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Abstract

Real-world learning tasks may involve high-dimensional data sets
with arbitrary patterns of missing data. In this paper we present
a framework based on maximum likelihood density estimation for
learning from such data sets. We use mixture models for the den-
sity estimates and make two distinct appeals to the Expectation-
Maximization (EM) principle (Dempster et al., 1977) in deriving
a learning algorithm—EM is used both for the estimation of mix-
ture components and for coping with missing data. The result-
ing algorithm is applicable to a wide range of supervised as well
as unsupervised learning problems. Results from a classification
benchmark—the iris data set—are presented.

1 Introduction

Adaptive systems generally operate in environments that are fraught with imper-
fections; nonetheless they must cope with these imperfections and learn to extract
as much relevant information as needed for their particular goals. One form of
imperfection is incompleteness in sensing information. Incompleteness can arise ex-
trinsically from the data generation process and intrinsically from failures of the
system’s sensors. For example, an object recognition system must be able to learn
to classify images with occlusions, and a robotic controller must be able to integrate
multiple sensors even when only a fraction may operate at any given time.

In this paper we present a framework—derived from parametric statistics—for learn-



ing from data sets with arbitrary patterns of incompleteness. Learning in this frame-
work is a classical estimation problem requiring an explicit probabilistic model and
an algorithm for estimating the parameters of the model. A possible disadvantage
of parametric methods is their lack of flexibility when compared with nonparamet-
ric methods. This problem, however, can be largely circumvented by the use of
mixture models (McLachlan and Basford, 1988). Mixture models combine much of
the flexibility of nonparametric methods with certain of the analytic advantages of
parametric methods.

Mixture models have been utilized recently for supervised learning problems in the
form of the “mixtures of experts” architecture (Jacobs et al., 1991; Jordan and
Jacobs, 1994). This architecture is a parametric regression model with a modular
structure similar to the nonparametric decision tree and adaptive spline models
(Breiman et al., 1984; Friedman, 1991). The approach presented here differs from
these regression-based approaches in that the goal of learning is to estimate the
density of the data. No distinction is made between input and output variables; the
joint density is estimated and this estimate is then used to form an input/output
map. Similar approaches have been discussed by Specht (1991) and Tresp et al.
(1993). To estimate the vector function y = f(x) the joint density P(x,y) is esti-
mated and, given a particular input x, the conditional density P(y|x) is formed.
To obtain a single estimate of y rather than the full conditional density one can
evaluate § = E(y|x), the expectation of y given x.

The density-based approach to learning can be exploited in several ways. First,
having an estimate of the joint density allows for the representation of any rela-
tion between the variables. From P(x,y), we can estimate § = f(x), the inverse
% = f~(y), or any other relation between two subsets of the elements of the con-
catenated vector (x,y).

Second, this density-based approach is applicable both to supervised learning and
unsupervised learning in exactly the same way. The only distinction between su-
pervised and unsupervised learning in this framework is whether some portion of
the data vector is denoted as “input” and another portion as “target”.

Third, as we discuss in this paper, the density-based approach deals naturally with
incomplete data, i.e. missing values in the data set. This is because the problem
of estimating mixture densities can itself be viewed as a missing data problem (the
“labels” for the component densities are missing) and an Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) can be developed to handle both kinds of
missing data.

2 Density estimation using EM

This section outlines the basic learning algorithm for finding the maximum like-
lihood parameters of a mixture model (Dempster et al., 1977; Duda and Hart,
1973; Nowlan, 1991). We assume that the data X = {x,...,xn} are generated
independently from a mixture density

P(x;) = ZP(XH%;@]')P(%), (1)



where each component of the mixture is denoted w; and parametrized by ¢;. From
equation (1) and the independence assumption we see that the log likelihood of the
parameters given the data set is

1(01x) Zlogzpw,» Pley). (2)

By the maximum likelihood prlnc1ple the best model of the data has parameters
that maximize [(#|X’). This function, however, is not easily maximized numerically
because it involves the log of a sum.

Intuitively, there 1s a “credit-assignment” problem: it is not clear which component
of the mixture generated a given data point and thus which parameters to adjust
to fit that data point. The EM algorithm for mixture models 1s an iterative method
for solving this credit-assignment problem. The intuition is that if one had access
to a “hidden” random variable z that indicated which data point was generated
by which component, then the maximization problem would decouple into a set
of simple maximizations. Using the indicator variable z, a “complete-data” log
likelihood function can be Written

1.(6|%X, 2) ZZz” log P(x;|zi; 0) P(z4;0), (3)
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which does not involve a log of a summation.

Since z is unknown [. cannot be utilized directly, so we instead work with its ex-
pectation, denoted by Q(6|61). As shown by (Dempster et al., 1977), [(8|X’) can be
maximized by iterating the following two steps:
Estep: QUOl6:) = E[L(O1Y, Z)|X,0,]
M step: Opy1 = argmax Q(6|0y). (4)
0

The E (Expectation) step computes the expected complete data log likelihood and
the M (Maximization) step finds the parameters that maximize this likelihood.
These two steps form the basis of the EM algorithm; in the next two sections we
will outline how they can be used for real and discrete density estimation.

2.1 Real-valued data: mixture of Gaussians

Real-valued data can be modeled as a mixture of Gaussians. For this model the

E-step simplifies to computing h;; = E[z;|x;, 0], the probability that Gaussian j,

as defined by the parameters estimated at time step k, generated data point i.
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The M-step re-estimates the means and covariances of the Gaussians' using the
data set weighted by the h;;:
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!Though this derivation assumes equal priors for the Gaussians, if the priors are viewed
as mixing parameters they can also be learned in the maximization step.




2.2 Discrete-valued data: mixture of Bernoullis

D-dimensional binary data x = (#1,...,24,...2p), 4 € {0, 1}, can be modeled as
a mixture of M Bernoulli densities. That 1s,

P(x]0) = ZP(Wj)Hufg‘l(l —pja) T, (7)

For this model the E-step involves computing

D w - N(l—z
b — [Ti= F‘jdd(l _de)(l 2)
e M D oz oo (1—2ia)’
>oi=t iz Agg® (1= fug)tt =

and the M-step again re-estimates the parameters by
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More generally, discrete or categorical data can be modeled as generated by a mix-
ture of multinomial densities and similar derivations for the learning algorithm can
be applied. Finally, the extension to data with mixed real, binary, and categorical
dimensions can be readily derived by assuming a joint density with mixed compo-
nents of the three types.

3 Learning from incomplete data

In the previous section we presented one aspect of the EM algorithm: learning
mixture models. Another important application of EM is to learning from data
sets with missing values (Little and Rubin, 1987; Dempster et al., 1977). This
application has been pursued in the statistics literature for non-mixture density
estimation problems; in this paper we combine this application of EM with that of
learning mixture parameters.

We assume that the data set X' = {x1,...,xn} is divided into an observed com-
ponent X'° and a missing component X'™. Similarly, each data vector x; is divided
into (x?,x™) where each data vector can have different missing components—this
would be denoted by superscript m; and o;, but we have simplified the notation for
the sake of clarity.

To handle missing data we rewrite the EM algorithm as follows

E step:  Q(06y) = E[(0|x°,x™, Z)|X°, 0]
M step:  fgy1 = argmax Q(0|6:). (10)
6

Comparing to equation (4) we see that aside from the indicator variables Z we have
added a second form of incomplete data, '™, corresponding to the missing values
in the data set. The E-step of the algorithm estimates both these forms of missing
information; in essence it uses the current estimate of the data density to complete
the missing values.



3.1 Real-valued data: mixture of Gaussians

We start by writing the log likelihood of the complete data,

N M N M
1(012°, 2™, 2) =3 " zyjlog P(xilzs, 0) + Y >z log P(zi]h). (11)
i i i i

We can ignore the second term since we will only be estimating the parameters of
the P(x;|z;,0). Using equation (11) for the mixture of Gaussians we note that if
only the indicator variables z; are missing, the E step can be reduced to estimating
Elz|xi,0]. For the case we are interested in, with two types of missing data z; and
x, we expand equation (11) using m and o superscripts to denote subvectors and
submatrices of the parameters matching the missing and observed components of
the data,
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Note that after taking the expectation, the sufficient statistics for the parameters
involve three unknown terms, z;;, z;x}", and z; X?IX?]T. Thus we must compute:
Elzi|x7, 0], Elzijx|xg, 0r], and E[zijx?lx?lT|x?, Or].

One intuitive approach to dealing with missing data is to use the current estimate
of the data density to compute the expectation of the missing data in an E-step,
complete the data with these expectations, and then use this completed data to re-
estimate parameters in an M-step. However, this intuition fails even when dealing
with a single two-dimensional Gaussian; the expectation of the missing data always
lies along a line, which biases the estimate of the covariance. On the other hand,
the approach arising from application of the EM algorithm specifies that one should
use the current density estimate to compute the expectation of whatever incomplete
terms appear in the likelihood maximization. For the mixture of Gaussians these
incomplete terms involve interactions between the indicator variable z;; and the
first and second moments of x;”. Thus, simply computing the expectation of the
missing data z; and x}" from our model and substituting those values into the M
step 1s not sufficient to guarantee an increase in the likelithood of the parameters.

The above terms can be computed as follows: E[z;;|x$, 6x] is again h;;, the proba-
bility as defined in (5) measured only on the observed dimensions of x;, and

Elzi;x %2, 65] = hij E[xzi; = 1,x5, 0] = hj (1 + 2;“02;?0" (xf —uf). (12)

Defining xj} = E[x}*|2; = 1,x7, 01, the regression of x;* on x{ using Gaussian j,

ElzixPx7 x5, 03] = hyy (S — xopee” gmel 4 gman), (13)
The M-step uses these expectations substituted into equations (6)a and (6)b to
re-estimate the means and covariances. To re-estimate the mean vector, p;, we
substitute the values E[x"|z;; = 1,x?,0;] for the missing components of x; in
equation (6)a. To re-estimate the covariance matrix we substitute the values
ExPxPT 25 = 1,x9, 0;] for the outer product matrices involving the missing com-
ponents of x; in equation (6)b.



3.2 Discrete-valued data: mixture of Bernoullis

For the Bernoulli mixture the sufficient statistics for the M-step involve the incom-
plete terms E[z; |x?, 6] and Elz;;x"|x?, 0] The first is equal to h;; calculated over
the observed subvector of x;. The second, since we assume that within a class the
individual dimensions of the Bernoulli variable are independent, is simply h;j "
The M-step uses these expectations substituted into equation (9).

4 Supervised learning

If each vector x; in the data set is composed of an “input” subvector, xi», and a
“target” or output subvector, x?, then learning the joint density of the input and
target is a form of supervised learning. In supervised learning we generally wish to
predict the output variables from the input variables. In this section we will outline
how this is achieved using the estimated density.

4.1 Function approximation

For real-valued function approximation we have assumed that the density is esti-
mated using a mixture of Gaussians. Given an input vector x; we extract all the
relevant information from the density P(x',x°) by conditionalizing to P(x°|x}).
For a single Gaussian this conditional density is normal, and, since P(x',x°) is a
mixture of Gaussians so is P(x°|x"). In principle, this conditional density is the
final output of the density estimator. That is, given a particular input the net-
work returns the complete conditional density of the output. However, since many
applications require a single estimate of the output, we note three ways to ob-
tain estimates X of x° = f(x}): the least squares estimate (LSE), which takes
x°(x;) = FE(x°|xj); stochastic sampling (STOCH), which samples according to
the distribution %°(x}) ~ P(x°|x}); single component LSE (SLSE), which takes

%°(x}) = E(x°|x},w;) where j = argmax; P(zj|x}). For a given input, SLSE picks
the Gaussian with highest posterior and approximates the output with the LSE

estimator given by that Gaussian alone.

The conditional expectation or LSE estimator for a Gaussian mixture is

M o oivii Tt 1
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which is a convex sum of linear approximations, where the weights h;; vary non-
linearly according to equation (14) over the input space. The LSE estimator on a
Gaussian mixture has interesting relations to algorithms such as CART (Breiman
et al., 1984), MARS (Friedman, 1991), and mixtures of experts (Jacobs et al., 1991;
Jordan and Jacobs, 1994), in that the mixture of Gaussians competitively parti-
tions the input space, and learns a linear regression surface on each partition. This
similarity has also been noted by Tresp et al. (1993) .

, (14)

The stochastic estimator (STOCH) and the single component estimator (SLSE) are
better suited than any least squares method for learning non-convex inverse maps,
where the mean of several solutions to an inverse might not be a solution. These



Classification with missing inputs
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Figure 1: Classification of the iris data
set. 100 data points were used for train-
ing and 50 for testing. Each data point
consisted of 4 real-valued attributes and
one of three class labels. The figure
shows classification performance £ 1 607
standard error (n = 5) as a function

of proportion missing features for the 04 %
EM algorithm and for mean imputa-

tion (MT), a common heuristic where the

missing values are replaced with their 20—

unconditional means. 0 0 40 60 80 100
% missing features

= M|

% correct classification

estimators take advantage of the explicit representation of the input/output density
by selecting one of the several solutions to the inverse.

4.2 Classification

Classification problems involve learning a mapping from an input space into a set
of discrete class labels. The density estimation framework presented in this paper
lends itself to solving classification problems by estimating the joint density of the
input and class label using a mixture model. For example, if the inputs have real-
valued attributes and there are D class labels, a mixture model with Gaussian and
multinomial components will be used:

1 _
P(x,C=d|f) = pr] n/z|z |1/zeXp{—§<x—uj>T2j1<X—uj>}’ (1)

denoting the joint probablhty that the data point is x and belongs to class d,
where the p;4 are the parameters for the multinomial. Once this density has been
estimated, the maximum likelihood label for a particular input x may be obtained
by computing P(C = d|x, §). Similarly, the class conditional densities can be derived
by evaluating P(x|C = d,#). Conditionalizing over classes in this way yields class
conditional densities which are in turn mixtures of Gaussians. Figure 1 shows
the performance of the EM algorithm on an example classification problem with
varying proportions of missing features. We have also applied these algorithms to
the problems of clustering 35-dimensional greyscale images and approximating the
kinematics of a three-joint planar arm from incomplete data.

5 Discussion

Density estimation in high dimensions is generally considered to be more difficult—
requiring more parameters—than function approximation. The density-estimation-
based approach to learning, however, has two advantages. First, it permits ready in-
corporation of results from the statistical literature on missing data to yield flexible
supervised and unsupervised learning architectures. This is achieved by combining
two branches of application of the EM algorithm yielding a set of learning rules for
mixtures under incomplete sampling.



Second, estimating the density explicitly enables us to represent any relation be-
tween the variables. Density estimation is fundamentally more general than function
approximation and this generality is needed for a large class of learning problems
arising from inverting causal systems (Ghahramani, 1994). These problems cannot
be solved easily by traditional function approximation techniques since the data is
not generated from noisy samples of a function, but rather of a relation.
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