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AbstractReal-world learning tasks may involve high-dimensional data setswith arbitrary patterns of missing data. In this paper we presenta framework based on maximum likelihood density estimation forlearning from such data sets. We use mixture models for the den-sity estimates and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster et al., 1977) in derivinga learning algorithm|EM is used both for the estimation of mix-ture components and for coping with missing data. The result-ing algorithm is applicable to a wide range of supervised as wellas unsupervised learning problems. Results from a classi�cationbenchmark|the iris data set|are presented.1 IntroductionAdaptive systems generally operate in environments that are fraught with imper-fections; nonetheless they must cope with these imperfections and learn to extractas much relevant information as needed for their particular goals. One form ofimperfection is incompleteness in sensing information. Incompleteness can arise ex-trinsically from the data generation process and intrinsically from failures of thesystem's sensors. For example, an object recognition system must be able to learnto classify images with occlusions, and a robotic controller must be able to integratemultiple sensors even when only a fraction may operate at any given time.In this paper we present a framework|derived from parametric statistics|for learn-



ing from data sets with arbitrary patterns of incompleteness. Learning in this frame-work is a classical estimation problem requiring an explicit probabilistic model andan algorithm for estimating the parameters of the model. A possible disadvantageof parametric methods is their lack of 
exibility when compared with nonparamet-ric methods. This problem, however, can be largely circumvented by the use ofmixture models (McLachlan and Basford, 1988). Mixture models combine much ofthe 
exibility of nonparametric methods with certain of the analytic advantages ofparametric methods.Mixture models have been utilized recently for supervised learning problems in theform of the \mixtures of experts" architecture (Jacobs et al., 1991; Jordan andJacobs, 1994). This architecture is a parametric regression model with a modularstructure similar to the nonparametric decision tree and adaptive spline models(Breiman et al., 1984; Friedman, 1991). The approach presented here di�ers fromthese regression-based approaches in that the goal of learning is to estimate thedensity of the data. No distinction is made between input and output variables; thejoint density is estimated and this estimate is then used to form an input/outputmap. Similar approaches have been discussed by Specht (1991) and Tresp et al.(1993). To estimate the vector function y = f(x) the joint density P (x;y) is esti-mated and, given a particular input x, the conditional density P (yjx) is formed.To obtain a single estimate of y rather than the full conditional density one canevaluate ŷ = E(yjx), the expectation of y given x.The density-based approach to learning can be exploited in several ways. First,having an estimate of the joint density allows for the representation of any rela-tion between the variables. From P (x;y), we can estimate ŷ = f(x), the inversex̂ = f�1(y), or any other relation between two subsets of the elements of the con-catenated vector (x;y).Second, this density-based approach is applicable both to supervised learning andunsupervised learning in exactly the same way. The only distinction between su-pervised and unsupervised learning in this framework is whether some portion ofthe data vector is denoted as \input" and another portion as \target".Third, as we discuss in this paper, the density-based approach deals naturally withincomplete data, i.e. missing values in the data set. This is because the problemof estimating mixture densities can itself be viewed as a missing data problem (the\labels" for the component densities are missing) and an Expectation{Maximization(EM) algorithm (Dempster et al., 1977) can be developed to handle both kinds ofmissing data.2 Density estimation using EMThis section outlines the basic learning algorithm for �nding the maximum like-lihood parameters of a mixture model (Dempster et al., 1977; Duda and Hart,1973; Nowlan, 1991). We assume that the data X = fx1; : : : ;xNg are generatedindependently from a mixture densityP (xi) = MXj=1P (xij!j; �j)P (!j); (1)



where each component of the mixture is denoted !j and parametrized by �j . Fromequation (1) and the independence assumption we see that the log likelihood of theparameters given the data set isl(�jX ) = NXi=1 log MXj=1P (xij!j; �j)P (!j): (2)By the maximum likelihood principle the best model of the data has parametersthat maximize l(�jX ). This function, however, is not easily maximized numericallybecause it involves the log of a sum.Intuitively, there is a \credit-assignment" problem: it is not clear which componentof the mixture generated a given data point and thus which parameters to adjustto �t that data point. The EM algorithm for mixture models is an iterative methodfor solving this credit-assignment problem. The intuition is that if one had accessto a \hidden" random variable z that indicated which data point was generatedby which component, then the maximization problem would decouple into a setof simple maximizations. Using the indicator variable z, a \complete-data" loglikelihood function can be writtenlc(�jX ;Z) = NXi=1 MXj=1 zij logP (xijzi; �)P (zi; �); (3)which does not involve a log of a summation.Since z is unknown lc cannot be utilized directly, so we instead work with its ex-pectation, denoted by Q(�j�k). As shown by (Dempster et al., 1977), l(�jX ) can bemaximized by iterating the following two steps:E step: Q(�j�k) = E[lc(�jX ;Z)jX ; �k]M step: �k+1 = argmax� Q(�j�k): (4)The E (Expectation) step computes the expected complete data log likelihood andthe M (Maximization) step �nds the parameters that maximize this likelihood.These two steps form the basis of the EM algorithm; in the next two sections wewill outline how they can be used for real and discrete density estimation.2.1 Real-valued data: mixture of GaussiansReal-valued data can be modeled as a mixture of Gaussians. For this model theE-step simpli�es to computing hij � E[zijjxi; �k], the probability that Gaussian j,as de�ned by the parameters estimated at time step k, generated data point i.hij = j�̂kj j�1=2 expf�12 (xi � �̂kj )T �̂�1;kj (xi � �̂kj )gPMl=1 j�̂kl j�1=2 expf�12(xi � �̂kl )T �̂�1;kl (xi � �̂kl )g : (5)The M-step re-estimates the means and covariances of the Gaussians1 using thedata set weighted by the hij :a) �̂k+1j = PNi=1 hijxiPNi=1 hij ; b) �̂k+1j = PNi=1 hij(xi � �̂k+1j )(xi � �̂k+1j )TPNi=1 hij : (6)1Though this derivation assumes equal priors for the Gaussians, if the priors are viewedas mixing parameters they can also be learned in the maximization step.



2.2 Discrete-valued data: mixture of BernoullisD-dimensional binary data x = (x1; : : : ; xd; : : :xD), xd 2 f0; 1g, can be modeled asa mixture of M Bernoulli densities. That is,P (xj�) = MXj=1P (!j) DYd=1�xdjd (1 � �jd)(1�xd): (7)For this model the E-step involves computinghij = QDd=1 �̂xidjd (1� �̂jd)(1�xid)PMl=1QDd=1 �̂xidld (1� �̂ld)(1�xid) ; (8)and the M-step again re-estimates the parameters by�̂k+1j = PNi=1 hijxiPNi=1 hij : (9)More generally, discrete or categorical data can be modeled as generated by a mix-ture of multinomial densities and similar derivations for the learning algorithm canbe applied. Finally, the extension to data with mixed real, binary, and categoricaldimensions can be readily derived by assuming a joint density with mixed compo-nents of the three types.3 Learning from incomplete dataIn the previous section we presented one aspect of the EM algorithm: learningmixture models. Another important application of EM is to learning from datasets with missing values (Little and Rubin, 1987; Dempster et al., 1977). Thisapplication has been pursued in the statistics literature for non-mixture densityestimation problems; in this paper we combine this application of EM with that oflearning mixture parameters.We assume that the data set X = fx1; : : : ;xNg is divided into an observed com-ponent X o and a missing component Xm. Similarly, each data vector xi is dividedinto (xoi ;xmi ) where each data vector can have di�erent missing components|thiswould be denoted by superscript mi and oi, but we have simpli�ed the notation forthe sake of clarity.To handle missing data we rewrite the EM algorithm as followsE step: Q(�j�k) = E[lc(�jX o;Xm;Z)jX o; �k]M step: �k+1 = argmax� Q(�j�k): (10)Comparing to equation (4) we see that aside from the indicator variables Z we haveadded a second form of incomplete data, Xm, corresponding to the missing valuesin the data set. The E-step of the algorithm estimates both these forms of missinginformation; in essence it uses the current estimate of the data density to completethe missing values.



3.1 Real-valued data: mixture of GaussiansWe start by writing the log likelihood of the complete data,lc(�jX o;Xm;Z) = NXi MXj zij logP (xijzi; �) + NXi MXj zij logP (zij�): (11)We can ignore the second term since we will only be estimating the parameters ofthe P (xijzi; �). Using equation (11) for the mixture of Gaussians we note that ifonly the indicator variables zi are missing, the E step can be reduced to estimatingE[zijjxi; �]. For the case we are interested in, with two types of missing data zi andxmi , we expand equation (11) using m and o superscripts to denote subvectors andsubmatrices of the parameters matching the missing and observed components ofthe data,lc(�jX o;Xm;Z) = NXi MXj zij[n2 log 2� + 12 log j�jj � 12(xoi � �oj)T��1;ooj (xoi � �oj )�(xoi ��oj )T��1;omj (xmi ��mj )� 12(xmi ��mj )T��1;mmj (xmi ��mj )]:Note that after taking the expectation, the su�cient statistics for the parametersinvolve three unknown terms, zij, zijxmi , and zijxmi xmi T . Thus we must compute:E[zijjxoi ; �k], E[zijxmi jxoi ; �k], and E[zijxmi xmi T jxoi ; �k]:One intuitive approach to dealing with missing data is to use the current estimateof the data density to compute the expectation of the missing data in an E-step,complete the data with these expectations, and then use this completed data to re-estimate parameters in an M-step. However, this intuition fails even when dealingwith a single two-dimensional Gaussian; the expectation of the missing data alwayslies along a line, which biases the estimate of the covariance. On the other hand,the approach arising from application of the EM algorithm speci�es that one shoulduse the current density estimate to compute the expectation of whatever incompleteterms appear in the likelihood maximization. For the mixture of Gaussians theseincomplete terms involve interactions between the indicator variable zij and the�rst and second moments of xmi . Thus, simply computing the expectation of themissing data zi and xmi from our model and substituting those values into the Mstep is not su�cient to guarantee an increase in the likelihood of the parameters.The above terms can be computed as follows: E[zijjxoi ; �k] is again hij, the proba-bility as de�ned in (5) measured only on the observed dimensions of xi, andE[zijxmi jxoi ; �k] = hijE[xmi jzij = 1;xoi ; �k] = hij(�mj + �moj �oo�1j (xoi � �oj)): (12)De�ning x̂mij � E[xmi jzij = 1;xoi ; �k], the regression of xmi on xoi using Gaussian j,E[zijxmi xmi T jxoi ; �k] = hij(�mmj � �moj �oo�1j �moj T + x̂mij x̂mTij ): (13)The M-step uses these expectations substituted into equations (6)a and (6)b tore-estimate the means and covariances. To re-estimate the mean vector, �j , wesubstitute the values E[xmi jzij = 1;xoi ; �k] for the missing components of xi inequation (6)a. To re-estimate the covariance matrix we substitute the valuesE[xmi xmi T jzij = 1;xoi ; �k] for the outer product matrices involving the missing com-ponents of xi in equation (6)b.



3.2 Discrete-valued data: mixture of BernoullisFor the Bernoulli mixture the su�cient statistics for the M-step involve the incom-plete termsE[zijjxoi ; �k] andE[zijxmi jxoi ; �k]. The �rst is equal to hij calculated overthe observed subvector of xi. The second, since we assume that within a class theindividual dimensions of the Bernoulli variable are independent, is simply hij�mj .The M-step uses these expectations substituted into equation (9).4 Supervised learningIf each vector xi in the data set is composed of an \input" subvector, xii, and a\target" or output subvector, xoi , then learning the joint density of the input andtarget is a form of supervised learning. In supervised learning we generally wish topredict the output variables from the input variables. In this section we will outlinehow this is achieved using the estimated density.4.1 Function approximationFor real-valued function approximation we have assumed that the density is esti-mated using a mixture of Gaussians. Given an input vector xii we extract all therelevant information from the density P (xi;xo) by conditionalizing to P (xojxii).For a single Gaussian this conditional density is normal, and, since P (xi;xo) is amixture of Gaussians so is P (xojxi). In principle, this conditional density is the�nal output of the density estimator. That is, given a particular input the net-work returns the complete conditional density of the output. However, since manyapplications require a single estimate of the output, we note three ways to ob-tain estimates x̂ of xo = f(xii): the least squares estimate (LSE), which takesx̂o(xii) = E(xojxii); stochastic sampling (STOCH), which samples according tothe distribution x̂o(xii) � P (xojxii); single component LSE (SLSE), which takesx̂o(xii) = E(xojxii; !j) where j = argmaxk P (zkjxii). For a given input, SLSE picksthe Gaussian with highest posterior and approximates the output with the LSEestimator given by that Gaussian alone.The conditional expectation or LSE estimator for a Gaussian mixture isx̂o(xii) = PMj=1 hij [�oj + �oij �ii�1j (xii � �ij)]PMj=1 hij ; (14)which is a convex sum of linear approximations, where the weights hij vary non-linearly according to equation (14) over the input space. The LSE estimator on aGaussian mixture has interesting relations to algorithms such as CART (Breimanet al., 1984), MARS (Friedman, 1991), and mixtures of experts (Jacobs et al., 1991;Jordan and Jacobs, 1994), in that the mixture of Gaussians competitively parti-tions the input space, and learns a linear regression surface on each partition. Thissimilarity has also been noted by Tresp et al. (1993) .The stochastic estimator (STOCH) and the single component estimator (SLSE) arebetter suited than any least squares method for learning non-convex inverse maps,where the mean of several solutions to an inverse might not be a solution. These



Figure 1: Classi�cation of the iris dataset. 100 data points were used for train-ing and 50 for testing. Each data pointconsisted of 4 real-valued attributes andone of three class labels. The �gureshows classi�cation performance � 1standard error (n = 5) as a functionof proportion missing features for theEM algorithm and for mean imputa-tion (MI), a commonheuristic where themissing values are replaced with theirunconditional means.
Classification with missing inputs

0 20 40 60 80 100

20

40

60

80

100

% missing features

EM

%
 c

o
rr

ec
t 

cl
as

si
fi

ca
ti

o
n

MIestimators take advantage of the explicit representation of the input/output densityby selecting one of the several solutions to the inverse.4.2 Classi�cationClassi�cation problems involve learning a mapping from an input space into a setof discrete class labels. The density estimation framework presented in this paperlends itself to solving classi�cation problems by estimating the joint density of theinput and class label using a mixture model. For example, if the inputs have real-valued attributes and there are D class labels, a mixture model with Gaussian andmultinomial components will be used:P (x; C = dj�) = MXj=1P (!j) �jd(2�)n=2j�jj1=2 expf�12(x � �j)T��1j (x� �j)g; (15)denoting the joint probability that the data point is x and belongs to class d,where the �jd are the parameters for the multinomial. Once this density has beenestimated, the maximum likelihood label for a particular input x may be obtainedby computingP (C = djx; �). Similarly, the class conditional densities can be derivedby evaluating P (xjC = d; �). Conditionalizing over classes in this way yields classconditional densities which are in turn mixtures of Gaussians. Figure 1 showsthe performance of the EM algorithm on an example classi�cation problem withvarying proportions of missing features. We have also applied these algorithms tothe problems of clustering 35-dimensional greyscale images and approximating thekinematics of a three-joint planar arm from incomplete data.5 DiscussionDensity estimation in high dimensions is generally considered to be more di�cult|requiring more parameters|than function approximation. The density-estimation-based approach to learning, however, has two advantages. First, it permits ready in-corporation of results from the statistical literature on missing data to yield 
exiblesupervised and unsupervised learning architectures. This is achieved by combiningtwo branches of application of the EM algorithm yielding a set of learning rules formixtures under incomplete sampling.
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