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tWe present an algorithm that infers the model stru
ture of a mix-ture of fa
tor analysers using an eÆ
ient and deterministi
 varia-tional approximation to full Bayesian integration over model pa-rameters. This pro
edure 
an automati
ally determine the opti-mal number of 
omponents and the lo
al dimensionality of ea
h
omponent (i.e. the number of fa
tors in ea
h fa
tor analyser).Alternatively it 
an be used to infer posterior distributions overnumber of 
omponents and dimensionalities. Sin
e all parametersare integrated out the method is not prone to over�tting. Using asto
hasti
 pro
edure for adding 
omponents it is possible to per-form the variational optimisation in
rementally and to avoid lo
almaxima. Results show that the method works very well in pra
ti
eand 
orre
tly infers the number and dimensionality of nontrivialsyntheti
 examples.By importan
e sampling from the variational approximation weshow how to obtain unbiased estimates of the true eviden
e, theexa
t predi
tive density, and the KL divergen
e between the varia-tional posterior and the true posterior, not only in this model butfor variational approximations in general.1 Introdu
tionFa
tor analysis (FA) is a method for modelling 
orrelations in multidimensionaldata. The model assumes that ea
h p-dimensional data ve
tor y was generated by�rst linearly transforming a k < p dimensional ve
tor of unobserved independentzero-mean unit-varian
e Gaussian sour
es, x, and then adding a p-dimensional zero-mean Gaussian noise ve
tor, n, with diagonal 
ovarian
e matrix 	: i.e. y = �x+n.Integrating out x and n, the marginal density of y is Gaussian with zero meanand 
ovarian
e ��T + 	. The matrix � is known as the fa
tor loading matrix.Given data with a sample 
ovarian
e matrix �, fa
tor analysis �nds the � and 	that optimally �t � in the maximum likelihood sense. Sin
e k < p, a single fa
toranalyser 
an be seen as a redu
ed parametrisation of a full-
ovarian
e Gaussian.11Fa
tor analysis and its relationship to prin
ipal 
omponents analysis (PCA) and mix-ture models is reviewed in [10℄.



A mixture of fa
tor analysers (MFA) models the density for y as a weighted averageof fa
tor analyser densitiesP (yj�;	;�) = SXs=1 P (sj�)P (yjs;�s;	); (1)where � is the ve
tor of mixing proportions, s is a dis
rete indi
ator variable, and�s is the fa
tor loading matrix for fa
tor analyser s whi
h in
ludes a mean ve
torfor y.By exploiting the fa
tor analysis parameterisation of 
ovarian
e matri
es, a mix-ture of fa
tor analysers 
an be used to �t a mixture of Gaussians to 
orrelated highdimensional data without requiring O(p2) parameters or undesirable 
ompromisessu
h as axis-aligned 
ovarian
e matri
es. In an MFA ea
h Gaussian 
luster has in-trinsi
 dimensionality k (or ks if the dimensions are allowed to vary a
ross 
lusters).Consequently, the mixture of fa
tor analysers simultaneously addresses the prob-lems of 
lustering and lo
al dimensionality redu
tion. When 	 is a multiple of theidentity the model be
omes a mixture of probabilisti
 PCAs. Tra
table maximumlikelihood pro
edure for �tting MFA and MPCA models 
an be derived from theExpe
tation Maximisation algorithm [4, 11℄.The maximum likelihood (ML) approa
h to MFA 
an easily get 
aught in lo
almaxima.2 Ueda et al. [12℄ provide an e�e
tive deterministi
 pro
edure for avoidinglo
al maxima by 
onsidering splitting a fa
tor analyser in one part of spa
e andmerging two in a another part. But splits and merges have to be 
onsidered simul-taneously be
ause the number of fa
tor analysers has to stay the same sin
e addinga fa
tor analyser is always expe
ted to in
rease the training likelihood.A fundamental problem with maximum likelihood approa
hes is that they fail totake into a

ount model 
omplexity (i.e. the 
ost of 
oding the model parameter-s). So more 
omplex models are not penalised, whi
h leads to over�tting and theinability to determine the best model size and stru
ture (or distributions thereof)without resorting to 
ostly 
ross-validation pro
edures. Bayesian approa
hes over-
ome these problems by treating the parameters � as unknown random variablesand averaging over the ensemble of models they de�ne:P (Y ) = Z d� P (Y j�)P (�): (2)P (Y ) is the eviden
e for a data set Y = fy1; : : : ;yNg. Integrating out parameterspenalises models with more degrees of freedom sin
e these models 
an a priorimodel a larger range of data sets. All information inferred from the data about theparameters is 
aptured by the posterior distribution P (�jY ) rather than the MLpoint estimate �̂.3While Bayesian theory deals with the problems of over�tting and model sele
-tion/averaging, in pra
ti
e it is often 
omputationally and analyti
ally intra
table toperform the required integrals. For Gaussian mixture models Markov 
hain MonteCarlo (MCMC) methods have been developed to approximate these integrals bysampling [8, 7℄. The main 
riti
ism of MCMC methods is that they are slow and2Te
hni
ally, the log likelihood is not bounded above if no 
onstraints are put on thedeterminant of the 
omponent 
ovarian
es. So the real ML obje
tive for MFA is to �ndthe highest �nite lo
al maximum of the likelihood.3We sometimes use � to refer to the parameters and sometimes to all the unknownquantities (parameters and hidden variables). Formally the only di�eren
e between the twois that the number of hidden variables grows with N , whereas the number of parametersusually does not.



it is usually diÆ
ult to assess 
onvergen
e. Furthermore, the posterior density overparameters is stored as a set of samples, whi
h 
an be ineÆ
ient.Another approa
h to Bayesian integration for Gaussian mixtures [9℄ is the Lapla
eapproximation whi
h makes a lo
al Gaussian approximation around a maximum aposteriori parameter estimate. These approximations are based on large data limitsand 
an be poor, parti
ularly for small data sets (for whi
h, in prin
iple, the advan-tages of Bayesian integration over ML are largest). Lo
al Gaussian approximationsare also poorly suited to bounded or positive parameters su
h as the mixing pro-portions of the mixture model. Finally, it is diÆ
ult to see how this approa
h 
anbe applied to online in
remental 
hanges to model stru
ture.In this paper we employ a third approa
h to Bayesian inferen
e: variational ap-proximation. We form a lower bound on the log eviden
e using Jensen's inequality:L � lnP (Y ) = ln Z d� P (Y; �) � Z d� Q(�) ln P (Y; �)Q(�) � F ; (3)whi
h we seek to maximise. Maximising F is equivalent to minimising the KL-divergen
e between Q(�) and P (�jY ), so a tra
table Q 
an be used as an approx-imation to the intra
table posterior. This approa
h draws its roots from one wayof deriving mean �eld approximations in physi
s, and has been used re
ently forBayesian inferen
e [13, 5, 1℄.The variational method has several advantages over MCMC and Lapla
e approxi-mations. Unlike MCMC, 
onvergen
e 
an be assessed easily by monitoring F . Theapproximate posterior is en
oded eÆ
iently in Q(�). Unlike Lapla
e approxima-tions, the form of Q 
an be tailored to ea
h parameter (in fa
t the optimal formof Q for ea
h parameter falls out of the optimisation), the approximation is global,and Q optimises an obje
tive fun
tion. Variational methods are generally fast, Fis guaranteed to in
rease monotoni
ally and transparently in
orporates model 
om-plexity. To our knowledge, no one has done a full Bayesian analysis of mixtures offa
tor analysers.Of 
ourse, vis-a-vis MCMC, the main disadvantage of variational approximationsis that they are not guaranteed to �nd the exa
t posterior in the limit. However,with a straightforward appli
ation of sampling, it is possible to take the result ofthe variational optimisation and use it to sample from the exa
t posterior and exa
tpredi
tive density. This is des
ribed in se
tion 5.In the remainder of this paper we �rst des
ribe the mixture of fa
tor analysers inmore detail (se
tion 2). We then derive the variational approximation (se
tion 3).We show empiri
ally that the model 
an infer both the number of 
omponents andtheir intrinsi
 dimensionalities, and is not prone to over�tting (se
tion 6). Finally,we 
on
lude in se
tion 7.2 The ModelStarting from (1), the eviden
e for the Bayesian MFA is obtained by averaging thelikelihood under priors for the parameters (whi
h have their own hyperparameters):P (Y ) = Z d�P (�j�) Z d�P (�ja; b) Z d� P (�j�) �NYn=1" SXsn=1P (snj�) Z dxnP (xn)P (ynjxn; sn;�s;	)# : (4)



Here f�; a; b;	g are hyperparameters4, � are pre
ision parameters (i.e. inverse vari-an
es) for the 
olumns of �. The 
onditional independen
e relations between thevariables in this model are shown graphi
ally in the usual belief network represen-tation in Figure 1. While arbitrary 
hoi
es 
ould be made for the
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n=1...NFigure 1: Generative model forvariational Bayesian mixture offa
tor analysers. Cir
les denoterandom variables, solid re
tanglesdenote hyperparameters, and thedashed re
tangle shows the plate(i.e. repetitions) over the data.

priors on the �rst line of (4), 
hoosing priors thatare 
onjugate to the likelihood terms on the se
-ond line of (4) greatly simpli�es inferen
e andinterpretability.5 So we 
hoose P (�j�) to besymmetri
 Diri
hlet, whi
h is 
onjugate to themultinomial P (sj�).The prior for the fa
tor loading matrix plays akey role in this model. Ea
h 
omponent of themixture has a Gaussian prior P (�sj�s), whereea
h element of the ve
tor �s is the pre
ision ofa 
olumn of �. If one of these pre
isions �sl !1,then the outgoing weights for fa
tor xl will go tozero, whi
h allows the model to redu
e the in-trinsi
 dimensionality of x if the data does notwarrant this added dimension. This method ofintrinsi
 dimensionality redu
tion has been usedby Bishop [2℄ for Bayesian PCA, and is 
loselyrelated to Ma
Kay and Neal's method for auto-mati
 relevan
e determination (ARD) for inputsto a neural network [6℄.To avoid over�tting it is important to integrate out all parameters whose 
ardinalitys
ales with model 
omplexity (i.e. number of 
omponents and their dimensionali-ties). We therefore also integrate out the pre
isions using Gamma priors, P (�ja; b).3 The Variational ApproximationApplying Jensen's inequality repeatedly to the log eviden
e (4) we lower bound itusing the following fa
torisation of the distribution of parameters and hidden vari-ables: Q(�)Q(�;�)Q(s;x). Given this fa
torisation several additional fa
torisationsfall out of the 
onditional independen
ies in the model resulting in the variationalobje
tive fun
tion:F=Z d�Q(�) ln P (�j�)Q(�) + SXs=1 Z d�sQ(�s) �ln P (�sja; b)Q(�s) +Z d�sQ(�s) ln P (�sj�s)Q(�s) �+ NXn=1 SXsn=1Q(sn) �Z d� Q(�) ln P (snj�)Q(sn) + Z dxnQ(xnjsn) ln P (xn)Q(xnjsn)+ Z d�sQ(�s) Z dxnQ(xnjsn) lnP (ynjxn; sn;�s;	)� (5)The variational posteriors Q(�), as given in the Appendix, are derived by performinga free-form extremisation of F w.r.t. Q. It is not diÆ
ult to show that these extremaare indeed maxima of F . The optimal posteriors Q are of the same 
onjugate formsas the priors. The model hyperparameters whi
h govern the priors 
an be estimatedin the same fashion (see the Appendix).4We 
urrently do not integrate out 	, although this 
an also be done.5Conjugate priors have the same e�e
t as pseudo-observations.



4 Birth and DeathWhen optimising F , o

asionally one �nds that for some s: PnQ(sn) = 0. Thesezero responsibility 
omponents are the result of there being insuÆ
ient support fromthe lo
al data to over
ome the dimensional 
omplexity prior on the fa
tor loadingmatri
es. So 
omponents of the mixture die of natural 
auses when they are nolonger needed. Removing these redundant 
omponents in
reases F .Component birth does not happen spontaneously, so we introdu
e a heuristi
.Whenever F has stabilised we pi
k a parent-
omponent sto
hasti
ally with prob-ability proportional to e��Fs and attempt to split it into two; Fs is the s-spe
i�

ontribution to F with the last bra
keted term in (5) normalised by PnQ(sn).This works better than both 
y
ling through 
omponents and pi
king them at ran-dom as it 
on
entrates attempted births on 
omponents that are faring poorly. Theparameter distributions of the two Gaussians 
reated from the split are initialisedby partitioning the responsibilities for the data, Q(sn), along a dire
tion sampledfrom the parent's distribution. This usually 
auses F to de
rease, so by monitoringthe future progress of F we 
an reje
t this attempted birth if F does not re
over.Although it is perfe
tly possible to start the model with many 
omponents and letthem die, it is 
omputationally more eÆ
ient to start with one 
omponent and allowit to spawn more when ne
essary.5 Exa
t Predi
tive Density, True Eviden
e, and KLBy importan
e sampling from the variational approximation we 
an obtain unbiasedestimates of three important quantities: the exa
t predi
tive density, the true logeviden
e L, and the KL divergen
e between the variational posterior and the trueposterior. Letting � = f�;�g, we sample �i s Q(�). Ea
h su
h sample is an instan
eof a mixture of fa
tor analysers with predi
tive density given by (1). We weightthese predi
tive densities by the importan
e weights wi = P (�i; Y )=Q(�i), whi
hare easy to evaluate. This results in a mixture of mixtures of fa
tor analysers, andwill 
onverge to the exa
t predi
tive density, P (yjY ), as long as Q(�) > 0 whereverP (�jY ) > 0. The true log eviden
e 
an be similarly estimated by L = lnhwi, whereh�i denotes averaging over the importan
e samples. Finally, the KL divergen
e isgiven by: KL(Q(�)kP (�jY )) = lnhwi � hlnwi.This pro
edure has three signi�
ant properties. First, the same importan
e weights
an be used to estimate all three quantities. Se
ond, while importan
e sampling
an work very poorly in high dimensions for ad ho
 proposal distributions, here thevariational optimisation is used in a prin
ipled manner to pi
k Q to be a good ap-proximation to P and therefore hopefully a good proposal distribution. Third, thispro
edure 
an be applied to any variational approximation. A detailed exposition
an be found in [3℄.6 ResultsExperiment 1: Dis
overing the number of 
omponents. We tested themodel on syntheti
 data generated from a mixture of 18 Gaussians with 50 pointsper 
luster (Figure 2, top left). The variational algorithm has little diÆ
ulty �ndingthe 
orre
t number of 
omponents and the birth heuristi
s are su

essful at avoidinglo
al maxima. After �nding the 18 Gaussians repeated splits are attempted andreje
ted. Finding a distribution over number of 
omponents using F is also simple.Experiment 2: The shrinking spiral. We used the dataset of 800 data pointsfrom a shrinking spiral from [12℄ as another test of how well the algorithm 
ould



Figure 2: (top) Exp 1: The frames from left to right are the data, and the 2 S.D. Gaussianellipses after 7, 14, 16 and 22 a

epted births. (bottom) Exp 2: Shrinking spiral dataand 1 S.D. Gaussian ellipses after 6, 9, 12, and 17 a

epted births. Note that the numberof Gaussians in
reases from left to right.
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Figure 3: (left) Exp 2: F as fun
tion of iteration for the spiral problem on a typi
al run.Drops in F 
onstitute 
omponent births. Thi
k lines are a

epted attempts, thin lines arereje
ted attempts. (middle) Exp 3: Means of the fa
tor loading matri
es. These resultsare analogous to those given by Bishop [2℄ for Bayesian PCA. (right) Exp 3: Table withlearned number of Gaussians and dimensionalities as training set size in
reases. Boxesrepresent model 
omponents that 
apture several of the 
lusters.es
ape lo
al maxima and how robust it was to initial 
onditions (Figure 2, bottom).Again lo
al maxima did not pose a problem and the algorithm always found between12-14 Gaussians regardless of whether it was initialised with 0 or 200. These runstook about 3-4 minutes on a 500MHz Alpha EV6 pro
essor. A plot of F shows thatmost of the 
ompute time is spent on a

epted moves (Figure 3, left).Experiment 3: Dis
overing the lo
al dimensionalities. We generated a syn-theti
 data set of 300 data points in ea
h of 6 Gaussians with intrinsi
 dimension-alities (7 4 3 2 2 1) embedded in 10 dimensions. The variational Bayesian approa
h
orre
tly inferred both the number of Gaussians and their intrinsi
 dimensionalities(Figure 3, middle). We varied the number of data points and found that as expe
tedwith fewer points the data 
ould not provide eviden
e for as many 
omponents andintrinsi
 dimensions (Figure 3, right).7 Dis
ussionSear
h over model stru
tures for MFAs is 
omputationally intra
table if ea
h fa
toranalyser is allowed to have di�erent intrinsi
 dimensionalities. In this paper we haveshown that the variational Bayesian approa
h 
an be used to eÆ
iently infer thismodel stru
ture while avoiding over�tting and other de�
ien
ies of ML approa
hes.One attra
tion of our variational method, whi
h 
an be exploited in other models,is that on
e a fa
torisation of Q is assumed all inferen
e is automati
 and exa
t.We 
an also use F to get a distribution over stru
tures if desired. Finally we derive



a generally appli
able importan
e sampler that gives us unbiased estimates of thetrue eviden
e, the exa
t predi
tive density, and the KL divergen
e between thevariational posterior and the true posterior.En
ouraged by the results on syntheti
 data, we have applied the Bayesian mixtureof fa
tor analysers to a real-world unsupervised digit 
lassi�
ation problem. Wewill report the results of these experiments in a separate arti
le.Appendix: Optimal Q Distributions and HyperparametersQ(xnjsn) s N (xn;s;�s) Q(�sq) s N (�sq;�q;s) Q(�sl ) s G(asl ; bsl ) Q(�) s D(!u)lnQ(sn) = [ (!us)�  (!)℄ + 12 ln j�sj+ hlnP (ynjxn; sn;�s;	)i+ 
xn;s= �s�s>	�1yn; �sq = "	�1 NXn=1Q(sn)ynxn;s>�q;s#q; asl =a+ p2 ; bsl =b+ 12 pXq=1h�sql2i�s�1= h�s>	�1�si+ I; �q;s�1=	�1qq NXn=1Q(sn)hxnxn>i+diagh�si; !us = �S+ NXn=1Q(sn)where fN ;G;Dg denote Normal, Gamma and Diri
hlet distributions respe
tively, h�i de-notes expe
tation under the variational posterior, and  (x) is the digamma fun
tion (x) � ��x ln�(x). Note that the optimal distributions Q(�s) have blo
k diagonal 
o-varian
e stru
ture; even though ea
h �s is a p� q matrix, its 
ovarian
e only has O(pq2)parameters. Di�erentiating F with respe
t to the parameters, a and b, of the pre
ision pri-or we get �xed point equations  (a) = hln�i+ln b and b = a=h�i. Similarly the �xed pointfor the parameters of the Diri
hlet prior is  (�)�  (�=S) +P [ (!us)�  (!)℄ =S = 0.Referen
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