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We introduce a new statistical model for time series that iteratively seg-
ments data into regimes with approximately linear dynamics and learns
the parameters of each of these linear regimes. This model combines and
generalizes two of the most widely used stochastic time-series models—
hidden Markov models and linear dynamical systems—and is closely
related to models that are widely used in the control and econometrics
literatures. It can also be derived by extending the mixture of experts
neural network (Jacobs, Jordan, Nowlan, & Hinton, 1991) to its fully dy-
namical version, in which both expert and gating networks are recurrent.
Inferring the posterior probabilities of the hidden states of this model
is computationally intractable, and therefore the exact expectation maxi-
mization (EM) algorithm cannot be applied. However, we present a varia-
tional approximation that maximizes a lower bound on the log-likelihood
and makes use of both the forward and backward recursions for hidden
Markov models and the Kalman filter recursions for linear dynamical sys-
tems. We tested the algorithm on artificial data sets and a natural data set
of respiration force from a patient with sleep apnea. The results suggest
that variational approximations are a viable method for inference and
learning in switching state-space models.

1 Introduction

Most commonly used probabilistic models of time series are descendants
of either hidden Markov models (HMM) or stochastic linear dynamical
systems, also known as state-space models (SSM). HMMs represent in-
formation about the past of a sequence through a single discrete random
variable—the hidden state. The prior probability distribution of this state is
derived from the previous hidden state using a stochastic transition matrix.
Knowing the state at any time makes the past, present, and future observa-
tions statistically independent. This is the Markov independence property
that gives the model its name.

SSMs represent information about the past through a real-valued hidden
state vector. Again, conditioned on this state vector, the past, present, and
future observations are statistically independent. The dependency between
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the present state vector and the previous state vector is specified through
the dynamic equations of the system and the noise model. When these
equations are linear and the noise model is gaussian, the SSM is also known
as a linear dynamical system or Kalman filter model.

Unfortunately, most real-world processes cannot be characterized by ei-
ther purely discrete or purely linear-gaussian dynamics. For example, an
industrial plant may have multiple discrete modes of behavior, each with
approximately linear dynamics. Similarly, the pixel intensities in an image
of a translating object vary according to approximately linear dynamics
for subpixel translations, but as the image moves over a larger range, the
dynamics change significantly and nonlinearly.

This article addresses models of dynamical phenomena that are charac-
terized by a combination of discrete and continuous dynamics. We intro-
duce a probabilistic model called the switching SSM inspired by the divide-
and-conquer principle underlying the mixture-of-experts neural network
(Jacobs, Jordan, Nowlan, & Hinton, 1991). Switching SSMs are a natural
generalization of HMMs and SSMs in which the dynamics can transition in
a discrete manner from one linear operating regime to another. There is a
large literature on models of this kind in econometrics, signal processing,
and other fields (Harrison & Stevens, 1976; Chang & Athans, 1978; Hamil-
ton, 1989; Shumway & Stoffer, 1991; Bar-Shalom & Li, 1993). Here we extend
these models to allow for multiple real-valued state vectors, draw connec-
tions between these fields and the relevant literature on neural computation
and probabilistic graphical models, and derive a learning algorithm for all
the parameters of the model based on a structured variational approxima-
tion that rigorously maximizes a lower bound on the log-likelihood.

In the following section we review the background material on SSMs,
HMMs, and hybrids of the two. In section 3, we describe the generative
model—the probability distribution defined over the observation se-
quences—for switching SSMs. In section 4, we describe a learning algorithm
for switching state-space models that is based on a structured variational
approximation to the expectation-maximization algorithm. In section 5 we
present simulation results in both an artificial domain, to assess the quality
of the approximate inference method, and a natural domain. We conclude
with section 6.

2 Background

2.1 State-Space Models. An SSM defines a probability density over time
series of real-valued observation vectors {Yt} by assuming that the obser-
vations were generated from a sequence of hidden state vectors {Xt}. (Ap-
pendix A describes the variables and notation used throughout this article.)
In particular, the SSM specifies that given the hidden state vector at one
time step, the observation vector at that time step is statistically indepen-
dent from all other observation vectors, and that the hidden state vectors
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Figure 1: A directed acyclic graph (DAG) specifying conditional independence
relations for a state-space model. Each node is conditionally independent from
its nondescendants given its parents. The output Yt is conditionally independent
from all other variables given the state Xt; and Xt is conditionally independent
from X1, . . . ,Xt−2 given Xt−1. In this and the following figures, shaded nodes
represent observed variables, and unshaded nodes represent hidden variables.

obey the Markov independence property. The joint probability for the se-
quences of states Xt and observations Yt can therefore be factored as:

P({Xt,Yt}) = P(X1)P(Y1|X1)

T∏
t=2

P(Xt|Xt−1)P(Yt|Xt). (2.1)

The conditional independencies specified by equation 2.1 can be expressed
graphically in the form of Figure 1. The simplest and most commonly used
models of this kind assume that the transition and output functions are
linear and time invariant and the distributions of the state and observation
variables are multivariate gaussian. We use the term state-space model to
refer to this simple form of the model. For such models, the state transition
function is

Xt = AXt−1 + wt, (2.2)

where A is the state transition matrix and wt is zero-mean gaussian noise in
the dynamics, with covariance matrix Q. P(X1) is assumed to be gaussian.
Equation 2.2 ensures that if P(Xt−1) is gaussian, so is P(Xt). The output
function is

Yt = CXt + vt, (2.3)

where C is the output matrix and vt is zero-mean gaussian output noise
with covariance matrix R; P(Yt|Xt) is therefore also gaussian:

P(Yt|Xt) = (2π)−D/2|R|−1/2 exp
{
−1

2
(Yt − CXt)

′ R−1 (Yt − CXt)

}
, (2.4)

where D is the dimensionality of the Y vectors.
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Often the observation vector can be divided into input (or predictor)
variables and output (or response) variables. To model the input-output
behavior of such a system—the conditional probability of output sequences
given input sequences—the linear gaussian SSM can be modified to have a
state-transition function,

Xt = AXt−1 + BUt + wt, (2.5)

where Ut is the input observation vector and B is the (fixed) input matrix.1

The problem of inference or state estimation for an SSM with known pa-
rameters consists of estimating the posterior probabilities of the hidden
variables given a sequence of observed variables. Since the local likelihood
functions for the observations are gaussian and the priors for the hidden
states are gaussian, the resulting posterior is also gaussian. Three special
cases of the inference problem are often considered: filtering, smoothing,
and prediction (Anderson & Moore, 1979; Goodwin & Sin, 1984). The goal
of filtering is to compute the probability of the current hidden state Xt given
the sequence of inputs and outputs up to time t—P(Xt|{Y}t1, {U}t1).2 The re-
cursive algorithm used to perform this computation is known as the Kalman
filter (Kalman & Bucy, 1961). The goal of smoothing is to compute the prob-
ability of Xt given the sequence of inputs and outputs up to time T, where
T > t. The Kalman filter is used in the forward direction to compute the
probability of Xt given {Y}t1 and {U}t1. A similar set of backward recursions
from T to t completes the computation by accounting for the observations
after time t (Rauch, 1963). We will refer to the combined forward and back-
ward recursions for smoothing as the Kalman smoothing recursions (also
known as the RTS, or Rauch-Tung-Streibel smoother). Finally, the goal of
prediction is to compute the probability of future states and observations
given observations up to time t. Given P(Xt|{Y}t1, {U}t1) computed as before,
the model is simulated in the forward direction using equations 2.2 (or 2.5
if there are inputs) and 2.3 to compute the probability density of the state
or output at future time t+ τ .

The problem of learning the parameters of an SSM is known in engineer-
ing as the system identification problem; in its most general form it assumes
access only to sequences of input and output observations. We focus on max-
imum likelihood learning in which a single (locally optimal) value of the pa-
rameters is estimated, rather than Bayesian approaches that treat the param-
eters as random variables and compute or approximate the posterior distri-
bution of the parameters given the data. One can also distinguish between
on-line and off-line approaches to learning. On-line recursive algorithms,
favored in real-time adaptive control applications, can be obtained by com-
puting the gradient or the second derivatives of the log-likelihood (Ljung

1 One can also define the state such that Xt+1 = AXt + BUt + wt.
2 The notation {Y}t1 is shorthand for the sequence Y1, . . . ,Yt.
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& Söderström, 1983). Similar gradient-based methods can be obtained for
off-line methods. An alternative method for off-line learning makes use of
the expectation maximization (EM) algorithm (Dempster, Laird, & Rubin,
1977). This procedure iterates between an E-step that fixes the current pa-
rameters and computes posterior probabilities over the hidden states given
the observations, and an M-step that maximizes the expected log-likelihood
of the parameters using the posterior distribution computed in the E-step.
For linear gaussian state-space models, the E-step is exactly the Kalman
smoothing problem as defined above, and the M-step simplifies to a lin-
ear regression problem (Shumway & Stoffer, 1982; Digalakis, Rohlicek, &
Ostendorf, 1993). Details on the EM algorithm for SSMs can be found in
Ghahramani and Hinton (1996a), as well as in the original Shumway and
Stoffer (1982) article.

2.2 Hidden Markov Models. Hidden Markov models also define prob-
ability distributions over sequences of observations {Yt}. The distribution
over sequences is obtained by specifying a distribution over observations
at each time step t given a discrete hidden state St, and the probability of
transitioning from one hidden state to another. Using the Markov property,
the joint probability for the sequences of states St and observations Yt, can
be factored in exactly the same manner as equation 2.1, with St taking the
place of Xt:

P({St,Yt}) = P(S1)P(Y1|S1)

T∏
t=2

P(St|St−1)P(Yt|St). (2.6)

Similarly, the conditional independencies in an HMM can be expressed
graphically in the same form as Figure 1. The state is represented by a single
multinomial variable that can take one of K discrete values, St ∈ {1, . . . ,K}.
The state transition probabilities, P(St|St−1), are specified by a K × K tran-
sition matrix. If the observables are discrete symbols taking on one of L
values, the observation probabilities P(Yt|St) can be fully specified as a
K× L observation matrix. For a continuous observation vector, P(Yt|St) can
be modeled in many different forms, such as a gaussian, mixture of gaus-
sians, or neural network. HMMs have been applied extensively to prob-
lems in speech recognition (Juang & Rabiner, 1991), computational biology
(Baldi, Chauvin, Hunkapiller, & McClure, 1994), and fault detection (Smyth,
1994).

Given an HMM with known parameters and a sequence of observations,
two algorithms are commonly used to solve two different forms of the in-
ference problem (Rabiner & Juang, 1986). The first computes the posterior
probabilities of the hidden states using a recursive algorithm known as the
forward-backward algorithm. The computations in the forward pass are ex-
actly analogous to the Kalman filter for SSMs, and the computations in the
backward pass are analogous to the backward pass of the Kalman smoothing
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equations. As noted by Bridle (pers. comm., 1985) and Smyth, Heckerman,
and Jordan (1997), the forward-backward algorithm is a special case of exact
inference algorithms for more general graphical probabilistic models (Lau-
ritzen & Spiegelhalter, 1988; Pearl, 1988). The same observation holds true
for the Kalman smoothing recursions. The other inference problem com-
monly posed for HMMs is to compute the single most likely sequence of
hidden states. The solution to this problem is given by the Viterbi algorithm,
which also consists of a forward and backward pass through the model.

To learn maximum likelihood parameters for an HMM given sequences
of observations, one can use the well-known Baum-Welch algorithm (Baum,
Petrie, Soules, & Weiss, 1970). This algorithm is a special case of EM that
uses the forward-backward algorithm to infer the posterior probabilities of
the hidden states in the E-step. The M-step uses expected counts of tran-
sitions and observations to reestimate the transition and output matrices
(or linear regression equations in the case where the observations are gaus-
sian distributed). Like SSMs, HMMs can be augmented to allow for input
variables, such that they model the conditional distribution of sequences of
output observations given sequences of inputs (Cacciatore & Nowlan, 1994;
Bengio & Frasconi, 1995; Meila & Jordan, 1996).

2.3 Hybrids. A burgeoning literature on models that combine the dis-
crete transition structure of HMMs with the linear dynamics of SSMs has
developed in fields ranging from econometrics to control engineering (Har-
rison & Stevens, 1976; Chang & Athans, 1978; Hamilton, 1989; Shumway
& Stoffer, 1991; Bar-Shalom & Li, 1993; Deng, 1993; Kadirkamanathan &
Kadirkamanathan, 1996; Chaer, Bishop, & Ghosh, 1997). These models are
known alternately as hybrid models, SSMs with switching, and jump-linear
systems. We briefly review some of this literature, including some related
neural network models.3

Shortly after Kalman and Bucy solved the problem of state estimation
for linear gaussian SSMs, attention turned to the analogous problem for
switching models (Ackerson & Fu, 1970). Chang and Athans (1978) derive
the equations for computing the conditional mean and variance of the state
when the parameters of a linear SSM switch according to arbitrary and
Markovian dynamics. The prior and transition probabilities of the switching
process are assumed to be known. They note that for M models (sets of
parameters) and an observation length T, the exact conditional distribution
of the state is a gaussian mixture with MT components. The conditional
mean and variance, which require far less computation, are therefore only
summary statistics.

3 A review of how SSMs and HMMs are related to simpler statistical models such as
principal components analysis, factor analysis, mixture of gaussians, vector quantization,
and independent components analysis (ICA) can be found in Roweis and Ghahramani
(1999).
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Figure 2: Directed acyclic graphs specifying conditional independence relations
for various switching state-space models. (a) Shumway and Stoffer (1991): the
output matrix (C in equation 2.3) switches independently between a fixed num-
ber of choices at each time step. Its setting is represented by the discrete hidden
variable St; (b) Bar-Shalom and Li (1993): both the output equation and the
dynamic equation can switch, and the switches are Markov; (c) Kim (1994);
(d) Fraser and Dimitriadis (1993): outputs and states are observed. Here we
have shown a simple case where the output depends directly on the current
state, previous state, and previous output.

Shumway and Stoffer (1991) consider the problem of learning the param-
eters of SSMs with a single real-valued hidden state vector and switching
output matrices. The probability of choosing a particular output matrix is
a prespecified time-varying function, independent of previous choices (see
Figure 2a). A pseudo-EM algorithm is derived in which the E-step, which
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in its exact form would require computing a gaussian mixture with MT

components, is approximated by a single gaussian at each time step.
Bar-Shalom and Li (1993; sec. 11.6) review models in which both the state

dynamics and the output matrices switch, and where the switching follows
Markovian dynamics (see Figure 2b). They present several methods for ap-
proximately solving the state-estimation problem in switching models (they
do not discuss parameter estimation for such models). These methods, re-
ferred to as generalized pseudo-Bayesian (GPB) and interacting multiple
models (IMM), are all based on the idea of collapsing into one gaussian
the mixture of M gaussians that results from considering all the settings of
the switch state at a given time step. This avoids the exponential growth
of mixture components at the cost of providing an approximate solution.
More sophisticated but computationally expensive methods that collapse
M2 gaussians into M gaussians are also derived. Kim (1994) derives a simi-
lar approximation for a closely related model, which also includes observed
input variables (see Figure 2c). Furthermore, Kim discusses parameter es-
timation for this model, although without making reference to the EM al-
gorithm. Other authors have used Markov chain Monte Carlo methods for
state and parameter estimation in switching models (Carter & Kohn, 1994;
Athaide, 1995) and in other related dynamic probabilistic networks (Dean
& Kanazawa, 1989; Kanazawa, Koller, & Russell, 1995).

Hamilton (1989, 1994, sec. 22.4) describes a class of switching models
in which the real-valued observation at time t, Yt, depends on both the
observations at times t−1 to t−r and the discrete states at time t to t−r. More
precisely, Yt is gaussian with mean that is a linear function of Yt−1, . . . ,Yt−r
and of binary indicator variables for the discrete states, St, . . . ,St−r. The
system can therefore be seen as an (r + 1)th order HMM driving an rth
order autoregressive process, and is tractable for small r and number of
discrete states in S.

Hamilton’s models are closely related to hidden filter HMM (HFHMM;
Fraser & Dimitriadis, 1993). HFHMMs have both discrete and real-valued
states. However, the real-valued states are assumed to be either observed or a
known, deterministic function of the past observations (i.e., an embedding).
The outputs depend on the states and previous outputs, and the form of
this dependence can switch randomly (see Figure 2d). Because at any time
step the only hidden variable is the switch state, St, exact inference in this
model can be carried out tractably. The resulting algorithm is a variant of
the forward-backward procedure for HMMs. Kehagias and Petridis (1997)
and Pawelzik, Kohlmorgen, and Müller (1996) present other variants of this
model.

Elliott, Aggoun, and Moore (1995; sec. 12.5) present an inference algo-
rithm for hybrid (Markov switching) systems for which there is a separate
observable from which the switch state can be estimated. The true switch
states, St, are represented as unit vectors in <M, and the estimated switch
state is a vector in the unit square with elements corresponding to the es-
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timated probability of being in each switch state. The real-valued state, Xt,
is approximated as a gaussian given the estimated switch state by forming
a linear combination of the transition and observation matrices for the dif-
ferent SSMs weighted by the estimated switch state. Eliott et al. also derive
control equations for such hybrid systems and discuss applications of the
change-of-measures whitening procedure to a large family of models.

With regard to the literature on neural computation, the model presented
in this article is a generalization of both the mixture-of-experts neural net-
work (Jacobs et al., 1991; Jordan & Jacobs, 1994) and the related mixture
of factor analyzers (Hinton, Dayan, & Revow, 1997; Ghahramani & Hin-
ton, 1996b). Previous dynamical generalizations of the mixture-of-experts
architecture consider the case in which the gating network has Marko-
vian dynamics (Cacciatore & Nowlan, 1994; Kadirkamanathan & Kadirka-
manathan, 1996; Meila & Jordan, 1996). One limitation of this generalization
is that the entire past sequence is summarized in the value of a single dis-
crete variable (the gating activation), which for a system with M experts
can convey on average at most log M bits of information about the past.
In the models we consider here, both the experts and the gating network
have Markovian dynamics. The past is therefore summarized by a state
composed of the cross-product of the discrete variable and the combined
real-valued state-space of all the experts. This provides a much wider infor-
mation channel from the past. One advantage of this representation is that
the real-valued state can contain componential structure. Thus, attributes
such as the position, orientation, and scale of an object in an image, which
are most naturally encoded as independent real-valued variables, can be
accommodated in the state without the exponential growth required of a
discretized HMM-like representation.

It is important to place the work in this article in the context of the liter-
ature we have just reviewed. The hybrid models, state-space models with
switching, and jump-linear systems we have described all assume a single
real-valued state vector. The model considered in this article generalizes
this to multiple real-valued state vectors.4 Unlike the models described in
Hamilton (1994), Fraser and Dimitradis (1993), and the current dynamical
extensions of mixtures of experts, in the model we present, the real-valued
state vectors are hidden. The inference algorithm we derive, which is based
on making a structured variational approximation, is entirely novel in the
context of switching SSMs. Specifically, our method is unlike all the approx-
imate methods we have reviewed in that it is not based on fitting a single
gaussian to a mixture of gaussians by computing the mean and covariance
of the mixture.5 We derive a learning algorithm for all of the parameters

4 Note that the state vectors could be concatenated into one large state vector with fac-
torized (block-diagonal) transition matrices (cf. factorial hidden Markov model; Ghahra-
mani & Jordan, 1997). However, this obscures the decoupled structure of the model.

5 Both classes of methods can be seen as minimizing Kullback-Liebler (KL) diver-
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of the model, including the Markov switching parameters. This algorithm
maximizes a lower bound on the log-likelihood of the data rather than a
heuristically motivated approximation to the likelihood. The algorithm has
a simple and intuitive flavor: It decouples into forward-backward recursions
on a HMM, and Kalman smoothing recursions on each SSM. The states of
the HMM determine the soft assignment of each observation to an SSM; the
prediction errors of the SSMs determine the observation probabilities for
the HMM.

3 The Generative Model

In switching SSMs, the sequence of observations {Yt} is modeled by speci-
fying a probabilistic relation between the observations and a hidden state-
space comprising M real-valued state vectors, X(m)

t , and one discrete state
vector St. The discrete state, St, is modeled as a multinomial variable that
can take on M values: St ∈ {1, . . . ,M}; for reasons that will become obvious
we refer to it as the switch variable. The joint probability of observations and
hidden states can be factored as

P
({

St,X(1)
t , . . . ,X(M)

t ,Yt

})
= P(S1)

T∏
t=2

P(St|St−1) ·
M∏

m=1

P
(

X(m)
1

) T∏
t=2

P
(

X(m)
t |X(m)

t−1

)
·

T∏
t=1

P
(

Yt|X(1)
t , . . . ,X(M)

t ,St

)
, (3.1)

which corresponds graphically to the conditional independencies repre-
sented by Figure 3. Conditioned on a setting of the switch state, St = m, the
observable is multivariate gaussian with output equation given by state-
space model m. Notice that m is used as both an index for the real-valued
state variables and a value for the switch state. The probability of the obser-
vation vector Yt is therefore

P
(

Yt|X(1)
t , . . . ,X(M)

t ,St = m
)

= |2π R|− 1
2 exp

{
−1

2

(
Yt − C(m)X(m)

t

)′
R−1

(
Yt − C(m)X(m)

t

)}
, (3.2)

where R is the observation noise covariance matrix and C(m) is the output
matrix for SSM m (cf. equation 2.4 for a single linear-gaussian SSM). Each

gences. However, the KL divergence is asymmetrical, and whereas the variational meth-
ods minimize it in one direction, the methods that merge gaussians minimize it in the
other direction. We return to this point in section 4.2.
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Figure 3: (a) Graphical model representation for switching state-space models.
St is the discrete switch variable, and X(m)

t are the real-valued state vectors.
(b) Switching state-space model depicted as a generalization of the mixture
of experts. The dashed arrows correspond to the connections in a mixture of
experts. In a switching state-space model, the states of the experts and the gating
network also depend on their previous states (solid arrows).

real-valued state vector evolves according to the linear gaussian dynamics
of an SSM with differing initial state, transition matrix, and state noise (see
equation 2.2). For simplicity we assume that all state vectors have identical
dimensionality; the generalization of the algorithms we present to models
with different-sized state-spaces is immediate. The switch state itself evolves
according to the discrete Markov transition structure specified by the initial
state probabilities P(S1) and the M×M state transition matrix P(St|St−1).

An exact analogy can be made to the mixture-of-experts architecture for
modular learning in neural networks (see Figure 3b; Jacobs et al., 1991).
Each SSM is a linear expert with gaussian output noise model and linear-
gaussian dynamics. The switch state “gates” the outputs of the M SSMs,
and therefore plays the role of a gating network with Markovian dynamics.

There are many possible extensions of the model; we shall consider three
obvious and straightforward ones:

(Ex1) Differing output covariances, R(m), for each SSM;

(Ex2) Differing output means,µ(m)Y , for each SSM, such that each model
is allowed to capture observations in a different operating range

(Ex3) Conditioning on a sequence of observed input vectors, {Ut}
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4 Learning

An efficient learning algorithm for the parameters of a switching SSM can
be derived by generalizing the EM algorithm (Baum et al., 1970; Dempster et
al., 1977). EM alternates between optimizing a distribution over the hidden
states (the E-step) and optimizing the parameters given the distribution
over hidden states (the M-step). Any distribution over the hidden states,
Q({St,Xt}), where Xt = [X(1)

t , . . .X(M)
t ] is the combined state of the SSMs,

can be used to define a lower bound,B, on the log probability of the observed
data:

log P({Yt}|θ) = log
∑
{St}

∫
P({St,Xt,Yt}|θ) d{Xt} (4.1)

= log
∑
{St}

∫
Q({St,Xt})

[
P({St,Xt,Yt}|θ)

Q({St,Xt})
]

d{Xt} (4.2)

≥
∑
{St}

∫
Q({St,Xt}) log

[
P({St,Xt,Yt}|θ)

Q({St,Xt})
]

d{Xt}

= B(Q, θ), (4.3)

where θ denotes the parameters of the model and we have made use of
Jensen’s inequality (Cover & Thomas, 1991) to establish equation 4.3. Both
steps of EM increase the lower bound on the log probability of the observed
data. The E-step holds the parameters fixed and sets Q to be the posterior
distribution over the hidden states given the parameters,

Q({St,Xt}) = P({St,Xt}|{Yt}, θ). (4.4)

This maximizes Bwith respect to the distribution, turning the lower bound
into an equality, which can be easily seen by substitution. The M-step holds
the distribution fixed and computes the parameters that maximize B for
that distribution. Since B = log P({Yt}|θ) at the start of the M-step and
since the E-step does not affect log P, the two steps combined can never
decrease log P. Given the change in the parameters produced by the M-
step, the distribution produced by the previous E-step is typically no longer
optimal, so the whole procedure must be iterated.

Unfortunately, the exact E-step for switching SSMs is intractable. Like the
related hybrid models described in section 2.3, the posterior probability of
the real-valued states is a gaussian mixture with MT terms. This can be seen
by using the semantics of directed graphs, in particular the d-separation cri-
terion (Pearl, 1988), which implies that the hidden state variables in Figure 3,
while marginally independent, become conditionally dependent given the
observation sequence. This induced dependency effectively couples all of
the real-valued hidden state variables to the discrete switch variable, as a
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consequence of which the exact posteriors become Gaussian mixtures with
an exponential number of terms.6

In order to derive an efficient learning algorithm for this system, we
relax the EM algorithm by approximating the posterior probability of the
hidden states. The basic idea is that since expectations with respect to P are
intractable, rather than setting Q({St,Xt}) = P({St,Xt}|{Yt}) in the E-step,
a tractable distribution Q is used to approximate P. This results in an EM
learning algorithm that maximizes a lower bound on the log-likelihood.
The difference between the bound B and the log-likelihood is given by the
Kullback-Liebler (KL) divergence between Q and P:

KL(Q‖P) =
∑
{St}

∫
Q({St,Xt}) log

[
Q({St,Xt})

P({St,Xt}|{Yt})
]

d{Xt}. (4.5)

Since the complexity of exact inference in the approximation given by Q is
determined by its conditional independence relations, not by its parameters,
we can choose Q to have a tractable structure—a graphical representation
that eliminates some of the dependencies in P. Given this structure, the
parameters of Q are varied to obtain the tightest possible bound by mini-
mizing equation 4.5. Therefore, the algorithm alternates between optimizing
the parameters of the distribution Q to minimize equation 4.5 (the E-step)
and optimizing the parameters of P given the distribution over the hidden
states (the M-step). As in exact EM, both steps increase the lower bound B
on the log-likelihood; however, equality is not reached in the E-step.

We will refer to the general strategy of using a parameterized approx-
imating distribution as a variational approximation and refer to the free pa-
rameters of the distribution as variational parameters. A completely factorized
approximation is often used in statistical physics, where it provides the basis
for simple yet powerful mean-field approximations to statistical mechani-
cal systems (Parisi, 1988). Theoretical arguments motivating approximate
E-steps are presented in Neal and Hinton (1998; originally in a technical
report in 1993). Saul and Jordan (1996) showed that approximate E-steps
could be used to maximize a lower bound on the log-likelihood, and pro-
posed the powerful technique of structured variational approximations to
intractable probabilistic networks. The key insight of their work, which this
article makes use of, is that by judicious use of an approximation Q, exact
inference algorithms can be used on the tractable substructures in an in-
tractable network. A general tutorial on variational approximations can be
found in Jordan, Ghahramani, Jaakkola, and Saul (1998).

6 The intractability of the E-step or smoothing problem in the simpler single-state
switching model has been noted by Ackerson and Fu (1970), Chang and Athans (1978),
Bar-Shalom and Li (1993), and others.
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Figure 4: Graphical model representation for the structured variational approx-
imation to the posterior distribution of the hidden states of a switching state-
space model.

The parameters of the switching SSM are θ = {A(m),C(m),Q(m), µ(m)X1
,

Q(m)1 ,R,π,8}, where A(m) is the state dynamics matrix for model m, C(m) is
its output matrix, Q(m) is its state noise covariance, µ(m)X1

is the mean of the

initial state, Q(m)1 is the covariance of the initial state, R is the (tied) output
noise covariance,π = P(S1) is the prior for the discrete Markov process, and
8 = P(St|St−1) is the discrete transition matrix. Extensions (Ex1) through
(Ex3) can be readily implemented by substituting R(m) for R, adding means
µ
(m)
Y and input matrices B(m).

Although there are many possible approximations to the posterior distri-
bution of the hidden variables that one could use for learning and inference
in switching SSMs, we focus on the following:

Q({St,Xt}) = 1
ZQ

[
ψ(S1)

T∏
t=2

ψ(St−1,St)

]
M∏

m=1

ψ
(

X(m)
1

)
·

T∏
t=2

ψ
(

X(m)
t−1,X(m)

t

)
, (4.6)

where the ψ are unnormalized probabilities, which we will call potential
functions and define soon, and ZQ is a normalization constant ensuring
that Q integrates to one. Although Q has been written in terms of potential
functions rather than conditional probabilities, it corresponds to the simple
graphical model shown in Figure 4. The terms involving the switch variables
St define a discrete Markov chain, and the terms involving the state vectors
X(m)

t define M uncoupled SSMs. As in mean-field approximations, we have
approximated the stochastically coupled system by removing some of the
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couplings of the original system. Specifically, we have removed the stochas-
tic coupling between the chains that results from the fact that the observation
at time t depends on all the hidden variables at time t. However, we retain
the coupling between the hidden variables at successive time steps since
these couplings can be handled exactly using the forward-backward and
Kalman smoothing recursions. This approximation is therefore structured,
in the sense that not all variables are uncoupled.

The discrete switching process is defined by

ψ(S1 = m) = P(S1 = m) q(m)1 (4.7)

ψ(St−1,St = m) = P(St = m|St−1) q(m)t , (4.8)

where the q(m)t are variational parameters of the Q distribution. These pa-
rameters scale the probabilities of each of the states of the switch variable at
each time step, so that q(m)t plays exactly the same role that the observation
probability P(Yt|St = m) would play in a regular HMM. We will soon see
that minimizing KL(Q‖P) results in an equation for q(m)t that supports this
intuition.

The uncoupled SSMs in the approximation Q are also defined by poten-
tial functions that are related to probabilities in the original system. These
potentials are the prior and transition probabilities for X(m) multiplied by a
factor that changes these potentials to try to account for the data:

ψ
(

X(m)
1

)
= P

(
X(m)

1

) [
P
(

Y1|X(m)
1 ,S1 = m

)]h(m)1 (4.9)

ψ
(

X(m)
t−1,X(m)

t

)
= P

(
X(m)

t |X(m)
t−1

) [
P
(

Yt|X(m)
t ,St = m

)]h(m)t
, (4.10)

where the h(m)t are variational parameters of Q. The vector ht plays a role
very similar to the switch variable St. Each component h(m)t can range be-
tween 0 and 1. When h(m)t = 0, the posterior probability of X(m)

t under Q
does not depend on the observation at time Yt. When h(m)t = 1, the posterior
probability of X(m)

t under Q includes a term that assumes that SSM m gener-
ated Yt. We call h(m)t the responsibility assigned to SSM m for the observation
vector Yt. The difference between h(m)t and S(m)t is that h(m)t is a deterministic
parameter, while S(m)t is a stochastic random variable.

To maximize the lower bound on the log-likelihood, KL(Q‖P) is mini-
mized with respect to the variational parameters h(m)t and q(m)t separately for
each sequence of observations. Using the definition of P for the switching
state-space model (equations 3.1 and 3.2) and the approximating distribu-
tion Q, the minimum of KL satisfies the following fixed-point equations for
the variational parameters (see appendix B):

h(m)t = Q(St = m) (4.11)
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q(m)t = exp
{
−1

2

〈(
Yt − C(m)X(m)

t

)′
R−1

(
Yt − C(m)X(m)

t

)〉}
, (4.12)

where 〈·〉 denotes expectation over the Q distribution. Intuitively, the re-
sponsibility, h(m)t is equal to the probability under Q that SSM m generated
observation vector Yt, and q(m)t is an unnormalized gaussian function of the
expected squared error if SSM m generated Yt.

To compute h(m)t it is necessary to sum Q over all the Sτ variables not
including St. This can be done efficiently using the forward-backward algo-
rithm on the switch state variables, with q(m)t playing exactly the same role
as an observation probability associated with each setting of the switch vari-
able. Since q(m)t is related to the prediction error of model m on data Yt, this
has the intuitive interpretation that the switch state associated with models
with smaller expected prediction error on a particular observation will be fa-
vored at that time step. However, the forward-backward algorithm ensures
that the final responsibilities for the models are obtained after considering
the entire sequence of observations.

To compute q(m)t , it is necessary to calculate the expectations of X(m)
t and

X(m)
t X(m)

t
′

under Q. We see this by expanding equation 4.12:

q(m)t = exp
{
−1

2
Y′tR

−1Yt + Y′tR
−1C(m) 〈X(m)

t 〉

−1
2

tr
[
C(m)

′
R−1C(m)

〈
X(m)

t X(m)
t
′〉]}

, (4.13)

where tr is the matrix trace operator, and we have used tr(AB) = tr(BA).
The expectations of X(m)

t and X(m)
t X(m)

t
′

can be computed efficiently using
the Kalman smoothing algorithm on each SSM, where for model m at time
t, the data are weighted by the responsibilities h(m)t .7 Since the h parameters
depend on the q parameters, and vice versa, the whole process has to be
iterated, where each iteration involves calls to the forward-backward and
Kalman smoothing algorithms. Once the iterations have converged, the E-
step outputs the expected values of the hidden variables under the final Q.

The M-step computes the model parameters that optimize the expec-
tation of the log-likelihood (see equation B.7), which is a function of the
expectations of the hidden variables. For switching SSMs, all the parameter
reestimates can be computed analytically. For example, taking derivatives
of the expectation of equation B.7 with respect to C(m) and setting to zero,

7 Weighting the data by h(m)t is equivalent to running the Kalman smoother on the
unweighted data using a time-varying observation noise covariance matrix R(m)t = R/h(m)t .
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Figure 5: Learning algorithm for switching state-space models.

we get

Ĉ(m) =
(

T∑
t=1

〈
S(m)t

〉
Yt

〈
X(m)

t
′〉)( T∑

t=1

〈
S(m)t

〉 〈
X(m)

t X(m)′
t

〉)−1

, (4.14)

which is a weighted version of the reestimation equations for SSMs. Simi-
larly, the reestimation equations for the switch process are analogous to the
Baum-Welch update rules for HMMs. The learning algorithm for switching
state-space models using the above structured variational approximation is
summarized in Figure 5.

4.1 Deterministic Annealing. The KL divergence minimized in the E-
step of the variational EM algorithm can have multiple minima in general.
One way to visualize these minima is to consider the space of all possible seg-
mentations of an observation sequence of length T, where by segmentation
we mean a discrete partition of the sequence between the SSMs. If there are
M SSMs, then there are MT possible segmentations of the sequence. Given
one such segmentation, inferring the optimal distribution for the real-valued
states of the SSMs is a convex optimization problem, since these real-valued
states are conditionally gaussian. So the difficulty in the KL minimization
lies in trying to find the best (soft) partition of the data.
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As in other combinatorial optimization problems, the possibility of get-
ting trapped in local minima can be reduced by gradually annealing the
cost function. We can employ a deterministic variant of the annealing idea
by making the following simple modifications to the variational fixed-point
equations 4.11 and 4.12:

h(m)t = 1
T Q(St = m) (4.15)

q(m)t = exp
{
− 1

2T

〈(
Yt − C(m)X(m)

t

)′
R−1

(
Yt − C(m)X(m)

t

)〉}
. (4.16)

Here T is a temperature parameter, which is initialized to a large value and
gradually reduced to 1. The above equations maximize a modified form of
the bound B in equation 4.3, where the entropy of Q has been multiplied by
T (Ueda & Nakano, 1995).

4.2 Merging Gaussians. Almost all the approximate inference methods
that are described in the literature for switching SSMs are based on the idea
of merging, at each time step, a mixture of M gaussians into one gaussian.
The merged gaussian is obtained by setting its mean and covariance equal
to the mean and covariance of the mixture. Here we briefly describe, as
an alternative to the variational approximation methods we have derived,
how this more traditional gaussian merging procedure can be applied to
the model we have defined.

In the switching state-space models described in section 3, there are M
different SSMs, with possibly different state-space dimensionalities, so it
would be inappropriate to merge their states into one gaussian. However, it
is still possibly to apply a gaussian merging technique by considering each
SSM separately. In each SSM, m, the hidden state density produces at each
time step a mixture of two gaussians: one for the case St = m and one for St 6=
m. We merge these two gaussians, weighted the current estimates of P(St =
m|Y1, . . .Yt) and 1−P(St = m|Y1, . . .Yt), respectively. This merged gaussian
is used to obtain the gaussian prior for X(m)

t+1 for the next time step. We imple-
mented a forward-pass version of this approximate inference scheme, which
is analogous to the IMM procedure described in Bar-Shalom and Li (1993).

This procedure finds at each time step the “best” gaussian fit to the cur-
rent mixture of gaussians for each SSM. If we denote the approximating
gaussian by Q and the mixture being approximated by P, “best” is defined
here as minimizing KL(P‖Q). Furthermore, gaussian merging techniques
are greedy in that the “best” gaussian is computed at every time step and
used immediately for the next time step. For a gaussian Q, KL(P‖Q) has no
local minima, and it is very easy to find the optimal Q by computing the
first two moments of P. Inaccuracies in this greedy procedure arise because
the estimates of P(St|Y1, . . . ,Yt) are based on this single merged gaussian,
not on the real mixture.
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In contrast, variational methods seek to minimize KL(Q‖P), which can
have many local minima. Moreover, these methods are not greedy in the
same sense: they iterate forward and backward in time until obtaining a
locally optimal Q.

5 Simulations

5.1 Experiment 1: Variational Segmentation and Deterministic An-
nealing. The goal of this experiment was to assess the quality of solutions
found by the variational inference algorithm and the effect of using deter-
ministic annealing on these solutions. We generated 200 sequences of length
200 from a simple model that switched between two SSMs. These SSMs and
the switching process were defined by:

X(1)
t = 0.99 X(1)

t−1 + w(1)
t w(1)

t ∼ N (0, 1) (5.1)

X(2)
t = 0.9 X(2)

t−1 + w(2)
t w(2)

t ∼ N (0, 10) (5.2)

Yt = X(m)
t + vt vt ∼ N (0, 0.1), (5.3)

where the switch state m was chosen using priors π(1) = π(2) = 1/2 and
transition probabilities811 = 822 = 0.95;812 = 821 = 0.05. Five sequences
from this data set are shown in in Figure 6, along with the true state of the
switch variable.

We compared three different inference algorithms: variational inference,
variational inference with deterministic annealing (section 4.1), and infer-
ence by gaussian merging (section 4.2). For each sequence, we initialized
the variational inference algorithms with equal responsibilities for the two
SSMs and ran them for 12 iterations. The nonannealed inference algorithm
ran at a fixed temperature of T = 1, while the annealed algorithm was
initialized to a temperature of T = 100, which decayed down to 1 over
the 12 iterations, using the decay function Ti+1 = 1

2Ti + 1
2 . To eliminate the

effect of model inaccuracies we gave all three inference algorithms the true
parameters of the generative model.

The segmentations found by the nonannealed variational inference algo-
rithm showed little similarity to the true segmentations of the data (see Fig-
ure 7). Furthermore, the nonannealed algorithm generally underestimated
the number of switches, often converging on solutions with no switches
at all. Both the annealed variational algorithm and the gaussian merging
method found segmentations that were more similar to the true segmenta-
tions of the data. Comparing percentage correct segmentations, we see that
annealing substantially improves the variational inference method and that
the gaussian merging and annealed variational methods perform compa-
rably (see Figure 8). The average performance of the annealed variational
method is only about 1.3% better than gaussian merging.
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Figure 6: Five data sequences of length 200, with their true segmentations below
them. In the segmentations, switch states 1 and 2 are represented with presence
and absence of dots, respectively. Notice that it is difficult to segment the se-
quences correctly based only on knowing the dynamics of the two processes.

5.2 Experiment 2: Modeling Respiration in a Patient with Sleep Apnea.
Switching state-space models should prove useful in modeling time series
that have dynamics characterized by several different regimes. To illustrate
this point, we examined a physiological data set from a patient tentatively
diagnosed with sleep apnea, a medical condition in which an individual
intermittently stops breathing during sleep. The data were obtained from
the repository of time-series data sets associated with the Santa Fe Time
Series Analysis and Prediction Competition (Weigend & Gershenfeld, 1993)
and is described in detail in Rigney et al. (1993).8 The respiration pattern
in sleep apnea is characterized by at least two regimes: no breathing and
gasping breathing induced by a reflex arousal. Furthermore, in this patient
there also seem to be periods of normal rhythmic breathing (see Figure 9).

8 The data are available online at http://www.stern.nyu.edu/∼aweigend/Time-
Series/SantaFe.html#setB. We used samples 6201–7200 for training and 5201–6200 for
testing.
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Figure 7: For 10 different sequences of length 200, segmentations are shown
with presence and absence of dots corresponding to the two SSMs generating
these data. The rows are the segmentations found using the variational method
with no annealing (N), the variational method with deterministic annealing
(A), the gaussian merging method (M), and the true segmentation (T). All three
inference algorithms give real-valued h(m)t ; hard segmentations were obtained
by thresholding the final h(m)t values at 0.5. The first five sequences are the ones
shown in Figure 6.
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Figure 8: Histograms of percentage correct segmentations: (a) control, using
random segmentation; (b) variational inference without annealing; (c) varia-
tional inference with annealing; (d) gaussian merging. Percentage correct seg-
mentation was computed by counting the number of time steps for which the
true and estimated segmentations agree.

We trained switching SSMs varying the random seed, the number of
components in the mixture (M = 2 to 5), and the dimensionality of the
state-space in each component (K = 1 to 10) on a data set consisting of
1000 consecutive measurements of the chest volume. As controls, we also
trained simple SSMs (i.e., M = 1), varying the dimension of the state-space
from K = 1 to 10, and simple HMMs (i.e., K = 0), varying the number of
discrete hidden states from M = 2 to M = 50. Simulations were run until
convergence or for 200 iterations, whichever came first; convergence was
assessed by measuring the change in likelihood (or bound on the likelihood)
over consecutive steps of EM.

The likelihood of the simple SSMs and the HMMs was calculated on a
test set consisting of 1000 consecutive measurements of the chest volume.
For the switching SSMs, the likelihood is intractable, so we calculated the
lower bound on the likelihood, B. The simple SSMs modeled the data very
poorly for K = 1, and the performance was flat for values of K = 2 to 10 (see
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Figure 9: Chest volume (respiration force) of a patient with sleep apnea during
two noncontinuous time segments of the same night (measurements sampled
at 2 Hz). (a) Training data. Apnea is characterized by extended periods of small
variability in chest volume, followed by bursts (gasping). Here we see such be-
havior around t = 250, followed by normal rhythmic breathing. (b) Test data. In
this segment we find several instances of apnea and an approximately rhythmic
region. (The thick lines at the bottom of each plot are explained in the main text.)

Figure 10a). The large majority of runs of the switching state-space model
resulted in models with higher likelihood than those of the simple SMMs
(see Figures 10b–10e). One consistent exception should be noted: for values
of M = 2 and K = 6 to 10, the switching SSM performed almost identically
to the simple SSM. Exploratory experiments suggest that in these cases,
a single component takes responsibility for all the data, so the model has
M = 1 effectively. This may be a local minimum problem or a result of
poor initialization heuristics. Looking at the learning curves for simple and
switching SSMs, it is easy to see that there are plateaus at the solutions found
by the simple one-component SSMs that the switching SSM can get caught
in (see Figure 11).

The likelihoods for HMMs with around M = 15 were comparable to
those of the best switching SSMs (see Figure 10f). Purely in terms of cod-
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Figure 10: Log likelihood (nats per observation) on the test data from a total of
almost 400 runs of simple state-space models (a), switching state-space models
with differing numbers of components (b–e), and hidden Markov models (f).

ing efficiency, switching SSMs have little advantage over HMMs on this
data.

However, it is useful to contrast the solutions learned by HMMs with
the solutions learned by the switching SSMs. The thick dots at the bot-
tom of the Figures 9a and 9b show the responsibility assigned to one of
two components in a fairly typical switching SSM with M = 2 compo-
nents of state size K = 2. This component has clearly specialized to mod-
eling the data during periods of apnea, while the other component models
the gasps and periods of rhythmic breathing. These two switching com-
ponents provide a much more intuitive model of the data than the 10
to 20 discrete components needed in an HMM with comparable coding
efficiency.9

9 By using further assumptions to constrain the model, such as continuity of the real-
valued hidden state at switch times, it should be possible to obtain even better performance
on these data.
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Figure 11: Learning curves for a state space model (K = 4) and a switching
state-space model (M = 2,K = 2).

6 Discussion

The main conclusion we can draw from the first series of experiments is that
even when given the correct model parameters, the problem of segmenting
a switching time series into its components is difficult. There are combina-
torially many alternatives to be considered, and the energy surface suffers
from many local minima, so local optimization approaches like the varia-
tional method we used are limited by the quality of the initial conditions.
Deterministic annealing can be thought of as a sophisticated initialization
procedure for the hidden states: the final solution at each temperature pro-
vides the initial conditions at the next. We found that annealing substantially
improved the quality of the segmentations found.

The first experiment also indicates that the much simpler gaussian merg-
ing method performs comparably to annealed variational inference. The
gaussian merging methods have the advantage that at each time step, the
cost function minimized has no local minima. This may account for how
well they perform relative to the nonannealed variational method. On the
other hand, the variational methods have the advantage that they iteratively
improve their approximation to the posterior, and they define a lower bound
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on the likelihood. Our results suggest that it may be very fruitful to use the
gaussian merging method to initialize the variational inference procedure.
Furthermore, it is possible to derive variational approximations for other
switching models described in the literature, and a combination of gaus-
sian merging and variational approximation may provide a fast and robust
method for learning and inference in those models.

The second series of experiments suggests that on a real data set believed
to have switching dynamics, the switching SSM can indeed uncover mul-
tiple regimes. When it captures these regimes, it generalizes to the test set
much better than the simple linear dynamical model. Similar coding effi-
ciency can be obtained by using HMMs, which due to the discrete nature of
the state-space, can model nonlinear dynamics. However, in doing so, the
HMMs had to use 10 to 20 discrete states, which makes their solutions less
interpretable.

Variational approximations provide a powerful tool for inference and
learning in complex probabilistic models. We have seen that when applied
to the switching SSM, they can incorporate within a single framework well-
known exact inference methods like Kalman smoothing and the forward-
backward algorithm. Variational methods can be applied to many of the
other classes of intractable switching models described in section 2.3. How-
ever, training more complex models also makes apparent the importance of
good methods for model selection and initialization.

To summarize, switching SSMs are a dynamical generalization of mix-
ture-of-experts neural networks, are closely related to well-known mod-
els in econometrics and control, and combine the representations underly-
ing HMMs and linear dynamical systems. For domains in which we have
some a priori belief that there are multiple, approximately linear dynami-
cal regimes, switching SSMs provide a natural modeling tool. Variational
approximations provide a method to overcome the most difficult problem
in learning switching SSMs: that the inference step is intractable. Determin-
istic annealing further improves on the solutions found by the variational
method.

Appendix A: Notation

Symbol Size Description

Variables

Yt D× 1 observation vector at time t
{Yt} D× T sequence of observation vectors [Y1,Y2, . . .YT]
X(m)

t K × 1 state vector of state-space model (SSM) m at time t
Xt KM× 1 entire real-valued hidden state at time t: Xt =

[X(1)
t , . . . ,X(M)

t ]
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St M× 1 switch state variable (represented either as dis-
crete variable St ∈ {1, . . .M}, or as an M×1 vector
St = [S(1)t , . . .S(M)

t ]′ where S(m)t ∈ {0, 1})

Model parameters

A(m) K × K state dynamics matrix for SSM m
C(m) D× K output matrix for SSM m
Q(m) K × K state noise covariance matrix for SSM m
µ
(m)
X1

K × 1 initial state mean for SSM m
Q(m)1 K × K initial state noise covariance matrix for SSM m
R D×D output noise covariance matrix
π M× 1 initial state probabilities for switch state
8 M×M state transition matrix for switch state

Variational parameters

h(m)t 1× 1 responsibility of SSM m for Yt

q(m)t 1× 1 related to expected squared error if SSM m gen-
erated Yt

Miscellaneous

X′ matrix transpose of X
|X| matrix determinant of X
〈X〉 expected value of X under the Q distribution

Dimensions

D size of observation vector
T length of a sequence of observation vectors
M number of state-space models
K size of state vector in each state-space model

Appendix B: Derivation of the Variational Fixed-Point Equations

In this appendix we derive the variational fixed-point equations used in the
learning algorithm for switching SSMs. First, we write out the probability
density P defined by a switching SSM. For convenience, we express this
probability density in the log domain, through its associated energy func-
tion or hamiltonian, H. The probability density is related to the hamiltonian
through the usual Boltzmann distribution (at a temperature of 1),

P(·) = 1
Z

exp{−H(·)},
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where Z is a normalization constant required such that P(·) integrates to
unity. Expressing the probabilities in the log domain does not affect the re-
sulting algorithm. We then similarly express the approximating distribution
Q through its hamiltonian HQ. Finally, we obtain the variational fixed-point
equations by setting to zero the derivatives of the KL divergence between
Q and P with respect to the variational parameters of Q.

The joint probability of observations and hidden states in a switching
SSM is (see equation 3.1)

P({St,Xt,Yt}) =
[

P(S1)

T∏
t=2

P(St|St−1)

]
M∏

m=1

[
P
(

X(m)
1

) T∏
t=2

P
(

X(m)
t |X(m)

t−1

)]

·
T∏

t=1

P(Yt|Xt,St). (B.1)

We proceed to dissect this expression into its constituent parts. The initial
probability of the switch variable at time t = 1 is given by

P(S1) =
M∏

m=1

(
π(m)

)S(m)1
, (B.2)

where S1 is represented by an M×1 vector [S(1)1 . . .S(M)

1 ] where S(m)1 = 1 if the
switch state is in state m, and 0 otherwise. The probability of transitioning
from a switch state at time t− 1 to a switch state at time t is given by

P(St|St−1) =
M∏

m=1

M∏
n=1

(
8(m,n)

)S(m)t S(n)t−1
. (B.3)

The initial distribution for the hidden state variable in SSM m is gaussian
with mean µ(m)X1

and covariance matrixQ(m)1 :

P
(

X(m)
1

)
=
∣∣∣2πQ(m)1

∣∣∣− 1
2

exp
{
−1

2

(
X(m)

1 − µ(m)X1

)′ (
Q(m)1

)−1 (
X(m)

1 − µ(m)X1

)}
. (B.4)

The probability distribution of the state in SSM m at time t given the state
at time t− 1 is gaussian with mean A(m)X(m)

t−1 and covariance matrixQ(m):

P
(

X(m)
t |X(m)

t−1

)
=
∣∣∣2πQ(m)∣∣∣− 1

2 exp
{
−1

2

(
X(m)

t − A(m)X(m)
t−1

)′
(Q(m))−1

·
(

X(m)
t − A(m)X(m)

t−1

)}
. (B.5)
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Finally, using equation 3.2, we can write:

P(Yt|Xt,St) =
M∏

m=1

[
|2πR|− 1

2

exp
{
−1

2

(
Yt − C(m)X(m)

t

)′
R−1

(
Yt − C(m)X(m)

t

)}]S(m)t

(B.6)

since the terms with exponent equal to 0 vanish in the product.
Combining equations B.1 through B.6 and taking the negative of the log-

arithm, we obtain the hamiltonian of a switching SSM (ignoring constants):

H = 1
2

M∑
m=1

log
∣∣∣Q(m)1

∣∣∣+ 1
2

M∑
m=1

(
X(m)

1 − µ(m)X1

)′ (
Q(m)1

)−1 (
X(m)

1 − µ(m)X1

)
+ (T − 1)

2

M∑
m=1

log
∣∣∣Q(m)∣∣∣

+ 1
2

M∑
m=1

T∑
t=2

(
X(m)

t − A(m)X(m)
t−1

)′
(Q(m))−1

(
X(m)

t − A(m)X(m)
t−1

)
+ T

2
log |R| + 1

2

M∑
m=1

T∑
t=1

S(m)t

(
Yt − C(m)X(m)

t

)′
R−1

(
Yt − C(m)X(m)

t

)
−

M∑
m=1

S(m)1 logπ(m) −
T∑

t=2

M∑
m=1

M∑
n=1

S(m)t S(n)t−1 log8(m,n). (B.7)

The hamiltonian for the approximating distribution can be analogously
derived from the definition of Q (see equation 4.6):

Q({St,Xt}) = 1
ZQ

[
ψ(S1)

T∏
t=2

ψ(St−1,St)

]
M∏

m=1

ψ(X(m)
1 )

T∏
t=2

ψ(X(m)
t−1,X(m)

t ). (B.8)

The potentials for the initial switch state and switch state transitions are

ψ(S1) =
M∏

m=1

(π(m)q(m)1 )S
(m)
1 (B.9)

ψ(St−1,St) =
M∏

m=1

M∏
n=1

(
8(m,n)q(m)t

)S(m)t S(n)t−1
. (B.10)

The potential for the initial state of SSM m is

ψ(X(m)
1 ) = P(X(m)

1 )
[
P(Y1|X(m)

1 ,S1 = m)
]h(m)1

, (B.11)
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and the potential for the state at time t given the state at time t− 1 is

ψ(X(m)
t−1,X(m)

t ) = P(X(m)
t |X(m)

t−1)
[
P(Yt|X(m)

t ,St = m)
]h(m)t

. (B.12)

The hamiltonian for Q is obtained by combining these terms and taking
the negative logarithm:

HQ = 1
2

M∑
m=1

log |Q(m)1 | +
1
2

M∑
m=1

(
X(m)

1 − µ(m)X1

)′
(Q(m)1 )−1

(
X(m)

1 − µ(m)X1

)
+ (T − 1)

2

M∑
m=1

log |Q(m)|

+ 1
2

M∑
m=1

T∑
t=2

(
X(m)

t − A(m)X(m)
t−1

)′
(Q(m))−1

(
X(m)

t − A(m)X(m)
t−1

)
+ T

2

M∑
m=1

log |R|+ 1
2

M∑
m=1

T∑
t=1

h(m)t

(
Yt−C(m)X(m)

t

)′
R−1

(
Yt−C(m)X(m)

t

)
−

M∑
m=1

S(m)1 logπ(m) −
T∑

t=2

M∑
m=1

M∑
n=1

S(m)t S(n)t−1 log8(m,n)

−
T∑

t=1

M∑
m=1

S(m)t log q(m)t . (B.13)

Comparing HQ with H, we see that the interaction between the S(m)t and
the X(m)

t variables has been eliminated, while introducing two sets of varia-
tional parameters: the responsibilities h(m)t and the bias terms on the discrete
Markov chain, q(m)t . In order to obtain the approximation Q that maximizes
the lower bound on the log-likelihood, we minimize the KL divergence
KL(Q‖P) as a function of these variational parameters:

KL(Q‖P) =
∑
{St}

∫
Q({St,Xt}) log

Q({St,Xt})
P({St,Xt}|{Yt})d{Xt} (B.14)

= 〈H −HQ〉 − log ZQ + log Z, (B.15)

where 〈·〉 denotes expectation over the approximating distribution Q and
ZQ is the normalization constant for Q. Both Q and P define distributions in
the exponential family. As a consequence, the zeros of the derivatives of KL
with respect to the variational parameters can be obtained simply by equat-
ing derivatives of 〈H〉 and 〈HQ〉 with respect to corresponding sufficient
statistics (Ghahramani, 1997):

∂〈HQ −H〉
∂〈S(m)t 〉

= 0 (B.16)
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∂〈HQ −H〉
∂〈X(m)

t 〉
= 0 (B.17)

∂〈HQ −H〉
∂〈P(m)t 〉

= 0 (B.18)

where P(m)t = 〈X(m)
t X(m)

t
′〉 − 〈X(m)

t 〉〈X(m)
t 〉′ is the covariance of X(m)

t under Q.
Many terms cancel when we subtract the two hamiltonians,

HQ −H =
M∑

m=1

T∑
t=1

1
2

(
h(m)t − S(m)t

) (
Yt − C(m)X(m)

t

)′
R−1

·
(

Yt − C(m)X(m)
t

)
− S(m)t log q(m)t . (B.19)

Taking derivatives, we obtain

∂〈HQ −H〉
∂〈S(m)t 〉

= − log q(m)t −
1
2

〈(
Yt − C(m)X(m)

t

)′
R−1

(
Yt − C(m)X(m)

t

)〉
(B.20)

∂〈HQ −H〉
∂〈X(m)

t 〉
= −

(
h(m)t − 〈S(m)t 〉

) (
(Yt − C(m)〈X(m)

t 〉)′R−1C(m)
)

(B.21)

∂〈HQ −H〉
∂P(m)t

= 1
2

(
h(m)t − 〈S(m)t 〉

) (
C(m)

′
R−1C(m)

)
(B.22)

From equation B.20, we get the fixed-point equation, 4.12, for q(m)t . Both
equations B.21 and B.22 are satisfied when h(m)t = 〈S(m)t 〉. Using the fact that
〈S(m)t 〉 = Q(St = m) we get equation 4.11.
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