
Variational Inferene for BayesianMixtures of Fator AnalysersZoubin Ghahramani and Matthew J. BealGatsby Computational Neurosiene UnitUniversity College London17 Queen Square, London WC1N 3AR, Englandfzoubin,m.bealg�gatsby.ul.a.ukAbstratWe present an algorithm that infers the model struture of a mix-ture of fator analysers using an eÆient and deterministi varia-tional approximation to full Bayesian integration over model pa-rameters. This proedure an automatially determine the opti-mal number of omponents and the loal dimensionality of eahomponent (i.e. the number of fators in eah fator analyser).Alternatively it an be used to infer posterior distributions overnumber of omponents and dimensionalities. Sine all parametersare integrated out the method is not prone to over�tting. Using astohasti proedure for adding omponents it is possible to per-form the variational optimisation inrementally and to avoid loalmaxima. Results show that the method works very well in pratieand orretly infers the number and dimensionality of nontrivialsyntheti examples.By importane sampling from the variational approximation weshow how to obtain unbiased estimates of the true evidene, theexat preditive density, and the KL divergene between the varia-tional posterior and the true posterior, not only in this model butfor variational approximations in general.1 IntrodutionFator analysis (FA) is a method for modelling orrelations in multidimensionaldata. The model assumes that eah p-dimensional data vetor y was generated by�rst linearly transforming a k < p dimensional vetor of unobserved independentzero-mean unit-variane Gaussian soures, x, and then adding a p-dimensional zero-mean Gaussian noise vetor, n, with diagonal ovariane matrix 	: i.e. y = �x+n.Integrating out x and n, the marginal density of y is Gaussian with zero meanand ovariane ��T + 	. The matrix � is known as the fator loading matrix.Given data with a sample ovariane matrix �, fator analysis �nds the � and 	that optimally �t � in the maximum likelihood sense. Sine k < p, a single fatoranalyser an be seen as a redued parametrisation of a full-ovariane Gaussian.11Fator analysis and its relationship to prinipal omponents analysis (PCA) and mix-ture models is reviewed in [10℄.



A mixture of fator analysers (MFA) models the density for y as a weighted averageof fator analyser densitiesP (yj�;	;�) = SXs=1 P (sj�)P (yjs;�s;	); (1)where � is the vetor of mixing proportions, s is a disrete indiator variable, and�s is the fator loading matrix for fator analyser s whih inludes a mean vetorfor y.By exploiting the fator analysis parameterisation of ovariane matries, a mix-ture of fator analysers an be used to �t a mixture of Gaussians to orrelated highdimensional data without requiring O(p2) parameters or undesirable ompromisessuh as axis-aligned ovariane matries. In an MFA eah Gaussian luster has in-trinsi dimensionality k (or ks if the dimensions are allowed to vary aross lusters).Consequently, the mixture of fator analysers simultaneously addresses the prob-lems of lustering and loal dimensionality redution. When 	 is a multiple of theidentity the model beomes a mixture of probabilisti PCAs. Tratable maximumlikelihood proedure for �tting MFA and MPCA models an be derived from theExpetation Maximisation algorithm [4, 11℄.The maximum likelihood (ML) approah to MFA an easily get aught in loalmaxima.2 Ueda et al. [12℄ provide an e�etive deterministi proedure for avoidingloal maxima by onsidering splitting a fator analyser in one part of spae andmerging two in a another part. But splits and merges have to be onsidered simul-taneously beause the number of fator analysers has to stay the same sine addinga fator analyser is always expeted to inrease the training likelihood.A fundamental problem with maximum likelihood approahes is that they fail totake into aount model omplexity (i.e. the ost of oding the model parameter-s). So more omplex models are not penalised, whih leads to over�tting and theinability to determine the best model size and struture (or distributions thereof)without resorting to ostly ross-validation proedures. Bayesian approahes over-ome these problems by treating the parameters � as unknown random variablesand averaging over the ensemble of models they de�ne:P (Y ) = Z d� P (Y j�)P (�): (2)P (Y ) is the evidene for a data set Y = fy1; : : : ;yNg. Integrating out parameterspenalises models with more degrees of freedom sine these models an a priorimodel a larger range of data sets. All information inferred from the data about theparameters is aptured by the posterior distribution P (�jY ) rather than the MLpoint estimate �̂.3While Bayesian theory deals with the problems of over�tting and model sele-tion/averaging, in pratie it is often omputationally and analytially intratable toperform the required integrals. For Gaussian mixture models Markov hain MonteCarlo (MCMC) methods have been developed to approximate these integrals bysampling [8, 7℄. The main ritiism of MCMC methods is that they are slow and2Tehnially, the log likelihood is not bounded above if no onstraints are put on thedeterminant of the omponent ovarianes. So the real ML objetive for MFA is to �ndthe highest �nite loal maximum of the likelihood.3We sometimes use � to refer to the parameters and sometimes to all the unknownquantities (parameters and hidden variables). Formally the only di�erene between the twois that the number of hidden variables grows with N , whereas the number of parametersusually does not.



it is usually diÆult to assess onvergene. Furthermore, the posterior density overparameters is stored as a set of samples, whih an be ineÆient.Another approah to Bayesian integration for Gaussian mixtures [9℄ is the Laplaeapproximation whih makes a loal Gaussian approximation around a maximum aposteriori parameter estimate. These approximations are based on large data limitsand an be poor, partiularly for small data sets (for whih, in priniple, the advan-tages of Bayesian integration over ML are largest). Loal Gaussian approximationsare also poorly suited to bounded or positive parameters suh as the mixing pro-portions of the mixture model. Finally, it is diÆult to see how this approah anbe applied to online inremental hanges to model struture.In this paper we employ a third approah to Bayesian inferene: variational ap-proximation. We form a lower bound on the log evidene using Jensen's inequality:L � lnP (Y ) = ln Z d� P (Y; �) � Z d� Q(�) ln P (Y; �)Q(�) � F ; (3)whih we seek to maximise. Maximising F is equivalent to minimising the KL-divergene between Q(�) and P (�jY ), so a tratable Q an be used as an approx-imation to the intratable posterior. This approah draws its roots from one wayof deriving mean �eld approximations in physis, and has been used reently forBayesian inferene [13, 5, 1℄.The variational method has several advantages over MCMC and Laplae approxi-mations. Unlike MCMC, onvergene an be assessed easily by monitoring F . Theapproximate posterior is enoded eÆiently in Q(�). Unlike Laplae approxima-tions, the form of Q an be tailored to eah parameter (in fat the optimal formof Q for eah parameter falls out of the optimisation), the approximation is global,and Q optimises an objetive funtion. Variational methods are generally fast, Fis guaranteed to inrease monotonially and transparently inorporates model om-plexity. To our knowledge, no one has done a full Bayesian analysis of mixtures offator analysers.Of ourse, vis-a-vis MCMC, the main disadvantage of variational approximationsis that they are not guaranteed to �nd the exat posterior in the limit. However,with a straightforward appliation of sampling, it is possible to take the result ofthe variational optimisation and use it to sample from the exat posterior and exatpreditive density. This is desribed in setion 5.In the remainder of this paper we �rst desribe the mixture of fator analysers inmore detail (setion 2). We then derive the variational approximation (setion 3).We show empirially that the model an infer both the number of omponents andtheir intrinsi dimensionalities, and is not prone to over�tting (setion 6). Finally,we onlude in setion 7.2 The ModelStarting from (1), the evidene for the Bayesian MFA is obtained by averaging thelikelihood under priors for the parameters (whih have their own hyperparameters):P (Y ) = Z d�P (�j�) Z d�P (�ja; b) Z d� P (�j�) �NYn=1" SXsn=1P (snj�) Z dxnP (xn)P (ynjxn; sn;�s;	)# : (4)



Here f�; a; b;	g are hyperparameters4, � are preision parameters (i.e. inverse vari-anes) for the olumns of �. The onditional independene relations between thevariables in this model are shown graphially in the usual belief network represen-tation in Figure 1. While arbitrary hoies ould be made for the
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n=1...NFigure 1: Generative model forvariational Bayesian mixture offator analysers. Cirles denoterandom variables, solid retanglesdenote hyperparameters, and thedashed retangle shows the plate(i.e. repetitions) over the data.

priors on the �rst line of (4), hoosing priors thatare onjugate to the likelihood terms on the se-ond line of (4) greatly simpli�es inferene andinterpretability.5 So we hoose P (�j�) to besymmetri Dirihlet, whih is onjugate to themultinomial P (sj�).The prior for the fator loading matrix plays akey role in this model. Eah omponent of themixture has a Gaussian prior P (�sj�s), whereeah element of the vetor �s is the preision ofa olumn of �. If one of these preisions �sl !1,then the outgoing weights for fator xl will go tozero, whih allows the model to redue the in-trinsi dimensionality of x if the data does notwarrant this added dimension. This method ofintrinsi dimensionality redution has been usedby Bishop [2℄ for Bayesian PCA, and is loselyrelated to MaKay and Neal's method for auto-mati relevane determination (ARD) for inputsto a neural network [6℄.To avoid over�tting it is important to integrate out all parameters whose ardinalitysales with model omplexity (i.e. number of omponents and their dimensionali-ties). We therefore also integrate out the preisions using Gamma priors, P (�ja; b).3 The Variational ApproximationApplying Jensen's inequality repeatedly to the log evidene (4) we lower bound itusing the following fatorisation of the distribution of parameters and hidden vari-ables: Q(�)Q(�;�)Q(s;x). Given this fatorisation several additional fatorisationsfall out of the onditional independenies in the model resulting in the variationalobjetive funtion:F=Z d�Q(�) ln P (�j�)Q(�) + SXs=1 Z d�sQ(�s) �ln P (�sja; b)Q(�s) +Z d�sQ(�s) ln P (�sj�s)Q(�s) �+ NXn=1 SXsn=1Q(sn) �Z d� Q(�) ln P (snj�)Q(sn) + Z dxnQ(xnjsn) ln P (xn)Q(xnjsn)+ Z d�sQ(�s) Z dxnQ(xnjsn) lnP (ynjxn; sn;�s;	)� (5)The variational posteriors Q(�), as given in the Appendix, are derived by performinga free-form extremisation of F w.r.t. Q. It is not diÆult to show that these extremaare indeed maxima of F . The optimal posteriors Q are of the same onjugate formsas the priors. The model hyperparameters whih govern the priors an be estimatedin the same fashion (see the Appendix).4We urrently do not integrate out 	, although this an also be done.5Conjugate priors have the same e�et as pseudo-observations.



4 Birth and DeathWhen optimising F , oasionally one �nds that for some s: PnQ(sn) = 0. Thesezero responsibility omponents are the result of there being insuÆient support fromthe loal data to overome the dimensional omplexity prior on the fator loadingmatries. So omponents of the mixture die of natural auses when they are nolonger needed. Removing these redundant omponents inreases F .Component birth does not happen spontaneously, so we introdue a heuristi.Whenever F has stabilised we pik a parent-omponent stohastially with prob-ability proportional to e��Fs and attempt to split it into two; Fs is the s-spei�ontribution to F with the last braketed term in (5) normalised by PnQ(sn).This works better than both yling through omponents and piking them at ran-dom as it onentrates attempted births on omponents that are faring poorly. Theparameter distributions of the two Gaussians reated from the split are initialisedby partitioning the responsibilities for the data, Q(sn), along a diretion sampledfrom the parent's distribution. This usually auses F to derease, so by monitoringthe future progress of F we an rejet this attempted birth if F does not reover.Although it is perfetly possible to start the model with many omponents and letthem die, it is omputationally more eÆient to start with one omponent and allowit to spawn more when neessary.5 Exat Preditive Density, True Evidene, and KLBy importane sampling from the variational approximation we an obtain unbiasedestimates of three important quantities: the exat preditive density, the true logevidene L, and the KL divergene between the variational posterior and the trueposterior. Letting � = f�;�g, we sample �i s Q(�). Eah suh sample is an instaneof a mixture of fator analysers with preditive density given by (1). We weightthese preditive densities by the importane weights wi = P (�i; Y )=Q(�i), whihare easy to evaluate. This results in a mixture of mixtures of fator analysers, andwill onverge to the exat preditive density, P (yjY ), as long as Q(�) > 0 whereverP (�jY ) > 0. The true log evidene an be similarly estimated by L = lnhwi, whereh�i denotes averaging over the importane samples. Finally, the KL divergene isgiven by: KL(Q(�)kP (�jY )) = lnhwi � hlnwi.This proedure has three signi�ant properties. First, the same importane weightsan be used to estimate all three quantities. Seond, while importane samplingan work very poorly in high dimensions for ad ho proposal distributions, here thevariational optimisation is used in a prinipled manner to pik Q to be a good ap-proximation to P and therefore hopefully a good proposal distribution. Third, thisproedure an be applied to any variational approximation. A detailed expositionan be found in [3℄.6 ResultsExperiment 1: Disovering the number of omponents. We tested themodel on syntheti data generated from a mixture of 18 Gaussians with 50 pointsper luster (Figure 2, top left). The variational algorithm has little diÆulty �ndingthe orret number of omponents and the birth heuristis are suessful at avoidingloal maxima. After �nding the 18 Gaussians repeated splits are attempted andrejeted. Finding a distribution over number of omponents using F is also simple.Experiment 2: The shrinking spiral. We used the dataset of 800 data pointsfrom a shrinking spiral from [12℄ as another test of how well the algorithm ould



Figure 2: (top) Exp 1: The frames from left to right are the data, and the 2 S.D. Gaussianellipses after 7, 14, 16 and 22 aepted births. (bottom) Exp 2: Shrinking spiral dataand 1 S.D. Gaussian ellipses after 6, 9, 12, and 17 aepted births. Note that the numberof Gaussians inreases from left to right.
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Figure 3: (left) Exp 2: F as funtion of iteration for the spiral problem on a typial run.Drops in F onstitute omponent births. Thik lines are aepted attempts, thin lines arerejeted attempts. (middle) Exp 3: Means of the fator loading matries. These resultsare analogous to those given by Bishop [2℄ for Bayesian PCA. (right) Exp 3: Table withlearned number of Gaussians and dimensionalities as training set size inreases. Boxesrepresent model omponents that apture several of the lusters.esape loal maxima and how robust it was to initial onditions (Figure 2, bottom).Again loal maxima did not pose a problem and the algorithm always found between12-14 Gaussians regardless of whether it was initialised with 0 or 200. These runstook about 3-4 minutes on a 500MHz Alpha EV6 proessor. A plot of F shows thatmost of the ompute time is spent on aepted moves (Figure 3, left).Experiment 3: Disovering the loal dimensionalities. We generated a syn-theti data set of 300 data points in eah of 6 Gaussians with intrinsi dimension-alities (7 4 3 2 2 1) embedded in 10 dimensions. The variational Bayesian approahorretly inferred both the number of Gaussians and their intrinsi dimensionalities(Figure 3, middle). We varied the number of data points and found that as expetedwith fewer points the data ould not provide evidene for as many omponents andintrinsi dimensions (Figure 3, right).7 DisussionSearh over model strutures for MFAs is omputationally intratable if eah fatoranalyser is allowed to have di�erent intrinsi dimensionalities. In this paper we haveshown that the variational Bayesian approah an be used to eÆiently infer thismodel struture while avoiding over�tting and other de�ienies of ML approahes.One attration of our variational method, whih an be exploited in other models,is that one a fatorisation of Q is assumed all inferene is automati and exat.We an also use F to get a distribution over strutures if desired. Finally we derive



a generally appliable importane sampler that gives us unbiased estimates of thetrue evidene, the exat preditive density, and the KL divergene between thevariational posterior and the true posterior.Enouraged by the results on syntheti data, we have applied the Bayesian mixtureof fator analysers to a real-world unsupervised digit lassi�ation problem. Wewill report the results of these experiments in a separate artile.Appendix: Optimal Q Distributions and HyperparametersQ(xnjsn) s N (xn;s;�s) Q(�sq) s N (�sq;�q;s) Q(�sl ) s G(asl ; bsl ) Q(�) s D(!u)lnQ(sn) = [ (!us)�  (!)℄ + 12 ln j�sj+ hlnP (ynjxn; sn;�s;	)i+ xn;s= �s�s>	�1yn; �sq = "	�1 NXn=1Q(sn)ynxn;s>�q;s#q; asl =a+ p2 ; bsl =b+ 12 pXq=1h�sql2i�s�1= h�s>	�1�si+ I; �q;s�1=	�1qq NXn=1Q(sn)hxnxn>i+diagh�si; !us = �S+ NXn=1Q(sn)where fN ;G;Dg denote Normal, Gamma and Dirihlet distributions respetively, h�i de-notes expetation under the variational posterior, and  (x) is the digamma funtion (x) � ��x ln�(x). Note that the optimal distributions Q(�s) have blok diagonal o-variane struture; even though eah �s is a p� q matrix, its ovariane only has O(pq2)parameters. Di�erentiating F with respet to the parameters, a and b, of the preision pri-or we get �xed point equations  (a) = hln�i+ln b and b = a=h�i. Similarly the �xed pointfor the parameters of the Dirihlet prior is  (�)�  (�=S) +P [ (!us)�  (!)℄ =S = 0.Referenes[1℄ H. Attias. Inferring parameters and struture of latent variable models by variationalBayes. In Pro. 15th Conf. on Unertainty in Arti�ial Intelligene, 1999.[2℄ C.M. Bishop. Variational PCA. In Pro. Ninth Int. Conf. on Arti�ial Neural Net-works. ICANN, 1999.[3℄ Z. Ghahramani, H. Attias, and M.J. Beal. Learning model struture. TehnialReport GCNU-TR-1999-006, (in prep.) Gatsby Unit, Univ. College London, 1999.[4℄ Z. Ghahramani and G.E. Hinton. The EM algorithm for mixtures of fa-tor analyzers. Tehnial Report CRG-TR-96-1 [http://www.gatsby.ul.a.uk/�zoubin/papers/tr-96-1.ps.gz℄, Dept. of Comp. Si., Univ. of Toronto, 1996.[5℄ D.J.C. MaKay. Ensemble learning for hidden Markov models. Tehnial report,Cavendish Laboratory, University of Cambridge, 1997.[6℄ R.M. Neal. Assessing relevane determination methods using DELVE. In C.M. Bish-op, editor, Neural Networks and Mahine Learning, 97{129. Springer-Verlag, 1998.[7℄ C.E. Rasmussen. The in�nite gaussian mixture model. In Adv. Neur. Inf. Pro. Sys.12. MIT Press, 2000.[8℄ S. Rihardson and P.J. Green. On Bayesian analysis of mixtures with an unknownnumber of omponents. J. Roy. Stat. So.{Ser. B, 59(4):731{758, 1997.[9℄ S.J. Roberts, D. Husmeier, I. Rezek, and W. Penny. Bayesian approahes to Gaussianmixture modeling. IEEE PAMI, 20(11):1133{1142, 1998.[10℄ S. T. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. NeuralComputation, 11(2):305{345, 1999.[11℄ M.E. Tipping and C.M. Bishop. Mixtures of probabilisti prinipal omponent ana-lyzers. Neural Computation, 11(2):443{482, 1999.[12℄ N. Ueda, R. Nakano, Z. Ghahramani, and G.E. Hinton. SMEM algorithm for mixturemodels. In Adv. Neur. Inf. Pro. Sys. 11. MIT Press, 1999.[13℄ S. Waterhouse, D.J.C. Makay, and T. Robinson. Bayesian methods for mixtures ofexperts. In Adv. Neur. Inf. Pro. Sys. 7. MIT Press, 1995.


