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1 I n t r o d u c t i o n  

Suppose we wish to build a model of data  from a finite sequence of ordered 
observations, {Y1, Y2, . . . ,  Yt}. In most realistic scenarios, from modeling stock 
prices to physiological data, the observations are not related deterministically. 
Furthermore, there is added uncertainty resulting from the limited size of our 
data  set and any mismatch between our model and the true process. Probability 
theory provides a powerful tool for expressing both randomness and uncertainty 
in our model [23]. We can express the uncertainty in our prediction of the future 
outcome Yt+l via a probability density P(Yt+llY1,..., Yt). Such a probability 
density can then be used to make point predictions, define error bars, or make 
decisions that  are expected to minimize some loss function. 

This chapter presents a probabilistic framework for learning models of tempo- 
ral data.  We express these models using the Bayesian network formalism (a.k.a. 
probabilistic graphical models or belief networks)--a  marriage of probability 
theory and graph theory in which dependencies between variables are expressed 
graphically. The graph not only allows the user to understand which variables 
affect which other ones, but also serves as the backbone for efficiently computing 
marginal and conditional probabilities that  may be required for inference and 
learning. 

The next section provides a brief tutorial of Bayesian networks. Section 3 
demonstrates the use of Bayesian networks for modeling time series, includ- 
ing some well-known examples such as the Kalman filer and the hidden Markov 
model. Section 4 focuses on the problem of learning the parameters of a Bayesian 
network using the Expectat ion-Maximizat ion (EM) algorithm [3, 10]. Section 5 
describes some richer models appropriate for time series with nonlinear or mul- 
tiresolution structure. Inference in such models may be computationally in- 
tractable. However, in section 6 we present several tractable methods for ap- 
proximate inference which can be used as the basis for learning. 

2 A Bayesian n e t w o r k  t u t o r i a l  

A Bayesian network is simply a graphical model for representing conditional in- 
dependencies between a set of random variables. Consider four random variables, 
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W, X, Y, and Z. From basic probability theory we know that  we can factor the 
joint probability as a product of conditional probabilities: 

P(W, X, Y, Z) = P(W)P(XIW)P(YIW , X)P(ZIW, x ,  Y). 

This factorization does not tell us anything useful about the joint probability dis- 
tribution: each variable can potentially depend on every other variable. However, 
consider the following factorization: 

P(W, X, Y, Z) = P(W)P(X)P(YIW)P(ZIX , Y). (1) 

The above factorization implies a set of conditional independence relations. A 
variable (or set of variables) A is conditionally independent from B given C if 
P(A, BIG ) = P(AIC)P(BIC ) for all A,B and C such that  P(C) r O. From the 
above factorization we can show that  given the values of X and Y, Z and W are 
independent: 

P(W,X,Y,Z) 
P(Z, WIX , Y) = P(X, Y) 

P(W)P(X)P(Y[W)P( Z]X, Y) 
f P(W)P(X)P(YIW)P(ZIX , Y) dW dZ 
P(W)P(YIW)P( ZIX, Y) 

P(Y) 
= P(WIY)P(ZIX ,  Y). 

A Bayesian network is a graphical way to represent a particular factorization of 
a joint distribution. Each variable is represented by a node in the network. A 
directed arc is drawn from node A to node B if B is conditioned on A in the 
factorization of the joint distribution. For example, to represent the factoriza- 
tion (1) we would draw an arc from W to Y but not from W to Z. The Bayesian 
network representing the factorization (1) is shown in Figure 1. 

Fig. 1. A directed acyclic graph (DAG) consistent with the conditional independence 
relations in P(W, X, 1I, Z). 
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Some basic definitions from graph theory will be necessary at this point. The 
node A is a parent of another node B if there is a directed arc from A to B; 
if so, B is a child of A. The descendents of a node are its children, children's 
childen, and so on. A directed path from A to B is a sequence of nodes start ing 
from A and ending in B such tha t  each node in the sequence is a parent of the 
following node in the sequence. An undirected path from A to B is a sequence of 
nodes start ing from A and ending in B such that  each node in the sequence is a 
parent or child of the following node. 

The semantics of a Bayesian network are simple: each node is conditionally 
independent from its non-descendents given its parents. 1 More generally, two 
disjoint sets of nodes A and B are conditionally independent given C, if C d- 
separates A and B, that  is, if along every undirected pa th  between a node in A 
and a node in B there is a node D such that:  (1) D has converging arrows ~ and 
neither D nor its descendents are in C, or (2) D does not have converging arrow 
and D is in C [41]. From visual inspection of the graphical model it is therefore 
easy to infer many  independence relations without explicitly grinding through 
Bayes rule. For example, W is conditionMly independent f rom X given the set 
C = {Y, Z}, since Y E C is along the only pa th  between W and X,  and Y does 
not have converging arrows. However, we cannot infer from the graph that  W is 
conditionally independent from X given Z. 

Notice that  since each factorization implies a strict ordering of the variables, 
the connections obtained in this manner  define a directed acyclic graph a. Fur- 
thermore,  there are many  ways to factorize a joint distribution, and consequently 
there are many  Bayesian networks consistent with a particular joint. A Bayesian 
network G is said to be an independency map  I-map for a distribution P if ev- 
ery d-separation displayed in G corresponds to a vMid conditional independence 
relation in P.  G is a minimal I-map if no arc can be deleted from G without 
removing the I-map property. 

The absence of arcs in a Bayesian networks implies conditional independence 
relations which can be exploited to obtain efficient algori thms for computing 
marginal  and conditional probabilities. For singly connected networks, in which 
the underlying undirected graph has no loops, there exists a general algorithm 
called belief propagation [31, 41]. For multiply connected networks, in which there 
can be more than one undirected pa th  between any two nodes, there exists a 
more general algorithm known as the junction tree algorithm [33, 25]. I will 
provide the essence of the belief propagat ion algorithm (since the exact methods 
used throughout this paper  are based on it) and refer the reader to relevant 
texts [41, 24, 19] for details. 

1 Since there is a one-to-one correspondence between nodes and variables, we will often 
talk about conditional independence relations between nodes meaning conditional 
independence relations between the variables associated with the nodes. 

2 That is, D is a child of both the previous and following nodes in the path. 
3 Undirected graphical models (Markov networks) are another important tool for rep- 

resenting probability distributions, and have a different set of semantics [5, 13]. We 
will deal exclusively with directed graphical models in this paper. 
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Assume we observe some evidence: the value of some variables in the network. 
The goal of belief propagation is to update  the marginal probabilities of all 
the variables in the network to incorporate this new evidence. This is achieved 
by local message passing: each node, n sends a message to its parents and to 
its children. Since the graph is singly connected, n separates the graph, and 
therefore the evidence, into two mutually exclusive sets: e + (n), consisting of the 
parents of n, the nodes connected to n through its parents 4, and n itself, and 
e - ( n )  consisting of the children of n and the nodes connected to n through its 
children (Figure 2). The message from n to each of its children is the probability 

, ...... :i) 

Fig. 2. Separation of evidence in singly connected graphs. 

of each setting of n given the evidence observed in the set e + (n). The message 
from n to each of its parents is the probability, given every setting of the parent, 
of the evidence observed in the set e -  (n) U {n}. The marginal probability of a 
node is proportional to the product of the messages obtained from its parents, 
weighted by the conditional probability of the node given its parents, and the 
message obtained from its children. If the parents of n are { P l , - . . ,  Pk} and the 
childen of n are { c l , . . . ,  cl}, then 

[ P(nl e) cx ~ P(nlpl,...,pD l-X P(pile+(p~)) P(er ) (2) 
{Vl ..... Pk} "= j = l  

4 That is, the nodes for which the undirected path to n goes through a parent of n. 
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where the summation (or more generally the integral) extends over all settings 
of {P l , . . - ,Pk} .  For example, given the evidence e -- {X = x, Z = z}, 

PIYIx  = = I f  P IY tw)p (w)  dW] PIz  = =  ly) I3) 

oc P ( Y )  P ( Z  :- z lX  = x, Y )  P ( X  = x) (4) 

where P ( W )  is the message passed from W to Y since e+(W) -- 0, and P ( Z  = 
z, X = x]Y) is the message passed from Z to Y. Variables in the evidence set 
are referred to as observable variables, while those not in the evidence set are 
referred to as hidden variables. 

Often a Bayesian network is constructed by combining a priori knowledge 
about conditional independences between the variables, perhaps from an expert 
in a particular domain, and a data  set of observations. A natural way in which 
this a priori knowledge can be elicited from the expert is by asking questions 
regarding causality: a variable that  has a direct causal effect on another variable 
will be its parent in the network. Since temporal  order specifies the direction of 
causality, this notion plays an important  role in the design of dynamic Bayesian 
networks. 

3 D y n a m i c  B a y e s i a n  n e t w o r k s  

In t ime series modeling, we observe the values of certain variables at different 
points in time. The assumption that  an event can cause another event in the 
future, but not vice-versa, simplies the design of Bayesian networks for time 
series: directed arcs should flow forward in time. Assigning a time index t to each 
variable, one of the simplest causal models for a sequence of data  {Y1,-. . ,  YT} 
is a first-order Markov model, in which each variable is directly influenced only 
by the previous variable (Figure 3): 

P(Y1, Y2, . . ., YT) = P(Y1)P(Y2 I]I1)"" P(YT l y e -  1) 

Fig. 3. A Bayesian network representing a first-order Markov process. 

These models do not directly represent dependencies between observables 
over more than one t ime step. Having observed {Y1, �9 �9 Yt}, the model will only 
make use of Yt to predict the value of Yt+l. One simple way of extending Markov 
models is to allow higher order interactions between variables. For example, a 
rth-order Markov model allows arcs from {Yt -~ , . . . ,Y t -1}  to Yt- Another way 
to extend Markov models is to posit that  the observations are dependent on a 
hidden variable, which we will call the state, and that  the sequence of states is 
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a Markov process (Figure 4). A classic model of this kind is the linear-Gaussian 
state-space model,  also known as the Ka lman  filter. 

Fig. 4. A Bayesian 
state-space model. 

network specifying conditional independence relations for a 

3.1 E x a m p l e  1: S t a t e - s p a c e  m o d e l s  

In state-space models, a sequence of D-dimensional real-vMued observation vec- 
tors {Y1, . . . ,  YT}, is modeled by assuming that  at each t ime step Yt was gener- 
ated from a K-dimensional  real-valued hidden state variable Xt, and that  the 
sequence of X ' s  define a first-order Markov process. Using the short-hand nota- 
tion {Yt} to denote sequences from t = 1 to t = T: 

T 

P({Xt ,  Yt}) = P(X1)P(Y1 IX1) H P(Xt IXt - , )P (Yt  IXt). 
t----.2 

(5) 

The state transit ion probabili ty P(Xt [Xt-1) can be decomposed into determin- 
istic and stochastic components:  

Xt =/t(Xt-1) + wt 

where ft is the deterministic transition function determining the mean of Xt 
given Xt-1, and wt is a zero-mean random noise vector. Similarly, the observation 
probabil i ty P(YtlXt) can be decomposed as 

Yt =gt(Xt) q-vt. 

If  both  the transit ion and output  functions are linear and t ime-invariant and the 
distribution of the states and observation noise variables is Gaussian, the model 
becomes a l inear-Gaussian state-space model: 

Xt = AXt-1 + wt (6) 

Yt = c z t  + vt (7) 

where A is the state transition matr ix  and C is the observation matr ix.  
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Often, the observations can be divided into a set of input (or predictor) vari- 
ables and output  (or response) variables. Again, assuming linearity and Gaussian 
noise we can write the state transition function as 

Xt = AXt-1 + BUt + wt, (s) 

where Ut is the input observation vector and B is the input matrix.  The Bayesian 
network corresponding to this model would include a sequence of nodes {Ut} 
each of which is a parent of the corresponding Xt. Linear-Gaussian state-space 
models are used extensively in all areas of control and signal processing. 

3.2 E x a m p l e  2: H i d d e n  M a r k o v  m o d e l s  

In a hidden Markov model (HMM), the sequence of observations {Yt} is mod- 
eled by assuming that  each observation depends on a discrete hidden state St, 
and that  the sequences of hidden states are distributed according to a Markov 
process. The joint probability for the sequences of states and observations, can 
be factored in exactly the same manner as equation (5), with St taking the place 
of Xt: 

T 

P({St, Yt}) = P(S1)P(Y1 IS1) H P(St [St-1)P(Yt ISt). (9) 
t = 2  

Consequently, the conditional independences in an HMM can also be expressed 
graphically using the Bayesian network shown in Figure 4. The state is repre- 
sented by a single multinomial variable that  can take one of K discrete val- 
ues, St e {1 , . . . ,  K}. The state transition probabilities, P(StISt-1), for a time- 
invariant HMM can be specified by a single K x K transition matrix.  If the 
observables are discrete symbols taking on one of L values, the emission proba- 
bilities P(Yt ISt) can be fully specified by a K x L observation matrix.  For real- 
valued observation vectors, P(YtlSt) can be modeled in many different forms, 
such as a Gaussian, mixture of Gaussians, or a neural network. Like state-space 
models, HMMs can be augmented to allow for input variables [7, 4, 36]. The 
system then models the conditional distribution of a sequence of output  obser- 
vations given a sequence of input observations. HMMs have been applied exten- 
sively to problems in speech recognition [28], computational biology [32, 2], and 
fault detection [48]. 

4 L e a r n i n g  a n d  I n f e r e n c e  

A Bayesian approach to learning starts with some a priori knowledge about the 
model s t ructure-- the  set of arcs in the Bayesian network--and model param- 
eters. This initial knowledge is represented in the form of a prior probability 
distribution over model structures and parameters, and updated using the data  
to obtain a posterior probability distribution over models and parameters. More 
formally, assuming a prior distribution over models structures P(A~t) and a prior 
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distribution over parameters for each model structure P(0]~4), a data  set :D is 
used to form a posterior distribution over models using Bayes rule 

p(Miv )  = f P('Pl0, .h4)P(01..M) dO P(A.4) 
P(D) 

which integrates out the uncertainty in the parameters. For a given model struc- 
ture, we can compute the posterior distribution over the parameters: 

P ( 0 ] M ,  7)) = P(DI0'  A4)P(0]M) 
P ( O I M )  

If the data  set is some sequence of observations 2) = {Y1, . . . ,  YT} and we 
wish to predict the next observation, YT+I based on our data  and models, then 
the Bayesian prediction 

P(YT+I ]:D) = / P(YT+I I O, J~, :D)P(0IM, / ) )P(A4 ]:D) dO dM 

integrates out the uncertainty in the model structure and parameters. 
We obtain a somewhat impoverished by nonetheless useful limiting case of the 

Bayesian approach to learning if we assume a single model structure 2.4 and we 
estimate the parameters 0 that  maximize the likelihood P(:/)]0, 2r under that  
model. In the limit of a large data  set and an uninformative (e.g. uniform) prior 
over the parameters, the posterior P(0]A/I, :D) will be sharply peaked around the 
maxima of the likelihood, and therefore the predictions of a single maximum 
likelihood (ML) model will be similar to those obtained by Bayesian integration 
over the parameters. 

We focus in this paper on the problem of estimating ML parameters for 
a model given the model structure. Although in principle this is an only ap- 
proximate Bayesian learning, in practice a full-fledged Bayesian analysis is often 
impractical 5. Furthermore, in many application areas there is strong a priori 
knowledge about the model structure and a single estimate of the parameters 
provides a more parsimonious and interpretable model than a distribution over 
parameters. 

4.1 M L  E s t i m a t i o n  w i t h  C o m p l e t e  D a t a  

Assume a data  set of independent and identically distributed observations l)  = 
{ y ( 1 ) , . . . ,  y (g )} ,  each of which can be a vector or time series of vectors, then 
the likelihood of the data  set is: 

N 

P( lO, M) = R P(Y(')IO, M) 
i----1 

s Two approximate methods for integrating over the posterior in the case of neural 
network models are described in [35] and [38]. 
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For notational convenience we henceforth drop the implicit conditioning on the 
model structure, Ad. The ML parameters are obtained by maximing the likeli- 
hood, or equivalently the log likelihood: 

N 

L(0) = E log p(y(i)iO). 
i = 1  

If the observation vector includes all the variables in the Bayesian network, then 
each term in the log likelihood further factors as: 

logP(y(i))O) = log HP(Y>i) v(i) 0j) (10) "pa(j)' 
J 

= E l o g P ( Y  (0  Y(i) 0/), (11) p a ( j ) '  

J 

where j indexes over the nodes in the Bayesian network, pa(j) is the set of 
parents of j,  and Oj are the parameters that define the conditional probability of 
]~ given its parents. The likelihood therefore decouples into local terms involving 
each node and its parents, simplifying the ML estimation problem. For example, 
if the Y variables are discrete and Oj is the conditional probability table for 
Yj given its parents, then the ML estimate of Oj is simply a normalized table 
containing counts of each setting of Yj given each setting of its parents in the 
data set. 

4.2 ML Est imat ion  with  Hidden Variables: The EM algorithm 

With hidden variables the log likelihood cannot be decomposed as in (11). Rather, 
we find: 

g(O) = log P(YIO) = log E P(Y' XlO) (12) 
x 

where X is the set of hidden variables, and ~ x  is the sum (or integral) over X 
required to obtain the marginal probability of the data. (We have dropped the 
superscript (i) in (12) by evaluating the log likelihood for a single observation.) 
Using any distribution Q over the hidden variables, we can obtain a lower bound 
o n  .~: 

P(Y, XIO) 
log E P(Y' XlO) = log E Q(X) - ~  (13) 

X X 

>_ ~_~ Q(X)log P(X, YIO) (14) 
x Q(X) 

= E Q(X)Iog P(X,Y[O) - E Q(X)IogQ(X) (15) 
X X 

= 7 ( Q ,  0) (16) 
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where the middle inequality is known as Jensen's inequality and can be proven 
using the concavity of the log function. If we define the energy of a global config- 
uration (X, Y) to be log P(X, YIO), then some readers may notice that the lower 
bound ~'(Q, 0) _< s is the negative of a quantity known in statistical physics 
as the free energy: the expected energy under Q minus the entropy of Q [39]. 
The Expectation-Maximization (EM) algorithm [3, 10] alternates between max- 
imizing Y with respect to Q and O, respectively, holding the other fixed. Starting 
from some initial parameters 80: 

E step: Qk+l ~-- arg max jr(Q, 0h) (17) 
Q 

M step:  0k+l +- argmax .T(Qk+I, 0) (18) 
0 

It is easy to show that the maximum in the E step results when Qk+l (X) = 
P(X[Y, Oh), at which point the bound becomes an equality: Jr(Qk+l, Oh) = s 
The maximum in the M step is obtained by maximizing the the first term in (15), 
since the entropy of Q does not depend on 0: 

M step:  8k+1 ~-- argmax EP(X[Y ,  Ok)logP(X,Y[O). 
0 x 

This is the expression most often associated with the EM algorithm [10], but 
it obscures the elegant interpretation of EM as coordinate ascent in Y. Since 
jr  = s at the beginning of each M step, and since the E step does not change O, 
we are guaranteed not to decrease the likelihood after each combined EM step. 

It is worthwhile to point out that it is usually not necessary to explicitly 
evaluate the posterior distribution P(X]Y, Oh). Since log P(X, Y[0) contains both 
hidden and observed variables in the network, it can be factored as before as 
the sum of log probabilities of each node given its parents. Consequently, the 
quantities required for the M step are the expected values, under the posterior 
distribution P(X]Y, Oh), of the analogous quantities required for ML estimation 
in the complete data case. 

4.3 Example 1: Learning state-space models 

Using equation (5), the log probability of the hidden states and observations for 
linear-Gaussian state-space models can be written as 

T T 

log P({Xt, Y,}) - log P(X1) + E log P(Yt IXt) + Z log P(Xt [Xt-1). (19) 
t = l  t=2  

Each of the above probability densities is Gaussian, and therefore the overall 
expression is a sum of quadratics. For example, using equation (7): 

logP(YtlXt) = 1 1 - - cx ) - IRI + 
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where R is the covariance of the observation noise vt, ~ is the mat r ix  transpose, 
and I" I is the matr ix  determinant .  

If  the all the random variables were observed, then the ML parameters  could 
be solved for by maximizing (19). Taking derivatives of (19) we obtain a linear 
systems of equations. For example,  the ML est imate of the mat r ix  C is 

-1 

k t / 

Since the states are in fact hidden, in the M step we use expected values wherever 
we don ' t  have access to the actual observed values. Let us denote the expected 
value of some quantity f(X) with respect to the posterior distribution of X by 

( f (X) ) ,  

{f (X))  = J x  f(X) P(XIY, Ok) dX. (20) 

Then, the M step for C is 

-1 

Similar M steps can be derived for all the other parameters  by taking derivatives 
of the expected log probabili ty [47, 11, 15]. 6 In general we require all terms of 
the kind (Xt), (XtX~) and (XtX~_I). These terms can be computed using the 
Ka lman  smoothing algorithm. 

4.4 Kalman smoothing 

The Ka lman  smoother  solves the problem of est imating the state at t ime t of a 
linear-Gaussian state-space model given the model parameters  and a sequence 
of observations {Y1, �9 �9 Yt, �9 �9 YT}. It  consists of two parts: a forward recursion 
which uses the observations from Y1 to Yt, known as the Kalman filter [29], and a 
backward recursion which uses the observations from YT to Yt+l [43].7 We have 
already seen that  in order to compute  the marginal  probabil i ty of a variable in a 
Bayesian network one must  take into account both  the evidence above and below 
the variable. In fact, the Ka lman  smoother  is simply a special case of the belief 
propagat ion algorithm we have already encountered for Bayesian networks. 

The Gaussian marginal  density of the hidden state vector is completely spec- 
ified by its mean and covariance matr ix .  It  is useful to define the quantities 
X [  and Vt T as the mean vector and covariance matr ix  of Xt, respectively, given 

6 The parameters of a linear-Gaussian state-space model can also be estimated using 
methods from on-line recursive identification [34]. 

7 The forward and backward recursions together are also known as the Rauch-Tung- 
Streibel (RTS) smoother. Thorough treatments of Kalman filtering and smoothing 
can be found in [1, 18]. 
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observations {111,.-.Y~}. The Kalman filter consists of the following forward 
recursions: 

X:-I ,-i = AXt_  1 
v,  ' -1  = A V,'-11A ' + Q 

K ,  = V t ~ - l C ' ( C E ' - l C  ' + n )  -1 

x~ = x :  -1 + K , ( ~  - cx: -I) 
E ~ = 5 ' - i  _ K, CE '-I  

(21) 

(22) 
(23) 
(24) 
(25) 

where X ~ and V ~ are the prior mean and covariance of the state, which are 
model parameters. Equations (21) and (22) describe the forward propagation 
of the state mean and variance before having accounted for the observation at 
t ime t. The mean evolves according to the known dynamics A which also affects 
the variance. In addition the variance also increases by Q, the state noise. The 
observation Yt has the effect of shifting the mean by an amount  proportional to 
the prediction error Yt - C X  t - l ,  where the proportionality term Ift is known as 
the Kalman gain matrix. Observing Yt also has the effect of reducing the variance 
of X,. These equations can all be derived (perhaps laboriously) by analytically 
evaluating the Gaussian integrals that  result when belief propagation is applied 
to the Bayesian network corresponding to state-space models. 

At the end of the forward recursions we have the values for X T and V T .  We 
now need to proceed backwards and evaluate the influence of future observations 
on our estimate of states in the past: 

J,-1 = Vt'--? At ( Vtt-1) -1 

X L  1 t-1 a t _ l ( X  T t-1 = AXt_ 1 ) X,_I  + 

~ - 1  = gL-~ 1 + J , - , ( g ~  - g~ - l )J : -~  

(26) 

(27) 
(28) 

where Jt is a gain matr ix with a similar role to the Kalman gain matrix.  Again, 
equation (27) shifts the mean by an amount  proportional to the prediction error 
X T t-1 

- AXt -x .  We can also recursively compute the covariance across two time 
steps [47] 

VtS_ 1 = Vtt ~_1  -4- J, ( VtT+ l,t -- A vtt) 4 _  a 

which is initialized V, T - -  (I - KTC)AVT_-~. The expectations required for T,T-1 
EM can now be readily computed: 

<x,>= x~ 

<x, x L O  x [ x ( _ ,  + v, ~ = t,t--l" 

(29) 
(30) 

(31) 
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4.5 Example 2: L e a r n i n g  h i d d e n  M a r k o v  m o d e l s  

The log probabil i ty of the hidden variables and observations for an HMM is 

T T 

logP({St,Yt}) = logP(S1)  + Z l o g P ( Y t [ S t )  + ~-~logP(St[St-1). (32) 
t----1 t = 2  

Let us represent the K-valued discrete state St using K-dimensional  unit column 
vectors, e.g. the s tate  at t ime t taking on the value "2" is represented as St = 
[010. . .0] ' .  Each of the terms in (32) can be decomposed into summat ions  over 
S. For example,  the transit ion probabili ty is 

K K 

P(St lS t -x )  = H H (Pij)s'''s'-''j 
i = l j = l  

where Pij is the probabil i ty of transitioning from state j to state i, arranged in 
a K • K mat r ix  P.  Then 

K K 

log P(St ISt-1) = ~ ~ St,iSt-l,j log Pij (33) 
i = l  j = l  

= S~(log P)St-1 (34) 

using mat r ix  notation. Similarly, if we assume a vector of initial state probabil- 
ities, lr, then 

log P(S1) = S~ log It. 

Finally, the emission probabilities depend on the form of the observations. If  Yt 
is a discrete variable which can take on D values, then we again represent it 
using D-dimensional unit vectors and obtain 

log P(YtlSt ) = Yt' (log E)St 

where E is a D x K emission probabil i ty matr ix .  
Since the s tate  variables are hidden we cannot compute  (32) directly. The 

EM algorithm, which in the case of HMMs is known as the Baum-Welch algo- 
r i thm [3], allows us to circumvent this problem by comput ing the expectation 
of (32) under the posterior distribution of the hidden states given the obser- 
vations. This expectation can be expressed as a function of (St) and (StS~_x) 
(1 < t < T). The first term, (St), is a vector containing the probabil i ty that  the 
HMM was in each of the K states at t ime t given its current parameters  and the 
entire sequence of observations s. The second term, (StS~_I) , is a mat r ix  con- 
taining the joint probabil i ty that  the HMM was in each of the K 2 pairs of states 
at t imes t - 1 and t. In the HMM notation of [42], (St) corresponds to 7t and 

s When learning from a data set containing multiple sequences, this quantity has to 
be computed separately for each sequence. For clarity, we will describe the single 
sequence case only. 
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(StS~_I) corresponds to ~t. Given these expectations, the M step is straightfor- 
ward: we take derivatives of (32) With respect to the parameters, set to zero, and 
solve subject to the sum-to-one constraints that ensure valid transition, emission 
and initial state probabilities. For example, for the transition matrix we obtain 

T 

f i j  (x Z ( S t , i S t _ I , j >  (35)  
t=2 

T S Z,=2( 
-~ T 

The necessary expectations 
rithm. 

(36) 

are computed using the forward-backward algo- 

4.6 The  f o r w a r d - b a c k w a r d  a lgor i thm 

The forward-backward algorithm is simply belief propagation applied to the 
Bayesian network corresponding to a hidden Markov model (see [49] for a re- 
cent treatment). The forward pass recursively computes c~t, defined as the joint 
probability of St and the sequence of observations YI to Yt: 

at = P(S t ,  Y1, . . ., Yt) (37) 

= [ s ~ P ( S t _ I , Y ~ , . . . , Y t _ I ) P ( S t I S t _ I ) ] P ( Y t , S t )  (38) 

(39) 

The backward pass computes the conditional probability of the observations Yt+l 
to YT given St: 

t3t = P(Yt+x, . . ., YTISt) (40) 

= E P(Yt+2, . . . ,YTIS t+I )P(S t+i lS t )P(Y t+I lS t+I )  (41) 
Sfq-1 

= E / 3 t + l P ( S t + l I S t ) P ( Y t + l l S t + l ) "  (42) 
St+x 

From these it is easy to compute the expectations needed for EM: 

at,i/3t,i (43) 

at- l ' jPi jP(Yt lS t ' i ) f l t ' i  (44) 
( S t , i S t - t j )  = ~tij = ~ k  l c~t-l ,kPkeP(YtlSt e)/?t,t " 

J 

Notice that the Kalman smoothing algorithm and the forward-backward algo- 
rithm are conceptually identical. Occasionally, it is also useful to compute the 
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single most  probable state sequence. The solution to this problem is given by the 
Viterbi  a lgor i thm [51], which is also very similar to the forward-backward algo- 
r i thm except that some of the s u m m a t i o n s  are replaced by maximizations (see [42] 
for a tutorial  on HMMs, especially as applied to speech recognition). 

5 B e y o n d  T r a c t a b l e  M o d e l s  

Linear-Gaussian state-space models and hidden Markov models provide an inter- 
esting start ing point for designing dynamic  Bayesian networks. However, they 
suffer from impor tant  l imitations when it comes to modeling real world t ime 
series. In the case of linear-Gaussian state-space models the limitations are ad- 
vertised in the name: in many  realistic applications, both  the state dynamics 
and the relation between states and observations can be nonlinear, and the 
noise can be non-Gaussian. For hidden Markov models, the situation is more 
subtle. HMMs are a dynamical  extension of mixture models, and unconstrained 
mixture  models can be used to model any distribution in the limit of an infinite 
number  of mixture components.  Furthermore,  if the state transit ion mat r ix  is 
unconstrained, any arbi trary nonlinear dynamics can also be modeled. So where 
does the l imitation lie? 

Consider the problem of modeling the movement  of several objects in a se- 
quence of images. If  there are M objects, each of which can occupy K positions 
and orientations in the image, there are K M possible states of the system un- 
derlying an image. A hidden Markov model would require K M distinct states 
to model this system. This representation is not only inefficient but  difficult 
to interpret. We would much rather  if our "HMM" could capture the underly- 
ing state space by using M different K-dimensional  variables. More seriously, 
an unconstrained HMM with K M states has of order K 2M parameters  in the 
transit ion matr ix.  Unless the da ta  set captures all these possible transitions or 
a priori knowledge is used to constrain the parameters,  severe over-fitting may  
result. 

In this section, we describe three ways in which HMMs and state-space mod- 
els can be extended to overcome some of these limitations. The first of these 
represents the hidden state of an HMM using a set of distinct s tate variables. 
We can this HMM with a distr ibuted s ta te  representation, a f ac to r ia l  h idden 

Mavkov  model  [17]. 

5.1 Example  3: Factorial H M M s  

We generalize the HMM by representing the state using a collection of discrete 
s tate  variables 

St : S}D,  . . .S~m),  . . . , S} M), (45) 

each of which can take on K (m) values. The state space of this model consists 
of the cross product of these state variables. For simplicity, we will assume that  
K (m) : K,  for all m, although the algori thms we present can be trivially gener- 
alized to the case of differing K(m) . Given tha t  the state space of this factorial 
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HMM consists of a l l / i  "M combinations of the S~ m) variables, placing no con- 
straints on the state transition structure would result in a K M • K M transition 
matrix.  Such an unconstrained system is uninteresting for several reasons: it is 
equivalent to an HMM with K M states; it is unlikely to discover any interesting 
structure in the K state variables, as all variables are allowed to interact arbi- 
trarily; and both the time complexity and sample complexity of the estimation 
algorithm are exponential in M. 

We therefore focus on factorial HMMs in which the underlying state transi- 
tions are constrained. A natural structure to consider is one in which each state 
variable evolves according to its own dynamics, and is a priori uncoupled from 
the other state variables: 

M 

P(StISt-1) = H PIS(m)Js(m)~~ t , ,-1,.  (46) 
m = l  

A Bayesian network representing this model is shown in Figure 5. The transition 
structure for this model can be parametrized using M distinct K • K matrices. 

As shown in Figure 5, the observation at t ime step t can depend on all the 
state variables at that  t ime step in a factoriM HMM. For reM-valued observations, 
one simple form for this dependence is linear-Gaussian; that  is, the observation 
Yt is a Gaussian random vector whose mean is a linear function of the state 
variables. We represent the state variables as K • 1 vectors, where each of the K 
discrete values corresponds to a 1 in one position and 0 elsewhere. The resulting 
probability density for a D • 1 observation vector Yt is 

P(Yt[St)=[R[-1/2(2~')-D/2 e x p { - l  ( y t - p t ) ' R - l ( Y t - t ~ t ) } ,  (47) 

where 
M 

tit = E W('~)S~'n)" (48) 
r r t~ l  

Each W (m) matr ix  is a D • K matr ix  whose columns are the contributions to 
the means for each of the settings of St('~), R is a D • D covariance matrix,  ' 
denotes matr ix  transpose. 

One way to understand the observation model in equations (47) and (48) 
is to consider the marginal distribution for Yt, obtained by summing over the 
possible states. There are K settings for each of the M state variables, and thus 
there are K M possible mean vectors obtained by forming sums of M columns 
where one column is chosen from each of the W('n) matrices. The resulting 
marginal density of Yt is thus a Gaussian mixture model, with K M Gaussian 
mixture components each having a constant covariance matr ix R. This static 
mixture model, without inclusion of the t ime index and the Markov dynamics, is 
a factorial parameterization of the standard mixture of Gaussians model that  has 
interest in its own right [52, 20, 14]. The model we have just presented extends 
this by allowing Markov dynamics in the discrete state variables underlying the 
mixture. 
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Fig. 5. A Bayesian network representing the conditional independence relations in a 
factorial HMM with M = 3 underlying Markov chains. 

5.2 E x a m p l e  4: T r e e  s t r u c t u r e d  H M M s  

In factorial HMMs, the state variables at one t ime step are assumed to be a priori 
independent given the state variables at the previous t ime step. This assumption 
can be relaxed in many  ways by introducing coupling between the s tate  variables 
in a single t ime step [45]. One interesting way to couple the variables is to order 

them, such that  S~ m) depends on St(") for 1 _ < n < m. Furthermore,  if all the 
state variables and the output  also depend on an observable input variable, Xt, 
we obtain the Bayesian network shown in Figure 6. 

Fig. 6. Tree structured hidden Markov models. 

This architecture can be interpreted as a probabilistic decision tree with 
Markovian dynamics linking the decision variables. Consider how this model 
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would generate data  at the first time step, t = 1. Given input X1, the top node 
S~ 1) can take on K values. This stochastically partitions X-space into K decision 

regions. The next node down the hierarchy, S~ 2) , subdivides each of these regions 
into K subregions, and so on. The output ]I1 is generated from the input X1 
and the K-way decisions at each of the M hidden nodes. At the next time step, 
a similar procedure is used to generate data  from the model, except that  now 
each decision in the tree is dependent on the decision taken at that node in the 
previous time step. This model therefore generalizes the "hierarchical mixture 
of experts" [27] and other related decision tree models such as CART [6] and 
MARS [12] by giving the decisions Markovian dynamics. Tree structured HMMs 
provide a useful starting point for modeling time series with both temporal and 
spatial structure at multiple resolutions. We have explored this generalization of 
factorial HMMs in [26]. 

5.3 Example  5: Switching State  space models  

Both factorial HMMs and tree-structured HMMs use discrete hidden state rep- 
resentations. To model time series with continuous but nonlinear dynamics, it is 
possible to combine the real-valued hidden state of linear-Gaussian state-space 
models and the discrete state of HMMs. One natural way to do this is the 
switching state-space model [16]. 

In switching state-space models, the sequence of observations (Yt} is modeled 

using a hidden state space comprising M real-valued state vectors, X~ m), and 
one discrete state vector St. The discrete state, St, is a multinomial variable that  
can take on M values: St E {1 , . . . ,  M}; for reasons that  will become obvious 
we refer to it as the switch variable. The joint probability of observations and 
hidden states can be factored as 

T M T 

P({St, Y0)--t , �9 �9 xt(M),yt}) = P(s1)HP(St  ]St-l) H P(X~m)) H P ( X  t(m) ixt_l)(m) 
t----2 m = l  t = 2  

T 

x I I  P(YtIX[ 1), X (M) e ,  (49) "" " ,  t , ~ t } ,  

t = l  

which corresponds graphically to the conditional independences represented by 
Figure 7. Conditioned on a setting of the switch state, St = m, the observable is 
multivariate Gaussian with output equation given by state-space model m. The 
probability of the observation vector Yt is therefore 

P(YtIX[I, ). �9 �9 "tY(u) = (2~r)-'~ ]RI- �89 x 

exp{-�89 ~))} (50) 

where D is the dimension of the observation vector, R is the observation noise co- 
variance matrix, and C (m) is the output matrix for state-space model m (cf. equa- 
tion (7) for a single linear-Gaussian state-space model). Each real-valued state 
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vector evolves according to the linear-Gaussian dynamics of a state-space model 
with differing initial state, transition matrix, and state noise (equation (6)). 
The switch state itself evolves according to the discrete Markov dynamics spec- 
ified by initial state probabilities P(S1) and an M • M state transition matrix 
P(StlS,-1). 

This model can be seen as an extension of the "mixture of experts" architec- 
ture for modular learning in neural networks [22, 7, 36]. Each state-space model 
is a linear expert with Gaussian output noise and linear-Gaussian dynamics. The 
switch state "gates" the outputs of the M state-space models, and therefore plays 
the role of a gating network with Markovian dynamics [7, 36]. 

Fig. 7. Bayesian network representation for switching state-space models. St is the 
discrete switch variable and X~ 'n) are the real-valued state vectors. 

6 I n f e r e n c e  a n d  I n t r a c t a b i l i t y  

The problem with all the extensions of hidden Markov models and state-space 
models presented in the previous section is that, given a sequence of observations, 
most probabilities of interest are intractable to compute. 

Consider, for example, computing the likelihood of a factorial HMM--the 
marginal probability of a sequence of observations given the parameters, P({Yt} 10), 
where {Yt} denotes {Y1,..., YT}. This is the sum over all possible hidden state 
sequences of the joint probability of the sequence and the observations: 

P({Y,}Ig) = ~_, P({St ,  Yt}le). 
{s,} 

There a r e  K M possible states at each time step, and therefore K MT hidden state 
sequences of length T, assuming none of the transition probabilities is exactly 
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0. The brute-force approach of evaluating all such sequences can be avoided by 
making use of the conditional independences represented in the Bayesian net- 
work. For example, directly applying the forward pass of the forward-backward 
algorithm outlined in section 4.6, we can compute the likelihood by summing 
the a's at the last time step 

P({Yt}[O) = E P(ST, I"1,..., YTIR) (51) 
ST 

= a T .  (52)  
ST 

For the factorial HMM, at is a vector of size equal to the full state space at 
time t, i.e. it has K M elements. This results in a recursive algorithm that com- 
putes the likelihood using O(TK TM) operations. This can be further improved 
upon by using the fact that the state transitions are defined via M matrices 
of size K • K rather than a single K M • K M matrix, resulting in a recursive 
algorithm using O(TMK M+I) operations (see [17], appendix B). Unfortunately, 
this time complexity cannot be improved upon. Given the observation at time 
t, the K-valued state variables become coupled in an M th order interaction. 
It is not possible to sum over each variable independently. Like the likelihood, 
computing the posterior probability of a single state variable given the observa- 
tion sequence, P(S~ "n) [Y1,..., liT), is also exponential in U.  Similar exponential 
time complexity results hold for the likelihoods and posterior probabilities of 
tree-structured HMMs and switching state-space models. 

6.1 Gibbs sampling 

One approach to computing approximate marginal probabilities is to make use 
of Monte Carlo integration. Since the log likelihood can be expressed as 

log P({Yt}Io) = ~ P({St}[{Yt}, O) r [log P({St}, {Yt}, 0) - log P({St}I{Yt}, O)], 
{s,} 

by sampling from the posterior distribution, P({St}I{Yt}, 0), the log likelihood 
can be approximated using the above expression, which is just the negative of 
the free energy (15). To learn the parameters of the model, samples from the 
posterior are used to evaluate the expectations required for EM. Of course, for 
intractable models sampling directly from the posterior distributions is compu- 
tationally prohibitive. However, it is often easy to set up a Markov chain that will 
converge to samples from the posterior. One of the simplest methods to achieve 
this is Gibbs sampling (for a review of Gibbs sampling and other Markov chain 
Monte Carlo methods, see [37]). 

For a given observation sequence {Yt}, Gibbs sampling starts with a random 
setting of the hidden states {St}. At each step of the sampling process, each 
state variable is updated stochastically according to its probability distribution 
conditioned on the setting of all the other state variables. The graphical model 
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is again useful here, as each node is conditionally independent of all other nodes 
given its Markov blanket, defined as the set of children, parents, and parents of 
the children of a node. For example, to sample from a typical state variable St(m) 
in a factorial HMM we only need to examine the states of a few neighboring 
nodes: 

S On) S (m) Y,~ (53) S[ '~) ,-, P(S['~)I{S[') : n--/: m},  t - t ,  t+ t ,  t, 

s (s4) - - ~ t - } - i  ~ t  ] " ' ~  t , ' ' ' +  

where ,-~ denotes "sampled from". Sampling once from each of the TM hidden 
variables in the model results in a new sample of the hidden state of the model 
and requires O(TMK) operations. The sequence of states resulting from each 
pass of Gibbs sampling defines a Markov chain over the state space of the model. 
This Markov chain is guaranteed to converge to the posterior probabilities of 
the states given the observations [13] as long as none of the probabilities in the 
model is exactly zero 9. Thus, after some suitable time, samples from the Markov 
chain can be taken as approximate samples from the posterior probabilities. 
The first and second-order statistics needed to estimate (S~m)), (S~ m) S~ n)') and 

(S(m)S(m)~\ t-1 t / are collected using the states visited and the probabilities estimated 
during this sampling process and are used in the approximate E step of EM. 1~ 
Monte Carlo methods for learning in dynamic Bayesian networks have been 
explored by [9, 30, 8, 17]. 

6.2 V a r i a t i o n a l  M e t h o d s  

Another approach to approximating a probability distribution P is to define 
a parametrized distribution Q and vary its parameters so as to minimize the 
distance between Q and P.  In the context of the EM algorithm, we have already 
seen that  the likelihood s is lower bounded by the free energy ~ (Q ,  0). The 
difference between s and ~" is given by the Kullback-Leibler divergence between 
Q and the posterior distribution of the hidden variables: 

s - ~ (Q ,  0) = KL (Q({St}[r O)) (55) 

-- ~ Q({St}lr log / Q({S+}Ir ] (56) 
{s,} i P( {St} l{Y4,o) J 

where r are the parameters of the distribution Q. 
The complexity of exact inference in the approximation given by Q is deter- 

mined by its conditional independence relations, not by its parameters.  Thus, we 
can chose Q to have a tractable s t ruc ture- -a  Bayesian network that  eliminates 

9 Actually, the weaker assumption of ergodicity will suffice to ensure convergence 
10 A more Bayesian treatment of the learning problem, in which the parameters are also 

considered hidden random variables, can be handled by Gibbs sampling by replacing 
the "M step" with sampling from the conditional distribution of the parameters given 
the other hidden v~ables (for example, see [50]). 
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some of the dependencies in P.  Given this structure, we are free to vary the 
parameters of Q so as to obtain the tightest possible bound by minimizing (56). 
We will refer to the general strategy of using a parameterized approximating 
distribution as a variational approximation and refer to the free parameters of 
the Q distribution as variational parameters. 

6.3 E x a m p l e :  M e a n  f ie ld  f o r  f a c t o r i a l  H M M s  

We illustrate this approach using the simplest variational approximation to the 
posterior distribution in factorial HMMs: the state variables are assumed inde- 
pendent (Figure 8 (a)) which means that  

T M 

Q({St}[r = 1-~ l I  Q(S}m)lr (57) 
t = l  m = l  

The variational parameters, r = {r are the means of the state variables, 

where, as before, a state variable S~ m) is represented as a K-dimensional vector 
with a 1 in the k th position and 0 elsewhere, if the m TM Markov chain is in state k 

at t ime t. The elements of the vector r therefore define the state occupation 

probabilities for the multinomial variable St("~) under the distribution Q: 

K . S (m)  K 

H (r t,k where q(m) E {0,1}; K-~S (m) 1. 
k = l  k = l  

(58) 
A completely factorized approximation of this kind is often used in statistical 
physics, where it provides the basis for simple yet powerful mean field approxi- 
mations to statistical mechanical systems [40]. 

(a) (b) 

�9 . .@ @ @. . .  - .@ -@ 

@ @ @ .-@ 

Fig. 8. (a) The completely factorized variational approximation assuming that all the 
state variables are independent (conditional on the observation sequence). (b) A struc- 
tured variational approximation assuming that the state variables retain their Markov 
structure within each chain, but are independent across chains. 
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To make the bound as tight as possible we vary r separately for each ob- 
servation sequence so as to minimize the KL divergence. Taking the derivatives 
of (56) with respect to r and setting them to zero, we obtain the set of fixed 
point equations defined by 

(rn) new { -- 1A(m)-[- Wt-l-{- Wt+l} t -~- ~ w ( m ) ' R - l ~ t ( m  ) (logp(m)) ,~(m) (logp(m)), .h(m) 
(59) 

where ])t (m) is the residual error in Yt given the predictions from all the state 
variables not including m: 

M 
- Y ,  - ( 6 0 )  

A(m) is the vector of diagonal elements of W(m)'R-1W (m), and ~{.} is the 
softmax operator, which maps a vector A into a vector B of the same size, with 
elements 

exp{Ai} (61) 
Bi -- ~ exp{Aj }' 

J 

and log p(m) denotes the elementwise logarithm of the transition matr ix  P(m) (see 
appendix C in [17] for details of the derivation). 

The first term of (59) is the projection of the error in reconstructing the ob- 
servation onto the weights of state vector m - - t h e  more a particular setting of a 
state vector can reduce this error, the larger its associated variational mean. The 
second term arises from the fact that  the second order correlation (S}m)S} m)} 
evaluated under the variational distribution is a diagonal matr ix composed of the 

elements of r The last two terms introduce dependencies forward and back- 
ward in time. 11 Therefore, although the posterior distribution over the hidden 
variables is approximated with a completely factorized distribution, the fixed 
point equations couple the parameters associated with each node with the pa- 
rameters of its Markov blanket. In this sense, the fixed point equations propagate 
information along the same pathways as those defining the exact algorithms for 
probability propagation. 

The following may provide an intuitive interpretation of the approximation 
being made by this distribution. Given a particular observation sequence, the 
hidden state variables for the M Markov chains at t ime step t are stochastically 
coupled. This stochastic coupling is approximated by a system in which the 
hidden variables are uncorrelated but have coupled means. The variational or 
"mean-field" equations solve for the deterministic coupling of the means that  
best approximates the stochastically coupled system. 

Each hidden state vector is updated in turn using (59), with a t ime com- 
plexity of O(TMK 2) per iteration. Convergence is determined by monitoring 

11 The first term is replaced by log 7r (m) for t = 1 the second term does not appear for 
t = T .  
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the KL divergence in the variational distribution between successive time steps; 
in practice convergence is very rapid (about 2 to 10 iterations of (59)). Conver- 
gence to a global minimum of the KL divergence is not required, and in general 
this procedure will converge to a local minimum. Once the fixed point equations 
have converged, the expectations required for the E step can be obtained as a 
simple function of the parameters [17]. 

6.4 Example: Structured approximation for factor ial  H M M s  

The approximation presented in the previous section factors the posterior prob- 
ability into a product of statistically independent distributions over the state 
variables. Here we present another approximation which is tractable and pre- 
serves many of the probabilistic dependencies in the original system. In this 
scheme, the posterior distribution of the factorial HMM is approximated by M 
uncoupled HMMs as shown in Figure 8 (b). Within each HMM, efficient and 
exact inference is implemented via the forward-backward algorithm. Since the 
arguments presented in the previous section did not hinge on the the form of 
the approximating distribution, each distribution Q provides a lower bound on 
the log likelihood and can be used to obtain a learning algorithm. The approach 
of exploiting such tractable substructures was first suggested in the machine 
learning literature by Saul and Jordan (19961. 

We write the structured variational approximation as 

M T 
1 Q(S~ ]S~_,, r (62) l-I o(s m)l+)l-i (.) (m) 

m----* t : 2  

where ZQ is a normalization constant ensuring that Q sums to one. The param- 

eters of Q are r = {~r(m), p(m), h~m)}__the original priors and state transition 
matrices of the factorial HMM and a time-varying bias for each state variable. 
Using these parameters the prior and transition probabilities are 

K . . S(,~) 

Q(s~m)[r = 1-I /h(m)~r(m)~ ,,k (63/ k " l , k  k ] 
k = l  

S (,-) 

Q(S}m) S(m) r  H h(ra) 2D(m)Q(m) t - l ,  '~ ~ k , j  ~ ' t - l , j  
k----1 j = l  

S (m) 

-- I I  fP(' )h , (64) ~, k , j ]  
k = l  j = l  

where the last equality follows from the fact that S (m) is a vector with a 1 in t - 1  
one position and 0 elsewhere. Comparing equations (62)-(64) to equation (9), 

we can see that the K x 1 vector hl m) plays the role of the probability of an 

observation (P(YtISt) in (9)) for each of the K settings of St(m). For example, 
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Q•(m) h(m) ptq(m) ,~'l,j = 11r = 1,j ,~'l,j = 1]r corresponds to having an observation at 

= S (m) time t 1 that  under state 1,j = 1 has probability h~ m). 
Intuitively, this approximation uncouples the M Markov chains and attaches 

to each state variable a distinct fictitious observation. The probability of this 
fictitious observation can be varied so as to minimize the KL divergence between 
Q and P. 

Applying the same arguments as before, we obtain a set of fixed point equa- 
tions for h~ m) that  minimize KL(QIIP): 

h~m) neW = exp { W(ra)'R-l~(ra) - l A(m) } , (65) 

where A (m) is defined as before, and where we redefine the residual error to be 

M 
(66) 

l#m 

The parameter h~ m) obtained from these fixed point equations is the observation 

probability associated with state variable S~ m) in hidden Markov model m. Using 
these probabilities, the forward-backward algorithm is used to compute a new set 
of expectations for (S~m)), which are fed back into (65) and (66). The forward- 
backward algorithm is therefore used as a subroutine in the minimization of the 
KL divergence. 

Notice the similarity between equations (65)-(66) and equations (59)-(60) 
for the completely factorized system. In the completely factorized system, since 
(S~m)) = r the fixed point equations can be written explicitly in terms of 
the variational parameters. In the structured approximation, the dependence of 
(St(m)) on hl m) is computed via the forward-backward algorithm. Also, the fixed 
point equations (65) do not contain terms involving the prior, ~r(m), or transition 
matrix, p(m). These terms have cancelled by our choice of approximation. 

The other intractable dynamic Bayesian networks we have presented are 
also amenable to structured variational approximations. In the case of tree- 
structured HMMs there are two natural choices for the substructures to retain in 
the approximation. One choice is to remove the arc within a time step and retain 
the temporal dependences, resulting in the Bayesian network shown in Figure 8 
(b). The other choice is to retain the arcs within a time step and eliminate the 
arcs between consecutive time steps. Both of these approximations, along with 
an approximation based on the Viterbi, algorithm are pursued in [26]. 

For switching state-space models, the natural approximation is to uncouple 
the M state-space models (SSMs) from the discrete Markov process controlling 
the switch variable. Of course, through the variational parameters all the models 
become deterministically coupled, but for the purposes of computing posterior 
probabilities, it becomes possible to apply Kalman smoothing to each state-space 
model separately and the forward-backward algorithm to the switch process. The 
variational parameters can be thought of as the real-valued "responsibilities" of 
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each state-space model for each observation in the sequence. To determine the 
best variational parameters we start from some responsibilities and compute the 
posterior probability of the state in each SSM using Kalman smoothing, with the 
data weighted by the responsibilities. A weighting of 1 corresponding to applying 
the normal Kalman smoothing equations, whereas a weighting of 0 corresponds 
to assuming that  the data  was not observed at all; intermediate weighting can 
be implemented by dividing the R matr ix  in (23) by the responsibility. We then 
recompute responsibilities by running the forward-backward algorithm on the 
switch process using the predicted error of each SSM. This procedure is iterated 
until the responsibilities converge. Details of this structured variational approx- 
imation for switching state-space models are provided in [16]. 

6.5  C o n v e x  d u a l i t y  

The framework for obtaining lower bounds on log likelihoods is a special case of 
more general variational methods based on convex duality. In this section, we 
provide a brief tutorial of these methods closely following Jaakkola (1997) who 
introduced these methods to problems in Bayesian network learning. A more 
general t reatment can be found in Rockafellar (1970). But before delving into 
convex duality we will motivate the reader by making the following two remarks. 
First, we have presented lower bounds and suggested maximizing lower bounds 
on likelihoods as an objective for learning; however, it is also clearly desirable 
to complete the picture by deriving upper bounds. Second, we have not dealt 
with networks in which there are complex nonlinear interactions. Methods from 
convex duality can, in principle, be used to solve these problems. We present only 
a brief tutorial here and refer the reader to [21] for examples of how this approach 
can be used to define upper bounds and deal with certain nonlinearities. 

A convex function f (x )  is characterized by the property that  the set of points 
{(x, y) : y >_ f (x )}  is convex. This set is called the epigraph of f and denoted 
epi(f). Now, convex sets can be represented as the intersection of all half-spaces 
that  contain them. We parametrize these half-spaces to obtain the dual of f .  
Consider one such half-space 

y~_~Tx--tt. 

Since it contains epi(f), y > f(x) implies y _> ~Tx - - /4  therefore 

at every x, which implies 

max{~Tx -- f ( x )  --/.t} _< 0. (67) 

It follows that  

p ~ m a x { ~ T x - - f ( x ) }  = f * ( ~ )  (68) 
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where we have defined f* (~) as the dual function of f (x) ,  and conversely, 

f (x)  > max{~Tz -- f* (~)}. (69) 

An intuitive way to think about the dual function is that  for every point x 
there is a linear function with slope ~ and intercept # that  touches f at x and is a 
lower bound for f(x). The dual f* (~) is a function of these slopes that  evaluates 
to the corresponding y-intercept of f at the point at which f has slope ~.12 
Simply put, we have shown that  a convex function of z can be lower-bounded 
by a linear function of z parametrized by ~. 

This simple result has important consequences. We now show that  the lower 
bound on the log likelihood can be seen as a special case of this bound. 

The log likelihood can be written 

log P(Y) = log ~ P(Y, S) ---- log ~ exp{r 
s s 

where r = log P(Y, S) is a "potential" over the hidden states. The log par- 
tition function f ( r  = log)-~s exp{r = log P(Y) is a convex function over 
potentials r The dual to the log partition function f(r  is the negative en- 
tropy function, f* (Q) = -H(Q) = 7is Q(S) log Q(S), which itself is a convex 
function over probability distributions Q. The duality between f and f* can be 
verified by taking the derivatives of f(r  with respect to r remembering that  the 
dual is a function of the slopes that  evaluates to the corresponding intercepts. 
Therefore, using (69) 

logP(Y) = f(r  >_ m~x{QTr + H(Q)} (70) 

which is the usual lower bound .T. 

7 C o n c l u s i o n  

Bayesian networks are a concise graphical formalism for describing probabilistic 
models. We have provided a brief tutorial of methods for learning and inference 
in dynamic Bayesian networks. In many of the interesting models, beyond the 
simple linear dynamical system or hidden Markov model, the calculations re- 
quired for inference are intractable. Two different approaches for handling this 
intractability are Monte Carlo methods such as Gibbs sampling, and variational 
methods. An especially promising variational approach is based on exploiting 
tractable substructures in the Bayesian network. 

12 For strictly convex functions. 
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