matrices
that can depend on arbitrary variables, Σ(x), not just scalar time. Viewed as a
function of x, we want to be able to define distributions on matrix-valued functions
restricted to the space of symmetric-positive-definite (s.p.d.) matrix values. Is
there a convenient and simple way to define such a stochastic process?

Indeed there is, and the key insight comes from the observation that one can
generate s.p.d. matrices by taking the outer products of random vectors. Consider
for following construction, where we draw D-dimensional vectors independently
from a multivariate Gaussian distribution ui ∼N (0, V ) with covariance matrix
V , and we define

Σ =
ν∑
i=1

uiu
>
i .

Such a matrix Σ is Wishart distributed with ν degrees of freedom and is s.p.d.
with probability one as long as ν ≥D. The mean of Σ is proportional to V .

12 In the case of the DDT, binary trees result in all but pathological cases where the hazard
function diverges before t= 1.
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We can generalise the Wishart distribution to a stochastic process indexed by
x in any space X by replacing the elements of each ui with draws from a Gaussian
process: ui(x) = (ui1(x), ui2(x), . . . , uiD(x)) where

uid ∼GP(0,K),

where K is the covariance function or kernel of the GP Rasmussen and Williams
(2006). The desired stochastic process is obtained by the same construction.

Σ(x) =
ν∑
i=1

ui(x)ui(x)>.

A special case of such a construction where the Gaussian processes are assumed
to be Brownian has been studied in probability theory and is known as a Wishart
process (Bru, 1991); these processes have recently been applied to problems
in econometrics (Philipov and Glickman, 2006; Gouriéroux et al., 2009). The
more general case for arbitrary Gaussian processes is developed in (Wilson and
Ghahramani, 2011) where applications to multivariate stochastic volatility are
also explored. In this general framework, the model parameters controlling V , K
and ν can be learned from data.

10. Inference

So far we have focused on describing a general probabilistic approach to modelling
and some nonparametric distributions which can be used in models of complex
data sets. The three key ingredients in any approach to modelling are the data,
the model, and an algorithm for doing probabilistic inference in the model.
The problem of probabilistic inference corresponds to computing the conditional
probability of some variables of interest given some observed variables, whilst
marginalising out all other variables. Thus, both the computation of a model’s
marginal likelihood (equation 2.1) and prediction (equation 2.2) are inference
problems. Filling in missing data given observed data, computing the parameter
posterior, or evaluating expectations of various quantities can all also be phrased
as instances of the inference problem.

Generally, the inference problem boils down to a problem of numerical
integration or summation over large state-spaces. For most models of interest,
especially nonparametric models, exact inference is computationally intractable,
in the sense that all known algorithms for computing the exact probabilities of
interest scale exponentially with some aspect of the problem, such as the number
of data points or variables. In many problems, even approximating these exact
probabilities to within some small error tolerance is intractable in the worst case.13

A wide variety of approximation methods have been developed to solve
Bayesian inference problems. These can be roughly divided into stochastic
approximations (which make extensive use of random numbers) and deterministic
approximations. Some examples of widely used stochastic approximate inference
methods include Markov chain Monte Carlo methods (for an excellent review

13 Most theoretical results on intractability focus on the worst case of a problem instance.
The real-world inference problem may in fact be much easier to approximate.
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see Neal (1993)), exact sampling methods (Propp and Wilson, 1996) and
particle filtering methods (Doucet et al., 2000). Some examples of deterministic
algorithms include the Laplace approximation, variational methods (Jordan
et al., 1999), and expectation propagation (Minka, 2001). Both deterministic and
stochastic algorithms for inference can often exploit the conditional independence
relationships that exist between the variables in a model to perform the relevant
computations efficiently using local messages passed between nodes of a graphical
model (Winn and Bishop, 2005; Minka, 2005; Koller and Friedman, 2009).

A complete review of approximate inference methods is beyond the scope of
this paper, but a couple of points are worth making. All approximate inference
methods can be characterised in terms of a speed-accuracy tradeoff. Some methods
are fast but often inaccurate, while other methods are slow or, like MCMC, can
be run for increasing amounts of time to give increasingly accurate results. There
is no general rule of thumb for which approximate inference method is best—
different models and problems tend to favour different methods. However, for a
particular problem, the difference between a good choice of inference algorithm
and a poor choice can be orders of magnitude of computation. Thus, it is well
worth being familiar with a number of inference algorithms and being willing to
try several methods on a particular problem.

The field of Bayesian statistics has thrived in recent years, both due to the
availability of better inference algorithms and the dramatic growth in computing
power. Ironically, the most widely used inference method in Bayesian statistics
is MCMC, which itself is a thoroughly frequentist (non-Bayesian) method for
approximating integrals. From a Bayesian perspective, numerical computation
problems are also inference problems. In numerical integration, one is trying to
infer the value of an integral by computing the integrand at a limited number of
locations. The values of the integrand are the data, which combined with a prior
on the integrand, can result in a posterior on the value of the integral. The choice
of where to evaluate the integrand can be made using Bayesian decision theory,
clearly the random evaluations of MCMC are not an optimally efficient method
for evaluating integrals. The Bayesian approach to numerical integration is known
variously as Bayesian quadrature or Bayesian Monte Carlo, and although it is not
as widely used as MCMC it can be dramatically more efficient in situations where
evaluating the integrand is computationally costly (Diaconis, 1988; O’Hagan,
1991; Rasmussen and Ghahramani, 2003; Osborne et al., 2012).

Deriving the approximate inference equations for each new model can be
tedious and error-prone, thereby inhibiting the researcher’s ability to explore
many variations on any given model. The field of probabilistic programming
offers an exciting alternative approach to building and evaluating models. Three
notable examples of probabilistic programming frameworks are BUGS, Church,
and Infer.NET (Lunn et al., 2000; Goodman et al., 2008; Minka et al., 2010). The
basic idea is to write down a computer program defining the generative model
in a programming language that is augmented to have random variables. This
computer program that defines the generative model can then be automatically
transformed or manipulated into a program that performs approximate posterior
inference in the model. Thus the process of deriving the approximate inference
equations is automated, reducing the risk of human error. One potential
disadvantage of this approach is that the automatically derived inference code
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may not be as efficient as an expertly designed inference method for a particular
model. However, the rapid model development cycle which can result from the
use of probabilistic programming languages offers tremendous advantages for the
future of probabilistic modelling.

11. Conclusions

Modelling is fundamentally a process of quantifying uncertainty about possible
predictions given available information. Probability theory provides an elegant
framework for representing all sources of uncertainty in a model. Probability
theory also provides the simple rules with which to manipulate models so as to
obtain predictions, to compare models, and to learn models from data. Bayesian
statistics is simply the application of the rules of probability theory to modelling
from data.

The probabilistic approach to modelling is most effective when the models are
flexible enough to capture relevant aspects of the problem domain. Flexibility can
be achieved by allowing models either to have many parameters, or in the limiting
case to have infinitely many parameters, in other words to be nonparametric.
Learning models with infinitely many parameters may seem statistically and
computationally daunting. However, statistically we have seen in section 2 that
the process of Bayesian averaging or marginalisation avoids overfitting and
therefore allows one to use models with infinitely many parameters (section 3).
Computationally we have seen that there are a wide range of approximation
methods that can be used to perform the relevant marginalisations required for
inference (section 10).

This paper has attempted to give an overview of the basics of Bayesian
modelling, the motivation for Bayesian nonparametrics, and some of the
more widely used nonparametric models. We have touched upon some
computational issues, and briefly alluded to some successful applications of
Bayesian nonparametrics. Of course there is a great deal of current work in this
rapidly advancing field that was not covered in this paper.

There are four areas of future work worth highlighting: theory, new
models, scalable algorithms, and new applications. Regarding theory, developing
frequentist consistency and convergence rate results for Bayesian nonparametric
models is challenging but important. In particular, the effect of the prior on an
infinite dimensional space can result in inconsistent models in certain cases, so
careful study of consistency is required.

While we have many building blocks for models, new models are an exciting
area for work as they can lead to novel applications. General results on the
construction of Bayesian nonparametric models, such as the recent work of Orbanz
(2009), are particularly useful for developing new models.

Many modern applications of statistical modelling and machine learning
require the analysis of very large datasets (this is sometimes called “Big Data”).
While a number of very good approximate inference methods have been developed
in the last few decades, making these highly scalable is a challenge that requires
extensive tools from computer science including efficient data structures, and
parallel and distributed computing paradigms.
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Finally, novel applications of Bayesian nonparametric modelling will advance
the field in many ways. Firstly, many new models are derived in response to
the challenges arising from new applications. Secondly, applications can motivate
general scalable inference solutions. Finally, successful applications will help in
widening the adoption of a Bayesian nonparametric approach to modelling.
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