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Summary

We describe a flexible nonparametric approach to latent variable modelling in
which the number of latent variables is unbounded. This approach is based
on a probability distribution over equivalence classes of binary matrices with
a finite number of rows, corresponding to the data points, and an unbounded
number of columns, corresponding to the latent variables. Each data point
can be associated with a subset of the possible latent variables, which we re-
fer to as the latent features of that data point. The binary variables in the
matrix indicate which latent feature is possessed by which data point, and
there is a potentially infinite array of features. We derive the distribution
over unbounded binary matrices by taking the limit of a distribution over
N × K binary matrices as K → ∞. We define a simple generative processes
for this distribution which we call the Indian buffet process (IBP; Griffiths
and Ghahramani, 2005, 2006) by analogy to the Chinese restaurant process
(Aldous, 1985; Pitman, 2002). The IBP has a single hyperparameter which
controls both the number of feature per object and the total number of fea-
tures. We describe a two-parameter generalization of the IBP which has addi-
tional flexibility, independently controlling the number of features per object
and the total number of features in the matrix. The use of this distribution
as a prior in an infinite latent feature model is illustrated, and Markov chain
Monte Carlo algorithms for inference are described.
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1. INTRODUCTION

Latent or hidden variables are an important component of many statistical models.
The role of these latent variables may be to represent properties of the objects or
data points being modelled that have not been directly observed, or to represent
hidden causes that explain the observed data.

Most models with latent variables assume a finite number of latent variables per
object. At the extreme, mixture models can be represented via a single discrete
latent variable, and hidden Markov models (HMMs) via a single latent variable
evolving over time. Factor analysis and independent components analysis (ICA)
generally use more than one latent variable per object but this number is usually
assumed to be small. The close relationship between latent variable models such
as factor analysis, state-space models, finite mixture models, HMMs, and ICA is
reviewed in (Roweis and Ghahramani, 1999).

Our goal is to describe a class of latent variable models in which each object is
associated with a (potentially unbounded) vector of latent features. Latent feature
representations can be found in several widely-used statistical models. In Latent
Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003) each object is associated with
a probability distribution over latent features. LDA has proven very successful for
modelling the content of documents, where each feature indicates one of the topics
that appears in the document. While using a probability distribution over features
may be sensible to model the distribution of topics in a document, it introduces
a conservation constraint—the more an object expresses one feature, the less it
can express others—which may not be appropriate in other contexts. Other latent
feature representations include binary vectors with entries indicating the presence or
absence of each feature (e.g., Ueda & Saito, 2003), continuous vectors representing
objects as points in a latent space (e.g., Jolliffe, 1986), and factorial models, in which
each feature takes on one of a discrete set of values (e.g., Zemel & Hinton, 1994;
Ghahramani, 1995).

While it may be computationally convenient to define models with a small finite
number of latent variables or latent features per object, it may be statistically
inappropriate to constrain the number of latent variables a priori. The problem of
finding the number of latent variables in a statistical model has often been treated
as a model selection problem, choosing the model with the dimensionality that
results in the best performance. However, this treatment of the problem assumes
that there is a single, finite-dimensional representation that correctly characterizes
the properties of the observed objects. This assumption may be unreasonable. For
example, when modelling symptoms in medical patients, the latent variables may
include not only presence or absence of known diseases but also any number of
environmental and genetic factors and potentially unknown diseases which relate to
the pattern of symptoms the patient exhibited.

The assumption that the observed objects manifest a sparse subset of an un-
bounded number of latent classes is often used in nonparametric Bayesian statistics.
In particular, this assumption is made in Dirichlet process mixture models, which
are used for nonparametric density estimation (Antoniak, 1974; Escobar & West,
1995; Ferguson, 1983; Neal, 2000). Under one interpretation of a Dirichlet process
mixture model, each object is assigned to a latent class, and each class is associated
with a distribution over observable properties. The prior distribution over assign-
ments of objects to classes is specified in such a way that the number of classes
used by the model is bounded only by the number of objects, making Dirichlet
process mixture models “infinite” mixture models (Rasmussen, 2000). Recent work
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has extended these methods to models in which each object is represented by a dis-
tribution over features (Blei, Griffiths, Jordan, & Tenenbaum, 2004; Teh, Jordan,
Beal, & Blei, 2004). However, there are no equivalent methods for dealing with
other feature-based representations, be they binary vectors, factorial structures, or
vectors of continuous feature values.

In this paper, we take the idea of defining priors over infinite combinatorial
structures from nonparametric Bayesian statistics, and use it to develop methods
for unsupervised learning in which each object is represented by a sparse subset
of an unbounded number of features. These features can be binary, take on mul-
tiple discrete values, or have continuous weights. In all of these representations,
the difficult problem is deciding which features an object should possess. The set
of features possessed by a set of objects can be expressed in the form of a binary
matrix, where each row is an object, each column is a feature, and an entry of 1
indicates that a particular objects possesses a particular feature. We thus focus
on the problem of defining a distribution on infinite sparse binary matrices. Our
derivation of this distribution is analogous to the limiting argument in (Neal 2000;
Green and Richardson, 2001) used to derive the Dirichlet process mixture model
(Antoniak, 1974; Ferguson, 1983), and the resulting process we obtain is analogous
to the Chinese restaurant process (CRP; Aldous, 1985; Pitman, 2002). This distri-
bution over infinite binary matrices can be used to specify probabilistic models that
represent objects with infinitely many binary features, and can be combined with
priors on feature values to produce factorial and continuous representations.

The plan of the paper is as follows. Section 2 discusses the role of a prior
on infinite binary matrices in defining infinite latent feature models. Section 3
describes such a prior, corresponding to a stochastic process we call the Indian
buffet process (IBP). Section 4 describes a two-parameter extension of this model
which allows additional flexibility in the structure of the infinite binary matrices.
Section 6 illustrates several applications of the IBP prior. Section 7 presents some
conclusions.

2. LATENT FEATURE MODELS

Assume we have N objects, represented by an N × D matrix X, where the ith row
of this matrix, xi, consists of measurements of D observable properties of the ith
object. In a latent feature model, each object is represented by a vector of latent
feature values fi, and the properties xi are generated from a distribution determined
by those latent feature values. Latent feature values can be continuous, as in prin-
cipal component analysis (PCA; Jolliffe, 1986), or discrete, as in cooperative vector
quantization (CVQ; Zemel & Hinton, 1994; Ghahramani, 1995). In the remainder
of this Section, we will assume that feature values are continuous. Using the matrix

F =
ˆ

f
T
1 f

T
2 · · · f

T
N

˜T
to indicate the latent feature values for all N objects, the model

is specified by a prior over features, p(F), and a distribution over observed property
matrices conditioned on those features, p(X|F). As with latent class models, these
distributions can be dealt with separately: p(F) specifies the number of features,
their probability, and the distribution over values associated with each feature, while
p(X|F) determines how these features relate to the properties of objects. Our focus
will be on p(F), showing how such a prior can be defined without placing an upper
bound on the number of features.

We can break the matrix F into two components: a binary matrix Z indicating
which features are possessed by each object, with zik = 1 if object i has feature
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latent variable finite model (K < ∞) infinite model (K = ∞)
fi ∈ {1...K} finite mixture model DPM
fi ∈ [0, 1]K ,

∑
k
fik =1 LDA HDP

fi ∈ {0, 1}K factorial models, CVQ IBP
fi ∈ ℜK FA, PCA, ICA derivable from IBP

Table 1: Some different latent variable models and the set of values their latent
variables can take. DPM: Dirichlet process mixture; FA: factor analysis; HDP:
Hierarchical Dirichlet process; IBP: Indian buffet process (described in this
paper). Other acronyms are defined in the main text. “Derivable from IBP”
refers to different choices for the distribution of V.

k and 0 otherwise, and a second matrix V indicating the value of each feature for
each object. F can be expressed as the elementwise (Hadamard) product of Z and
V, F = Z ⊗ V, as illustrated in Figure 1. In many latent feature models, such as
PCA and CVQ, objects have non-zero values on every feature, and every entry of
Z is 1. In sparse latent feature models (e.g., sparse PCA; d’Aspremont, Ghaoui,
Jordan, & Lanckriet, 2005; Jolliffe & Uddin, 2003; Zou, Hastie, & Tibshirani, 2006)
only a subset of features take on non-zero values for each object, and Z picks out
these subsets. Table 1 shows the set of possible values that latent variables can take
in different latent variable models.
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Figure 1: Feature matrices. A binary matrix Z, as shown in (a), can
be used as the basis for sparse infinite latent feature models, indicating which
features take non-zero values. Elementwise multiplication of Z by a matrix
V of continuous values gives a representation like that shown in (b). If V

contains discrete values, we obtain a representation like that shown in (c).

A prior on F can be defined by specifying priors for Z and V separately, with
p(F) = P (Z)p(V). We will focus on defining a prior on Z, since the effective dimen-
sionality of a latent feature model is determined by Z. Assuming that Z is sparse,
we can define a prior for infinite latent feature models by defining a distribution
over infinite binary matrices. We have two desiderata for such a distribution: ob-
jects should be exchangeable, and inference should be tractable. The literature on
nonparametric Bayesian models suggests a method by which these desiderata can
be satisfied: start with a model that assumes a finite number of features, and con-
sider the limit as the number of features approaches infinity (Neal, 2000; Green and
Richardson, 2001).
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3. A DISTRIBUTION ON INFINITE BINARY MATRICES

In this Section, we derive a distribution on infinite binary matrices by starting with
a simple model that assumes K features, and then taking the limit as K → ∞. The
resulting distribution corresponds to a simple generative process, which we term the
Indian buffet process.

3.1. A finite feature model

We have N objects and K features, and the possession of feature k by object i
is indicated by a binary variable zik. Each object can possess multiple features.
The zik thus form a binary N × K feature matrix, Z. We will assume that each
object possesses feature k with probability πk, and that the features are generated
independently. The probabilities πk can each take on any value in [0, 1]. Under this
model, the probability of a matrix Z given π = {π1, π2, . . . , πK}, is

P (Z|π) =
K
Y

k=1

N
Y

i=1

P (zik|πk) =
K
Y

k=1

πmk

k (1 − πk)N−mk , (1)

where mk =
PN

i=1 zik is the number of objects possessing feature k.
We can define a prior on π by assuming that each πk follows a beta distribution.

The beta distribution has parameters r and s, and is conjugate to the binomial.
The probability of any πk under the Beta(r, s) distribution is given by

p(πk) =
πr−1

k (1 − πk)s−1

B(r, s)
, (2)

where B(r, s) is the beta function,

B(r, s) =

Z 1

0

πr−1
k (1 − πk)s−1 dπk =

Γ(r)Γ(s)

Γ(r + s)
. (3)

We take r = α
K

and s = 1, so Equation 3 becomes

B( α
K

, 1) =
Γ( α

K
)

Γ(1 + α
K

)
=

K

α
, (4)

exploiting the recursive definition of the gamma function. The effect of varying s is
explored in Section 4.

The probability model we have defined is

πk |α ∼ Beta( α
K

, 1)

zik |πk ∼ Bernoulli(πk)

Each zik is independent of all other assignments, conditioned on πk, and the πk are
generated independently. Having defined a prior on π, we can simplify this model
by integrating over all values for π rather than representing them explicitly. The
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marginal probability of a binary matrix Z is

P (Z) =

K
Y

k=1

Z

 

N
Y

i=1

P (zik|πk)

!

p(πk) dπk (5)

=
K
Y

k=1

B(mk + α
K

, N − mk + 1)

B( α
K

, 1)
(6)

=

K
Y

k=1

α
K

Γ(mk + α
K

)Γ(N − mk + 1)

Γ(N + 1 + α
K

)
. (7)

This result follows from conjugacy between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of
non-zero entries in the matrix Z, E

ˆ

1
T
Z1
˜

= E
ˆ
P

ik zik

˜

, has an upper bound
for any K. Since each column of Z is independent, the expectation is K times the
expectation of the sum of a single column, E

ˆ

1
T
zk

˜

. This expectation is easily
computed,

E
h

1
T
zk

i

=
N
X

i=1

E(zik) =
N
X

i=1

Z 1

0

πkp(πk) dπk = N
α
K

1 + α
K

, (8)

where the result follows from the fact that the expectation of a Beta(r, s) random
variable is r/(r + s). Consequently, E

ˆ

1
T
Z1
˜

= KE
ˆ

1
T
zk

˜

= Nα/(1 + (α/K)).
For any K, the expectation of the number of entries in Z is bounded above by Nα.

3.2. Equivalence classes

In order to find the limit of the distribution specified by Equation 7 as K → ∞, we
need to define equivalence classes of binary matrices. Our equivalence classes will
be defined with respect to a function on binary matrices, lof(·). This function maps
binary matrices to left-ordered binary matrices. lof(Z) is obtained by ordering the
columns of the binary matrix Z from left to right by the magnitude of the binary
number expressed by that column, taking the first row as the most significant bit.
The left-ordering of a binary matrix is shown in Figure 2. In the first row of the
left-ordered matrix, the columns for which z1k = 1 are grouped at the left. In the
second row, the columns for which z2k = 1 are grouped at the left of the sets for
which z1k = 1. This grouping structure persists throughout the matrix.

The history of feature k at object i is defined to be (z1k, . . . , z(i−1)k). Where
no object is specified, we will use history to refer to the full history of feature
k, (z1k, . . . , zNk). We will individuate the histories of features using the decimal
equivalent of the binary numbers corresponding to the column entries. For example,
at object 3, features can have one of four histories: 0, corresponding to a feature with
no previous assignments, 1, being a feature for which z2k = 1 but z1k = 0, 2, being
a feature for which z1k = 1 but z2k = 0, and 3, being a feature possessed by both
previous objects. Kh will denote the number of features possessing the history h,

with K0 being the number of features for which mk = 0 and K+ =
P2N−1

h=1 Kh being
the number of features for which mk > 0, so K = K0+K+. This method of denoting
histories also facilitates the process of placing a binary matrix in left-ordered form,
as it is used in the definition of lof(·).
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lof

Figure 2: Binary matrices and the left-ordered form. The binary ma-
trix on the left is transformed into the left-ordered binary matrix on the right
by the function lof(·). This left-ordered matrix was generated from the ex-
changeable Indian buffet process with α = 10. Empty columns are omitted
from both matrices.

lof(·) is a many-to-one function: many binary matrices reduce to the same left-
ordered form, and there is a unique left-ordered form for every binary matrix. We
can thus use lof(·) to define a set of equivalence classes. Any two binary matrices
Y and Z are lof-equivalent if lof(Y) = lof(Z), that is, if Y and Z map to the same
left-ordered form. The lof-equivalence class of a binary matrix Z, denoted [Z],
is the set of binary matrices that are lof-equivalent to Z. lof-equivalence classes
are preserved through permutation of either the rows or the columns of a matrix,
provided the same permutations are applied to the other members of the equivalence
class. Performing inference at the level of lof-equivalence classes is appropriate in
models where feature order is not identifiable, with p(X|F) being unaffected by the
order of the columns of F. Any model in which the probability of X is specified in
terms of a linear function of F, such as PCA or CVQ, has this property.

We need to evaluate the cardinality of [Z], being the number of matrices that map
to the same left-ordered form. The columns of a binary matrix are not guaranteed
to be unique: since an object can possess multiple features, it is possible for two
features to be possessed by exactly the same set of objects. The number of matrices
in [Z] is reduced if Z contains identical columns, since some re-orderings of the
columns of Z result in exactly the same matrix. Taking this into account, the
cardinality of [Z] is

„

K
K0 . . . K2N−1

«

=
K!

Q2N−1
h=0 Kh!

, (9)

where Kh is the count of the number of columns with full history h.
The binary matrix Z can be thought of as a generalization of class matrices

used in defining mixture models; since each object can only belong to one class,
class matrices have the constraint

P

k zik = 1, whereas the binary matrices in latent
feature models do not have this constraint (Griffiths and Ghahramani, 2005).

3.3. Taking the infinite limit

Under the distribution defined by Equation 7, the probability of a particular lof-
equivalence class of binary matrices, [Z], is

P ([Z]) =
X

Z∈[Z]

P (Z) =
K!

Q2N−1
h=0 Kh!

K
Y

k=1

α
K

Γ(mk + α
K

)Γ(N − mk + 1)

Γ(N + 1 + α
K

)
. (10)
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In order to take the limit of this expression as K → ∞, we will divide the columns
of Z into two subsets, corresponding to the features for which mk = 0 and the
features for which mk > 0. Re-ordering the columns such that mk > 0 if k ≤ K+,
and mk = 0 otherwise, we can break the product in Equation 10 into two parts,
corresponding to these two subsets. The product thus becomes

K
Y

k=1

α
K

Γ(mk + α
K

)Γ(N − mk + 1)

Γ(N + 1 + α
K

)

=

„ α
K

Γ( α
K

)Γ(N + 1)

Γ(N + 1 + α
K

)

«K−K+
K+
Y

k=1

α
K

Γ(mk + α
K

)Γ(N − mk + 1)

Γ(N + 1 + α
K

)
(11)

=

„ α
K

Γ( α
K

)Γ(N + 1)

Γ(N + 1 + α
K

)

«K K+
Y

k=1

Γ(mk + α
K

)Γ(N − mk + 1)

Γ( α
K

)Γ(N + 1)
(12)

=

 

N !
QN

j=1(j + α
K

)

!K
“ α

K

”K+

K+
Y

k=1

(N − mk)!
Qmk−1

j=1 (j + α
K

)

N !
. (13)

Substituting Equation 13 into Equation 10 and rearranging terms, we can compute
our limit

lim
K→∞

αK+

Q2N−1
h=1 Kh!

·
K!

K0! KK+
·

 

N !
QN

j=1(j + α
K

)

!K

·

K+
Y

k=1

(N − mk)!
Qmk−1

j=1 (j + α
K

)

N !

=
αK+

Q2N−1
h=1 Kh!

· 1 · exp{−αHN} ·

K+
Y

k=1

(N − mk)!(mk − 1)!

N !
,

(14)

where HN is the Nth harmonic number, HN =
PN

j=1
1
j
. The details of the steps

taken in computing this limit are given in the appendix of (Griffiths and Ghahra-
mani, 2005). Again, this distribution is exchangeable: neither the number of iden-
tical columns nor the column sums are affected by the ordering on objects.

3.4. The Indian buffet process

The probability distribution defined in Equation 14 can be derived from a sim-
ple stochastic process. This stochastic process provides an easy way to remember
salient properties of the probability distribution and can be used to derive sampling
schemes for models based on this distribution. This process assumes an ordering
on the objects, generating the matrix sequentially using this ordering. Inspired by
the Chinese restaurant process (CRP; Aldous, 1985; Pitman, 2002), we will use
a culinary metaphor in defining our stochastic process, appropriately adjusted for
geography. Many Indian restaurants in London offer lunchtime buffets with an
apparently infinite number of dishes. We can define a distribution over infinite bi-
nary matrices by specifying a procedure by which customers (objects) choose dishes
(features).

In our Indian buffet process (IBP), N customers enter a restaurant one after
another. Each customer encounters a buffet consisting of infinitely many dishes
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arranged in a line. The first customer starts at the left of the buffet and takes a
serving from each dish, stopping after a Poisson(α) number of dishes as his plate
becomes overburdened. The ith customer moves along the buffet, sampling dishes in
proportion to their popularity, serving himself with probability mk/i, where mk is
the number of previous customers who have sampled a dish. Having reached the end
of all previous sampled dishes, the ith customer then tries a Poisson(α/i) number
of new dishes.

Dishes
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5

6

7

8

9

10

11
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C
us

to
m

er
s

13
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15
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Figure 3: A binary matrix generated by the Indian buffet process with α = 10.

We can indicate which customers chose which dishes using a binary matrix Z

with N rows and infinitely many columns, where zik = 1 if the ith customer sampled
the kth dish. Figure 3 shows a matrix generated using the IBP with α = 10. The
first customer tried 17 dishes. The second customer tried 7 of those dishes, and
then tried 3 new dishes. The third customer tried 3 dishes tried by both previous
customers, 5 dishes tried by only the first customer, and 2 new dishes. Vertically
concatenating the choices of the customers produces the binary matrix shown in the
figure.

Using K
(i)
1 to indicate the number of new dishes sampled by the ith customer,

the probability of any particular matrix being produced by this process is

P (Z) =
αK+

QN
i=1 K

(i)
1 !

exp{−αHN}

K+
Y

k=1

(N − mk)!(mk − 1)!

N !
. (15)

As can be seen from Figure 3, the matrices produced by this process are generally
not in left-ordered form. However, these matrices are also not ordered arbitrarily
because the Poisson draws always result in choices of new dishes that are to the
right of the previously sampled dishes. Customers are not exchangeable under this

distribution, as the number of dishes counted as K
(i)
1 depends upon the order in

which the customers make their choices. However, if we only pay attention to the
lof-equivalence classes of the matrices generated by this process, we obtain the

exchangeable distribution P ([Z]) given by Equation 14: (
QN

i=1 K
(i)
1 !)/(

Q2N−1
h=1 Kh!)

matrices generated via this process map to the same left-ordered form, and P ([Z]) is
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obtained by multiplying P (Z) from Equation 15 by this quantity. It is also possible
to define a similar sequential process that directly produces a distribution on left-
ordered binary matrices in which customers are exchangeable, but this requires more
effort on the part of the customers. We call this the exchangeable IBP (Griffiths and
Ghahramani, 2005).

3.5. Some properties of this distribution

These different views of the distribution specified by Equation 14 make it straight-
forward to derive some of its properties. First, the effective dimension of the model,
K+, follows a Poisson(αHN ) distribution. This is easily shown using the generative
process described in previous Section, since under this process K+ is the sum of
Poisson(α), Poisson(α

2
), Poisson(α

3
), etc. The sum of a set of Poisson distributions

is a Poisson distribution with parameter equal to the sum of the parameters of its
components. Using the definition of the Nth harmonic number, this is αHN .

A second property of this distribution is that the number of features possessed
by each object follows a Poisson(α) distribution. This also follows from the defi-
nition of the IBP. The first customer chooses a Poisson(α) number of dishes. By
exchangeability, all other customers must also choose a Poisson(α) number of dishes,
since we can always specify an ordering on customers which begins with a particular
customer.

Finally, it is possible to show that Z remains sparse as K → ∞. The simplest
way to do this is to exploit the previous result: if the number of features possessed by
each object follows a Poisson(α) distribution, then the expected number of entries
in Z is Nα. This is consistent with the quantity obtained by taking the limit of this
expectation in the finite model, which is given in Equation 8: limK→∞ E

ˆ

1
T
Z1
˜

=

limK→∞
Nα

1+ α

K

= Nα. More generally, we can use the property of sums of Poisson

random variables described above to show that 1
T
Z1 will follow a Poisson(Nα)

distribution. Consequently, the probability of values higher than the mean decreases
exponentially.

3.6. Inference by Gibbs sampling

We have defined a distribution over infinite binary matrices that satisfies one of
our desiderata – objects (the rows of the matrix) are exchangeable under this dis-
tribution. It remains to be shown that inference in infinite latent feature models
is tractable, as was the case for infinite mixture models. We will derive a Gibbs
sampler for latent feature models in which the exchangeable IBP is used as a prior.
The critical quantity needed to define the sampling algorithm is the full conditional
distribution

P (zik = 1|Z−(ik), X) ∝ p(X|Z)P (zik = 1|Z−(ik)), (16)

where Z−(ik) denotes the entries of Z other than zik, and we are leaving aside the
issue of the feature values V for the moment. The likelihood term, p(X|Z), relates
the latent features to the observed data, and will depend on the model chosen for
the observed data. The prior on Z contributes to this probability by specifying
P (zik = 1|Z−(ik)).

In the finite model, where P (Z) is given by Equation 7, it is straightforward to
compute the full conditional distribution for any zik. Integrating over πk gives

P (zik = 1|z−i,k) =

Z 1

0

P (zik|πk)p(πk|z−i,k) dπk =
m−i,k + α

K

N + α
K

, (17)
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where z−i,k is the set of assignments of other objects, not including i, for feature k,
and m−i,k is the number of objects possessing feature k, not including i. We need
only condition on z−i,k rather than Z−(ik) because the columns of the matrix are
generated independently under this prior.

In the infinite case, we can derive the conditional distribution from the exchange-
able IBP. Choosing an ordering on objects such that the ith object corresponds to
the last customer to visit the buffet, we obtain

P (zik = 1|z−i,k) =
m−i,k

N
, (18)

for any k such that m−i,k > 0. The same result can be obtained by taking the limit
of Equation 17 as K → ∞. Similarly the number of new features associated with
object i should be drawn from a Poisson(α/N) distribution.

4. A TWO-PARAMETER EXTENSION

As we saw in the previous section, the distribution on the number of features per
object and on the total number of features are directly coupled, through α. This
seems an undesirable constraint. We now present a two-parameter generalization
of the IBP which lets us tune independently the average number of features each
object possesses and the overall number of features used in a set of N objects. To
understand the need for such a generalization, it is useful to examine some samples
drawn from the IBP. Figure 4 shows three draws from the IBP with α = 3, α = 10,
and α = 30 respectively. We can see that α controls both the number of latent
features per object, and the amount of overlap between these latent features (i.e. the
probability that two objects will possess the same feature). It would be desirable
to remove this restriction, for example so that it is possible to have many latent
features but little variability across objects in the feature vectors.
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Figure 4: Draws from the Indian buffet process prior with α = 3 (left),
α = 10 (middle), and α = 30 (right).

Keeping the average number of features per object at α as before, we will define
a model in which the overall number of features can range from α (extreme stick-
iness/herding, where all features are shared between all objects) to Nα (extreme
repulsion/individuality), where no features are shared at all. Clearly neither of these
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extreme cases is very useful, but in general it will be helpful to have a prior where
the overall number of features used can be specified.

The required generalization is simple: one takes r = (αβ)/K and s = β in
Equation 2. Setting β = 1 then recovers the one-parameter IBP, but the calculations
go through in basically the same way also for other β.

Equation (7), the joint distribution of feature vectors for finite K, becomes

P (Z) =
K
Y

k=1

B(mk + αβ
K

, N − mk + β)

B(αβ
K

, β)
(19)

=
K
Y

k=1

Γ(mk + αβ
K

)Γ(N − mk + β)

Γ(N + αβ
K

+ β)

Γ(αβ
K

+ β)

Γ(αβ
K

)Γ(β)
(20)

The corresponding probability distribution over equivalence classes in the limit K →
∞ is (compare Equation 14):

P ([Z]) =
(αβ)K+

Q

h≥1 Kh!
e−K+

K+
Y

k=1

B(mk, N − mk + β) (21)

with the constant K+ defined below.
As the one-parameter model, this two-parameter model also has a sequential

generative process. Again, we will use the Indian buffet analogy. Like before, the
first customer starts at the left of the buffet and samples Poisson(α) dishes. The
ith customer serves himself from any dish previously sampled by mk > 0 customers
with probability mk/(β + i − 1), and in addition from Poisson(αβ/(β + i − 1)) new
dishes. The customer-dish matrix is a sample from this two-parameter IBP. Two
other generative processes for this model are described in the Appendix.

The parameter β is introduced above in such a way as to preserve the average
number of features per object, α; this result follows from exchangeability and the fact
that the first customer samples Poisson(α) dishes. Thus, also the average number
of nonzero entries in Z remains Nα.

More interesting is the expected value of the overall number of features, i.e. the
number K+ of k with mk > 0. One gets directly from the buffet interpretation,
or via any of the other routes, that the expected overall number of features is
K+ = α

PN
i=1

β
β+i−1

, and that the distribution of K+ is Poisson with this mean.

We can see from this that the total number of features used increases as β increases,
so we can interpret β as the feature repulsion, or 1/β as the feature stickiness. In
the limit β → ∞ (for fixed N), K+ → Nα as expected from this interpretation.
Conversely, for β → 0, only the term with i = 1 contributes in the sum and so
K+ → α, again as expected: in this limit features are infinitely sticky and all
customers sample the same dishes as the first one.

For finite β, one sees that the asymptotic behavior of K+ for large N is K+ ∼
αβ ln N , because in the relevant terms in the sum one can then approximate β/(β +
i − 1) ≈ β/i. If β ≫ 1, on the other hand, the logarithmic regime is preceded by
linear growth at small N < β, during which K+ ≈ Nα.

We can confirm these intuitions by looking at a few sample matrices drawn from
the two-parameter IBP prior. Figure 5 shows three matrices all drawn with α = 10,
but with β = 0.2, β = 1, and β = 5 respectively. Although all three matrices have
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roughly the same number of 1s, the number of features used varies considerably. We
can see that at small values of β, features are very sticky, and the feature vector
variance is low across objects. Conversely, at high values of β there is a high degree
of feature repulsion, with the probability of two objects possessing the same feature
being low.
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Figure 5: Draws from the two-parameter Indian buffet process prior with
α = 10 and β = 0.2 (left), β = 1 (middle), and β = 5 (right).

5. AN ILLUSTRATION

The Indian buffet process can be used as the basis of non-parametric Bayesian
models in diverse ways. Different models can be obtained by combining the IBP
prior over latent features with different generative distributions for the observed
data, p(X|Z). We illustrate this using a simple model in which real valued data X

is assumed to be linearly generated from the latent features, with Gaussian noise.
This linear-Gaussian model can be thought of as a version of factor analysis with
binary, instead of Gaussian, latent factors, or as a factorial model (Zemel and Hinton,
1994; Ghahramani 1995) with infinitely many factors.

5.1. A linear Gaussian model

We motivate the linear-Gaussian IBP model with a toy problem of modelling simple
images (Griffiths and Ghahramani, 2005; 2006). In the model, greyscale images are
generated by linearly superimposing different visual elements (objects) and adding
Gaussian noise. Each image is composed of a vector of real-valued pixel intensities.
The model assumes that there are some unknown number of visual elements and
that each image is generated by choosing, for each visual element, whether the image
possesses this element or not. The binary latent variable zik indicates whether image
i possesses visual element k. The goal of the modelling task is to discover both the
identities and the number of visual elements from a set of observed images.

We will start by describing a finite version of the simple linear-Gaussian model
with binary latent features used here, and then consider the infinite limit. In the
finite model, image i is represented by a D-dimensional vector of pixel intensities,
xi which is assumed to be generated from a Gaussian distribution with mean ziA

and covariance matrix ΣX = σ2
XI, where zi is a K-dimensional binary vector, and

A is a K × D matrix of weights. In matrix notation, E [X] = ZA. If Z is a feature
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matrix, this is a form of binary factor analysis. The distribution of X given Z, A,
and σX is matrix Gaussian:

p(X|Z,A, σX) =
1

(2πσ2
X)ND/2

exp{−
1

2σ2
X

tr((X− ZA)T (X − ZA))} (22)

where tr(·) is the trace of a matrix. We need to define a prior on A, which we also
take to be matrix Gaussian:

p(A|σA) =
1

(2πσ2
A)KD/2

exp{−
1

2σ2
A

tr(AT
A)}, (23)

where σA is a parameter setting the diffuseness of the prior. This prior is conjugate
to the likelihood which makes it possible to integrate out the model parameters A.

Using the approach outlined in Section 3.6, it is possible to derive a Gibbs
sampler for this finite model in which the parameters A remain marginalized out. To
extend this to the infinite model with K → ∞, we need to check that p(X|Z, σX , σA)
remains well-defined if Z has an unbounded number of columns. This is indeed the
case (Griffiths and Ghahramani, 2005) and a Gibbs sampler can be defined for this
model.

We applied the Gibbs sampler for the infinite binary linear-Gaussian model
to a simulated dataset, X, consisting of 100 6 × 6 images. Each image, xi, was
represented as a 36-dimensional vector of pixel intensity values1. The images were
generated from a representation with four latent features, corresponding to the image
elements shown in Figure 6 (a). These image elements correspond to the rows of the
matrix A in the model, specifying the pixel intensity values associated with each
binary feature. The non-zero elements of A were set to 1.0, and are indicated with
white pixels in the figure. A feature vector, zi, for each image was sampled from a
distribution under which each feature was present with probability 0.5. Each image
was then generated from a Gaussian distribution with mean ziA and covariance
σXI, where σX = 0.5. Some of these images are shown in Figure 6 (b), together
with the feature vectors, zi, that were used to generate them.

The Gibbs sampler was initialized with K+ = 1, choosing the feature assign-
ments for the first column by setting zi1 = 1 with probability 0.5. σA, σX , and α
were initially set to 1.0, and then sampled by adding Metropolis steps to the MCMC
algorithm (see Gilks et al., 1996). Figure 6 shows trace plots for the first 1000 it-
erations of MCMC for the log joint probability of the data and the latent features,
log p(X,Z), the number of features used by at least one object, K+, and the model
parameters σA, σX , and α. The algorithm reached relatively stable values for all of
these quantities after approximately 100 iterations, and our remaining analyses will
use only samples taken from that point forward.

The latent feature representation discovered by the model was extremely con-
sistent with that used to generate the data (Griffiths and Ghahramani, 2005). The
posterior mean of the feature weights, A, given X and Z is

E[A|X,Z] = (ZT
Z +

σ2
X

σ2
A

I)−1
Z

T
X. (24)

1This simple toy example was inspired by the “shapes problem” in (Ghahramani, 1995);
a larger scale example with real images is presented in (Griffiths and Ghahramani, 2006)
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Figure 6: Stimuli and results for the demonstration of the infinite binary
linear-Gaussian model. (a) Image elements corresponding to the four latent
features used to generate the data. (b) Sample images from the dataset. (c)
Image elements corresponding to the four features possessed by the most ob-
jects in the 1000th iteration of MCMC. (d) Reconstructions of the images in
(b) using the output of the algorithm. The lower portion of the figure shows
trace plots for the MCMC simulation, which are described in more detail in
the text.

Figure 6 (c) shows the posterior mean of ak for the four most frequent features in
the 1000th sample produced by the algorithm, ordered to match the features shown
in Figure 6 (a). These features pick out the image elements used in generating
the data. Figure 6 (d) shows the feature vectors zi from this sample for the four
images in Figure 6 (b), together with the posterior means of the reconstructions of
these images for this sample, E[ziA|X,Z]. Similar reconstructions are obtained by
averaging over all values of Z produced by the Markov chain. The reconstructions
provided by the model clearly pick out the relevant features, despite the high level
of noise in the original images.

6. APPLICATIONS

We now outline five applications of the IBP, each of which uses the same prior over
infinite binary matrices, P (Z), but different choices for the likelihood relating latent
features to observed data, p(X|Z). These applications will hopefully provide an
indication for the potential uses of this distribution.
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6.1. A model for choice behavior

Choice behavior refers to our ability to decide between several options. Models of
choice behavior are of interest to psychology, marketing, decision theory, and com-
puter science. Our choices are often governed by features of the different options.
For example, when choosing which car to buy, one may be influenced by fuel effi-
ciency, cost, size, make, etc. Görür et al. (2006) present a non-parametric Bayesian
model based on the IBP which, given the choice data, infers latent features of the
options and the corresponding weights of these features. The IBP is the prior over
these latent features, which are assumed to be binary (either present or absent).
Their paper also shows how MCMC inference can be extended from the conjugate
IBP models to non-conjugate models.

6.2. A model for protein interaction screens

Proteomics aims to understand the functional interactions of proteins, and is a field
of growing importance to modern biology and medicine. One of the key concepts
in proteomics is a protein complex, a group of several interacting proteins. Protein
complexes can be experimentally determined by doing high-throughput protein-
protein interaction screens. Typically the results of such experiments are subjected
to mixture-model based clustering methods. However, a protein can belong to mul-
tiple complexes at the same time, making the mixture model assumption invalid.
Chu et al. (2006) propose a Bayesian approach based on the IBP for identifying pro-
tein complexes and their constituents from interaction screens. The latent binary
feature zik indicates whether protein i belongs to complex k. The likelihood function
captures the probability that two proteins will be observed to bind in the interaction
screen, as a function of how many complexes they both belong to,

P∞

k=1 zikzjk. The
approach automatically infers the number of significant complexes from the data and
the results are validated using affinity purification/mass spectrometry experimental
data from yeast RNA-processing complexes.

6.3. A model for the structure of causal graphs

Wood et al. (2006) use the infinite latent feature model to learn the structure of
directed acyclic probabilistic graphical models. The focus of this paper is on learning
the graphical models in which an unknown number of hidden variables (e.g. diseases)
are causes for some set of observed variables (e.g. symptoms). Rather than defining
a prior over the number of hidden causes, Wood et al. use a non-parametric Bayesian
approach based on the IBP to model the structure of graphs with countably infinitely
many hidden causes. The binary variable zik indicates whether hidden variable k
has a direct causal influence on observed variable i; in other words whether k is a
parent of i in the graph. The performance of MCMC inference is evaluated both on
simulated data and on a real medical dataset describing stroke localizations.

6.4. A model for dyadic data

Many interesting data sets are dyadic: there are two sets of objects or entities and
observations are made on pairs with one element from each set. For example, the
two sets might consist of movies and viewers, and the observations are ratings given
by viewers to movies. The two sets might be genes and biological tissues and the ob-
servations may be expression levels for particular genes in different tissues. Models
of dyadic data make it possible to predict, for example, the ratings a viewer might
give to a movie based on ratings from other viewers, a task known as collaborative
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filtering. A traditional approach to modelling dyadic data is bi-clustering: simul-
taneously cluster both the rows (e.g. viewers) and the columns (e.g. movies) of the
observation matrix using coupled mixture models. However, as we have discussed,
mixture models provide a very limited latent variable representation of data. Meeds
et al. (2007) present a more expressive model of dyadic data based on the infinite
latent feature model. In this model, both movies and viewers are represented by
binary latent vectors with an unbounded number of elements, corresponding to the
features they might possess (e.g. “likes horror movies”). The two corresponding
infinite binary matrices interact via a real-valued weight matrix which links features
of movies to features of viewers. Novel MCMC proposals are defined for this model
which combine Gibbs, Metropolis, and split-merge steps.

6.5. Extracting features from similarity judgments

One of the goals of cognitive psychology is to determine the kinds of representations
that underlie people’s judgments. In particular, a method called “additive cluster-
ing” has been used to infer people’s beliefs about the features of objects from their
judgments of the similarity between them (Shepard and Arabie, 1979). Given a
square matrix of judgments of the similarity between N objects, where sij is the
similarity between objects i and j, the additive clustering model seeks to recover a
N × K binary feature matrix F and a vector of K weights associated with those
features such that sij ≈

PK
k=1 wkfikfjk. A standard problem for this approach

is determining the value of K, for which a variety of heuristic methods have been
used. Navarro and Griffiths (2007) present a nonparametric Bayesian solution to
this problem, using the IBP to define a prior on F and assuming that sij has a Gaus-

sian distribution with mean
PK+

k=1 wkfikfjk. Using this method provides a posterior
distribution over the effective dimension of F, K+, and gives both a weight and
a posterior probability for the presence of each feature. Samples from the poste-
rior distribution over feature matrices reveal some surprisingly rich representations
expressed in classic similarity datasets.

7. CONCLUSIONS

We have derived a distribution on infinite binary matrices that can be used as a
prior for models in which objects are represented in terms of a set of latent features.
While we derived this prior as the infinite limit of a simple distribution on finite
binary matrices, we also showed that the same distribution can be specified in
terms of a simple stochastic process—the Indian buffet process. This distribution
satisfies our two desiderata for a prior for infinite latent feature models: objects
are exchangeable, and inference via MCMC remains tractable. We described a two-
parameter extension of the Indian buffet process which has the added flexibility
of decoupling the number of features per object from the total number of features.
This prior on infinite binary matrices has been useful in a diverse set of applications,
ranging from causal discovery, to choice modelling, and proteomics.

APPENDIX

The generative process for the one-parameter IBP described in Section 3.4, and the
process described in Section 4 for the two-parameter model, do not result in matrices
which are in left-ordered form. However, as in the one-parameter IBP (Griffiths
and Ghahramani, 2005) an exchangeable version can also be defined for the two-
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parameter model which produces left-ordered matrices. In the exchangeable two-
parameter Indian buffet process, the first customer samples a Poisson(α) number
of dishes, moving from left to right. The ith customer moves along the buffet, and
makes a single decision for each set of dishes with the same history. If there are
Kh dishes with history h, under which mh previous customers have sampled each of
those dishes, then the customer samples a Binomial(mh/(β + i− 1), Kh) number of
those dishes, starting at the left. Having reached the end of all previously sampled
dishes, the ith customer then tries a Poisson(αβ/(β + i− 1)) number of new dishes.
Attending to the history of the dishes and always sampling from the left guarantees
that the resulting matrix is in left-ordered form, and the resulting distribution over
matrices is exchangeable across customers.

As in the one-parameter IBP, the generative process for the two-parameter model
also defines a probability distribution directly over the feature histories (c.f. Section
4.5 of Griffiths and Ghahramani, 2005). Recall that the history of feature k is
the vector (z1k, . . . zNk), and that for each of the 2N possible histories h, Kh is
the number of features possessing that history. In this two-parameter model, the
distribution of Kh (for h > 0) is Poisson with mean αβB(mh, N − mh + β) =
αβΓ(mh)Γ(N − mh + β)/Γ(N + β).
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Discussion of “Bayesian Nonparametric Latent Feature

Models” by Zoubin Ghahramani

David B. Dunson
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1 Brief Comments

Ghahramani and colleagues have proposed an interesting class of infinite latent feature (ILF)

models. The basic premise of ILF models is that there are infinitely many latent predictors

represented in the population, with any particular subject having a finite selection. This is

presented as an important advance over models that allow a finite number of latent variables.

ILF models are most useful when all but a few of the features are very rare, so that one

obtains a sparse representation. Otherwise, one cannot realistically hope to learn about the

latent feature structure from the available data. The utility of sparse latent factor models

has been compellingly illustrated in large p, small n problems by West (2003) and Carvalho

et al. (2006). Given that performance is best when the number of latent features represented

in the sample is much less than the sample size, it is not clear whether there are practical

advantages to the ILF formulation over finite latent variable models that allow uncertainty

in the dimension. For example, Lopes and West (2004) and Dunson (2006) allow the number

of latent factors to be unknown using Bayesian methods.

That said, it is conceptually appealing to allow additional features to be represented

in the data set as additional subjects are added, and it is also appealing to allow partial

clustering of subjects. In particular, under an ILF model, subjects can have some features

in common, leading to a degree of similarity based on the number of shared features and the
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values of these features.

Following the notation of Ghahramani et al., the K × 1 latent feature vector for subject

i is denoted f i = (fi1, . . . , fiK)′, with fik = zikvik, where zik = 1 if subject i has feature k and

zik = 0 otherwise, and vik is the value of the feature. There are then two important aspects

of the specification for an infinite latent feature model: (1) the prior on the N ×K binary

matrix Z = {zik}, with K → ∞; and (2) the prior on the N ×K matrix V = {vik}.

The focus of Ghahramani et al. is on the prior for Z, proposing an Indian Buffet Process

(IBP) specification. The IBP follows in a straightforward but elegant manner from the

following assumptions: (i) the elements of Z are independent and Bernoulli distributed given

πk, the probability of occurrence of the kth feature; and (ii) πk ∼ beta(α/K, 1). Because the

features are treated as exchangeable in this specification, it is necessary to introduce a left

ordering function, so that it is possible to base inference on a finite approximation focusing

only on the more common features.

In this discussion, I briefly consider the more general problem of nonparametric modeling

of both Z and V, proposing an exponentiated gamma Dirichlet process (EGDP) prior. The

exponentiated gamma (EG) is used as an alternative to the IBP, with some advantages,

while the Dirichlet process (DP) (Ferguson, 1973; 1974) is used for nonparametric modeling

of the feature scores among subjects possessing a feature.

2 Exponentiated Gamma Dirichlet Process

To provide motivation, I focus on an epidemiologic application in which an ILF model is

clearly warranted. In the Agricultural Health Study (Kamel et al., 2005), interest focused

on studying factors contributing to neurological symptom (headaches, dizziness, etc) occur-

rence in farm workers. Individual i is asked through a questionnaire to record the frequency

of symptom occurrence for p different symptom types, resulting in the response vector,
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yi = (yi1, . . . , yip)
′. It is natural to suppose that the symptom frequencies, yi, provide mea-

surements of latent features, fi = (fi1, . . . , fiK)′. Here, fik = zikvik, with zik = 1 if individual

i has latent risk factor k and 0 otherwise, while vik denotes the severity of risk factor k for

individual i. For example, feature k may represent the occurrence of an undiagnosed mild

stroke, while vik represents how severe the stroke is, with more severe stroke resulting in

more frequent neurological problems.

Such data would not be well characterized with a typical latent class model, which

requires individuals to be grouped into a single set of classes. However, the approach of

Ghahramani et al. is also not ideal in this case, as there are two important drawbacks.

First, the assumption of feature exchangeability makes inferences on the latent features

awkward. Thus, across posterior samples collected using an MCMC algorithm, the feature

index changes meaning. This label ambiguity also also occurs in DPM models. A solution

in the setting of ILF models is to choose a prior that explicitly orders the features by

their frequency of occurrence, with feature one being the most common. Second, one can

potentially characterize the data using fewer features by modeling the feature scores {vik}

nonparametrically. This also provides a more realistic characterization of the data. By

assuming a parametric model, one artificially inflates the number of features needed to fit

the data, making the latent features less likely to characterize a true unobserved risk factor.

An exponentiated gamma Dirichlet process (EGDP) prior can address both of these

issues. I first define the exponentiated gamma (EG) component of the prior, which provides

a probability model for the random matrix, Z. Without loss of generality, the features are

ordered, so that the first trait tends to be more common in the population, and the features

decrease stochastically in population frequency with increasing index h. This is accomplished

by letting

πh = 1 − exp(−γh), γh
ind
∼ G(1, βh), for h = 1, . . . ,∞, (1)
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where γ = {γh, h = 1, . . . ,∞} is a stochastically decreasing infinite sequence of independent

gamma random variables, with the stochastic decreasing constraint ensured by letting β1 <

β2 < . . . < β∞. Marginalizing over the prior for γ, we obtain

Pr(Zih = 1 |β) = 1 −
∫

∞

0

exp(−γh) βh exp(−γhβh) dγh

=
1

1 + βh

, (2)

which is decreasing in h for increasing β = {βh, h = 1, . . . ,∞}.

Note that, unlike for the IBP, the exponentiated gamma (EG) process defined in (1)

does not result in a Poisson distribution for Si =
∑

∞

h=1
Zih, the number of traits per sub-

ject. Instead Si is defined as the convolution of independent but not identically distributed

Bernoulli random variables. A convenient special case corresponds to

βh = exp{ψ1 + ψ2(h− 1)}, h = 1, 2, . . . ,∞, (3)

which results in a logistic regression model for the frequency of trait occurrence upon

marginalizing out γ. In this case, two hyperparameters, ψ1 and ψ2, characterize the EG pro-

cess, with ψ1 controlling the frequency of trait one and ψ2 controlling how rapidly traits de-

crease in frequency with the index h. The restriction ψ2 > 0 ensures that β1 < β2 < . . . < β∞.

Assuming (1) and (3), it is straightforward to show that the distribution of Si can be ac-

curately approximated by the distribution of SiT =
∑T

i=1
Zih for sufficiently large T . In

most applications, a sparse representation with few dominant features (expressed by choos-

ing ψ ≥ 1) may be preferred. In such cases, an accurate truncation approximation can be

produced by replacing F = Z
⊗

V with FT = ZT

⊗
VT , with

⊗
denoting the element-wise

product, and AT denoting the submatrix of A consisting of the first T columns. Here, T is

a finite integer, e.g., T = 20 or T = 50.

Expressions (1) and (3) provide a prior for the random binary matrix, Z, allocating

features to subjects. In order to complete the EGDP specification, we let vih = 0 if zih = 0
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and otherwise

(vih | zih = 1) ∼ Gh, Gh ∼ DP (αG0). (4)

Here, Gh represents a random probability measure characterizing the distribution of the hth

latent feature score among those individuals with the feature. This probability measure is

drawn from a Dirichlet process (DP) with base measure G0 and precision α.

3 Nonparametric Latent Factor Models

To illustrate the EGDP, we focus on a nonparametric extension of factor analysis. For

subjects i = 1, . . . , n, let yi = (yi1, . . . , yip)
′ denote a multivariate response vector. Then, a

typical factor analytic model can be expressed as:

yi = µ+ Λfi + ǫi, ǫi ∼ Np(0,Σ), (5)

where µ = (µ1, . . . , µp)
′ is a mean vector, Λ is a p × K factor loadings matrix, fi =

(fi1, . . . , fiK)′ is a K × 1 vector of latent factors, and ǫi is a normal residual with diago-

nal covariance Σ (see, for example, Lopes and West, 2004). In a parametric specification,

one typically assumes fih ∼ N(0, 1), while constraining the factor loadings matrix Λ to

ensure identifiability.

Instead we let fi ∼ F , with F ∼ EGDP (ψ, α,G0), where F denotes the unknown

distribution of fi and EGDP (ψ, α,G0) is shorthand notation for the exponentiated gamma

Dirichlet process prior with hyperparameters ψ = (ψ1, ψ2)
′, α and G0. Due to the constraint

that the higher numbered factors correspond to rarer features that are less frequent in the

population, we avoid the need to constrain Λ. To remove sign ambiguity, we instead restrict

G0 to have strictly positive support, ensuring that fih ≥ 0 for all i, h.

Note that this characterization has several appealing properties. First, the distributions

of the factor scores are modelled nonparametrically, with subjects automatically clustered
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into groups separately for each factor. One of these groups corresponds to the cluster of

subjects not having the factor, while the others are formed through the discreteness property

of the DP. Second, the formulation automatically allows an unknown number of factors

represented among the subjects in the sample. Thus, uncertainty in the number of factors

is accommodated in a very different manner from Lopes and West (2004). Third, for G0

chosen to be truncated normal, posterior computation can proceed efficiency via a data

augmentation MCMC algorithm. Using a truncation approximation (say with T = 20), the

algorithm alternately updates: (i) µ,Λ,Σ conditionally on F using Gibbs sampling steps;

(ii) the elements of Z by sampling from the Bernoulli full conditional posterior distributions;

(iii) {γh, h = 1, . . . , T} with a data augmentation step (relying on an approach similar to

Dunson and Stanford, 2005 and Holmes and Held, 2006); (iv) V using standard algorithms

for DPMs (MacEachern and Müller, 1998). Details are excluded given space considerations.
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Rejoinder for “Bayesian Nonparametric Latent

Feature Models”

Z. Ghahramani, P. Sollich, and T. L. Griffiths

February 16, 2007

We thank Dr. Dunson for a stimulating discussion of our paper. In his dis-
cussion, Dunson makes several comments about our paper, and then proposes
an alternative approach to sparse latent feature modelling. We first address
his comments, and then turn to his suggested approach.

The first comment is that although the utility of sparse latent factor models
has been illustrated by West and colleagues, it is not clear whether there are
practical advantages to allowing the number of latent factors to be unbounded,
as in our approach, as opposed to defining a model with a finite but unknown
number of latent factors.

There are two advantages, we believe, one philosophical and one practi-
cal. The philosophical advantage is what motivates the use of nonparametric
Bayesian methods in the first place: If we don’t really believe that the data
was actually generated from a finite number of latent factors, then we should
not put much or any of our prior mass on such hypotheses. It is hard to think
of many real-world generative processes for data in which one can be confident
that there are some small number of latent factors. On the practical side, a fi-
nite model with an unknown number of latent factors may be preferable to an
infinite model if there were significant computational advantages to assuming
the finite model. However, inference in finite models of unknown dimension is
in fact more computationally demanding, due to the variable dimensionality
of the parameter space. Our experience comparing sampling from the infinite
model and using Reversible Jump MCMC to sample from an analogous finite
but variable-dimension model suggests that the sampler for the infinite model
is both easier to implement and faster to mix (Wood et al, 2006).

Dunson also states that for West and colleagues “performance is best when
the number of latent features represented in the sample is much less than the
sample size”. However, West’s (2003) model is substantially different from
ours; it is essentially a linear Gaussian factor analysis model with a sparse
prior on the factor loading matrix, while our infinite latent feature models
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can be used in many different contexts and allow the factors themselves to
be sparse. We do not feel that the results that West reports on a particular
application and choice of model specification can be generalized to Bayesian
inference in all sparse models with latent features.

A second comment is that the assumption of feature exchangeability makes
inference in the latent feature space awkward. This is a similar problem to
the one suffered by Dirichlet process mixture (DPM) models where feature
indices can change across samples in an MCMC run. We agree that questions
such as “what does latent feature k represent” are meaningless in models with
exhangeable features. We would never really be interested in such questions.
However, there are plenty of meaningful inferences that can be derived from
such a model, such as asking how many latent features two data points share.
Rather than looking at averages of Z across MCMC runs, which makes no
sense in an model with exchangeable features, one can look at averages of the
N × N matrix ZZ

T , whose elements measure the number of latent features
two data points share. Dunson’s proposed solution, a prior that explicitly
orders features by their frequency of occurence, is interesting but probably
not enough to ensure that meaningful inferences can be made about Z. For
example, if two latent features have approximately the same frequency across
the data, then any reasonably well-mixing sampler will frequently permute
their labels, again muddling inferences about Z and the parameters associated
with the two latent features.

A third comment made by Dunson is that one can define a more flexible
model by having a non-parametric model for the features scores vik, rather
than a parametric model. We entirely agree with this last point, and we
did not intend to imply that v needs to come from a parametric model. A
non-parametric model for vik, for example based on the Dirichlet process, is
potentially very desirable in certain contexts. One possible disadvantage of
such a model is that it requires additional bookkeeping and computation in
an MCMC implementation. For certain parametric models for vik, one can
analytically integrate out the V matrix, making the MCMC sampler over
other variables mix faster.

We now turn to the proposed exponentiated gamma Dirichlet process
(EGDP). This is an interesting model, well worth further study and elab-
oration.

Our first comment on this model is that the γh random variables defined
in equation (1) of the discussion are rather unnecessary. Pushing through the
transformation of variables, we can compute the distribution on πh implied
by assuming that γh follows a particular distribution. In the case of the ex-
ponentiated gamma model, this gives πh ∼ Beta(1, βh). This leads us to the
question of why this way around and not, e.g., Beta(αh, 1)? The latter would
be a more natural way to generalize our πh ∼ Beta(α/K, 1) to have non-
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exchangeable latent features. In this proposal, the αh would get smaller for
h → ∞, with the mean frequency for feature h being αh

αh+1
. Writing both mod-

els in terms of their Beta distributions over feature frequencies highlights the
similarities and differences between the two proposals. The choice Beta(αh, 1)
provides an alternative method for producing sparseness. Of course one could
also look at Beta(αhβ, β), to generalize our two-parameter model.

Making the features inequivalent is attractive in some respects, but on
the other hand may reduce flexibility. With exponentially decreasing β’s, the
higher index features will be so strongly suppressed that they will be hard to
“activate” even with large amounts of data.

For the factor model in equation (5) of the discussion, we disagree that
making the f ’s all positive is necessarily a good thing—one then models data
that lie in a (suitably affinely transformed) octant of the space spanned by the
columns of L, rather than in the whole space. This is not merely a method
for fixing a sign indeterminacy, but makes quite a different assumption about
the data than in an ordinary factor analysis model. This model with positive
factors is similar to a large body of work on non-negative matrix factorization
models (e.g. Paatero and Tapper, 1994; Lee and Seung 1999).

To summarize, we thank Dr. Dunson for his interesting discussion and we
hope that our work, his discussion, and this rejoinder will stimulate further
work on sparse latent feature models.
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