
Modelling and Control of Nonlinear Systems using Gaussian Processes
with Partial Model Information

Joseph Hall, Carl Rasmussen and Jan Maciejowski

Abstract— Gaussian processes are gaining increasing pop-
ularity among the control community, in particular for the
modelling of discrete time state space systems. However, it
has not been clear how to incorporate model information,
in the form of known state relationships, when using a
Gaussian process as a predictive model. An obvious example of
known prior information is position and velocity related states.
Incorporation of such information would be beneficial both
computationally and for faster dynamics learning. This paper
introduces a method of achieving this, yielding faster dynamics
learning and a reduction in computational effort from O

(
Dn2)

to O
(
(D − F)n2)

in the prediction stage for a system with
D states, F known state relationships and n observations.
The effectiveness of the method is demonstrated through its
inclusion in the PILCO learning algorithm with application to
the swing-up and balance of a torque-limited pendulum and
the balancing of a robotic unicycle in simulation.

I. INTRODUCTION

Gaussian Processes (GPs) are a powerful modelling
framework that incorporate modelling uncertainty in pre-
dictions in a systematic manner. They were introduced
into the machine learning community by [1] where their
use is now widespread. See [2] for an introduction to GPs
in this area. The use of Gaussian processes in system iden-
tification for control has been limited, yet has produced
some remarkable results in contexts where conventional
methods have struggled or failed. Examples of this include
learning an accurate control policy for an autonomous
blimp [3], the swing up and balance of a pendulum on
a moving cart, and balancing a full nonlinear simulated
model of a robotic unicycle [4].

The framework of Gaussian processes is effective since
very few prior assumptions are placed on the nature of the
dynamics (smoothness and stationarity of the underlying
function for example) and it is left to the model to infer
all dependencies between states. Although appealing for
its generality, partial knowledge of the system dynamics
may be available and a framework for including this as
prior information would be useful both computationally
and statistically. An obvious example of this is states that
are related through time derivatives e.g. positions and
velocities. The contribution of this paper is to provide such
a method for the case of known (possibly uncertain) state
relationships.

The problem under consideration is to infer a model for
the discrete time dynamical system ∆xk = f(xk−1,uk−1) + ε

J. Hall, C. Rasmussen and J. Maciejowski are with Depar-
ment of Engineering, University of Cambridge, UK {jah215,
cer54}@cam.ac.uk, and jmm@eng.cam.ac.uk

with state x ∈ RD , input u ∈ RE and process noise
ε ∼ N . This can be achieved using a Gaussian process
model trained with n observations of state-input pairs
(xk−1,uk−1) and the associated change in state ∆xk =
xk − xk−1. The trained GP can then make predictions of
system trajectories along with a measure of the uncer-
tainty. In this paper it is assumed that the state consists
of s ∈ RD−F , ŝ ∈ RF . Given a set of known relationships
∆ŝk = h

(
xk−1,uk−1,∆sk

)+κ, with uncertainty parameter
κ, a method of including this information in prediction
has been derived. The method yields a reduction in the
computational requirement for prediction from O

(
Dn2

)
to

O
(
(D −F)n2

)
. Particular focus has been given to deriving

a method for including approximate time derivative in-
formation. Within this scheme, a means of learning the
accuracy of the approximation, given the observed data,
has been derived.

In the remainder of the paper, Section II will provide the
basic theory of Gaussian process modelling of discrete-
time state space systems. Section III presents the method
of including known state relationships in GP predictions,
the core contribution of this paper. In Section IV this
framework is applied to the case of time-derivative-related
states, and outlines an inference scheme for calculating
its predictive accuracy given the data. Section V gives
an overview of the PILCO algorithm of [4] in which this
approximation has been employed in a control policy
learning framework. Section VI presents simulation results
for the application of learning control to a simulated
torque-limited pendulum swing-up problem and a full
nonlinear unicycle balancing problem.

II. GAUSSIAN PROCESSES

A. Prior to Posterior

To introduce the general concept of training and predic-
tion with a Gaussian process model, consider the problem
of inferring the underlying function of a noisy static map
y = f (z)+ ε with z ∈ RA and ε ∼ N (0,σ2

ε) from training
data. The training data set D = {Z,y} consists of regression
vectors Z = [z1 . . .zn]> ∈ Rn×A and the corresponding ob-
served outputs y = [y1 . . . yn]> ∈ Rn . A GP can be viewed
as an extension of the multivariate Gaussian distribution
to infinitely long vectors, or functions. Formally, GPs are
defined by [2] as a collection of random variables, any
finite number of which have a joint Gaussian distribution.
This can be expressed

f |θ ∼GP (m,k), (1)

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 5266978-1-4673-2066-5/12/$31.00 ©2012 IEEE

where f is the random process and θ is the hyperpa-
rameter vector parameterising the mean function m, and
the covariance function k. Informally, GPs are a means of
defining a prior distribution over a space of functions.
Now, a common choice of prior is a zero mean with
squared exponential covariance function

k(z, z̃) =α2 exp
(
− 1

2 (z− z̃)>Λ−1(z− z̃)
)
, (2)

where Λ= diag
(
λ2

1 . . .λ2
D

)
and z, z̃ are two arbitrary points

in the regressor space. The covariance matrix K := K(Z,Z) ∈
Rn×n and the vector k(z) := k(Z,z) ∈Rn are defined to have
elements Ki j = k(zi ,z j) and ki = k(zi ,z) respectively.

Given the training data D, the problem is to find the
posterior distribution p(f |D,θ) over the space of func-
tions. The relationship follows directly from Bayes’ rule

p(f |D,θ) = p(y| f ,Z,θ)

p(y|Z,θ)
p(f |θ), (3)

since f |θ ∼GP is independent of Z. It turns out that this
posterior distribution is also a Gaussian process f |D,θ ∼
GP (m+,k+) with mean and covariance function

m+(z) = m(z)+k(z)>
(
K+σ2

εI
)−1(y−m(Z)

)
, (4)

k+(z, z̃) = k(z, z̃)−k(z)>
(
K+σ2

εI
)−1k(z̃). (5)

This can be found by considering the joint Gaussian distri-
bution p

(
y, f (z), f (z̃)|θ)

and conditioning on the observed
data y.

B. Prediction

Prediction of a single functional output f (z) under the
posterior GP is simply given by the Gaussian distribution
f (z) ∼ N

(
m+(z),k+(z,z)

)
. The computation of the mean

and variance prediction is of the order O
(
n2

)
.

To make predictions of functions with multivariate
outputs one can either train a full multivariate GP (an
extension of the concepts above) or one can simply
train an independent model for each output dimension.
In most cases the benefits of the increased predictive
accuracy gained by a full multivariate GP is outweighed by
the much larger computational effort required in training
and prediction.

If the test input is now itself a random variable z ∼
N (µ,Σ) then the output distribution of the GP will no
longer be Gaussian, as illustrated in Fig. 1. However, the
mean and variance can be evaluated analytically (given
a squared exponential covariance function) therefore the
output distribution can be approximated by a Gaussian
using exact moment matching using the method of [5].

C. Modelling State Space Systems

Now in order to use GPs to model the nonlinear system
∆xk = f(xk−1,uk−1)+ε with system state x ∈RD and input
u ∈ RE where xk =∆xk +xk−1, simply use training data of
the form Z = {

[xki−1;uki−1]
}
, y = {

∆xki

}
, i ∈ {1..n}. Note that

it is more appropriate to infer state differences instead of
the next states themselves given a zero-mean prior over
the space of functions. Prediction then has computation
order of O

(
Dn2

)
given D independent GP models.

2 0 2
2

1

0

1

2

Input Distribution

 G
au

ss
ia

n
Pr

oc
es

s

0 0.5 1
2

1

0

1

2

 O
ut

pu
t D

ist
rib

ut
io

n

Fig. 1. Illustration of the exact moment matching scheme for propa-
gation of uncertainty through a Gaussian process model. The left hand
plot depicts the input distribution and the GP model where the black
dots denote training data D and the shaded region in the left hand
plot shows the 95% confidence region. The right hand plot shows the
Gaussian approximation for the output distribution and an estimate of
the output distribution obtained by simple Monte Carlo sampling.

D. Training

Ideally, the full posterior p(f |D) would be obtained by
integrating over all possible θ values with respect to some
prior p(θ). This would only be possible through the use of
computationally demanding sampling methods. Alterna-
tively, a point estimate can be obtained through maximi-
sation of the marginal likelihood p(y|Z,θ) =N

(
0,K+σ2

εI
)
.

This is an appropriate metric to optimise since it is
equivalent to finding the “maximum a posteriori" estimate
max p(θ|D) given a “flat" prior p(θ). This optimisation
procedure constitutes the training of the hyperparameters.

III. KNOWN STATE RELATIONSHIPS

A. General Relationships

Consider a system of the form ∆xk = f(xk−1,uk−1)+ε as
before but with a system state x = [s; ŝ], which is made up
of states s ∈RD−F and ŝ ∈RF . There is a known relationship
between s and ŝ of the form

∆ŝk = h
(
xk−1,uk−1,∆sk

)+κ, (6)

with noise term κ ∼ N (0,Σκ) where Σκ = diag(σ2
κa), a ∈

{1..F } can represent uncertainty in the relationship. With
this information, only D−F Gaussian process models need
be trained to predict ∆sk ∼ GP and the remaining state
differences ∆ŝk can be reconstructed from Eq. 6. Uncer-
tainty can be propagated through the state predictions
provided the relationship h(·) is of a form that will now
be discussed.

B. Prediction for Uncertain State-Input Pairs

In order to propagate uncertainty through predictions, a
framework is required where given a Gaussian distribution
xk−1,uk−1 ∼ N , the posterior distribution p(xk) can be
approximated analytically. This will be possible provided
that the mean E[h|µ,Σ] and covariance cov[h|µ,Σ] given
xk−1,uk−1,∆sk ∼ N (µ,Σ) can be evaluated analytically.
Given this, the output distribution can be approximated

5267

using exact moment matching as discussed in Section II-
B. The procedure will then be as follows:

• Gaussian Process p
(
xk−1,uk−1

) → p
(
xk−1,uk−1,∆sk

)
.

Achieved using the framework of [5].
• State Relationships p

(
xk−1,uk−1,∆sk

)→ p
(
xk−1,∆xk

)
.

Dependant on the structure of h(·).
• Next State p

(
xk−1,∆xk

)→ p
(
xk

)
.

Follows from their linear relationship.

C. Linear Relationships

If the known state relationships are of a linear form
∆ŝk = Mξk−1 +κ for some mapping M and input vector
ξk−1 := [

xk−1;uk−1;∆sk
]

then propagating the uncertainty
is simple. Given ξk ∼N (µ,Σ), the joint distribution is[

ξk−1
∆ŝk

]
∼N

([
µ

Mµ

]
,

[
Σ ΣM>

MΣ MΣM>+Σκ
])

, (7)

and the distribution xk−1,∆xk ∼ N can be lifted straight
out. A useful example of such a relationship will be
developed in the following section.

IV. POSTION-VELOCITY RELATIONSHIPS

A. Constant Acceleration Approximation

Consider the common case that the system state is
made up of states s ∈ RD/2 and their time derivatives
ṡ. The exact relationship between position states s and
the associated velocity states ṡ := d

dt s is given by ∆sk =∫ t
t−∆t

ṡ(τ)dτ where sk = s(t) and sk−1 = s(t −∆t) . If the
acceleration s̈ over the time interval τ ∈ [t −∆t , t] is taken
to be constant then the relationship becomes

∆sk =∆t
(1

2∆ṡk + ṡk−1
)

or ∆ṡk = 2
∆t
∆sk −2ṡk−1, (8)

in terms of the change in position and velocity respec-
tively. These relationships are in a linear form with ŝ = s
and M = [

0,∆t I,0, ∆t
2 I

]
in the case of position reconstruc-

tion or ŝ = ṡ and M = [
0,−2I,0, 2

∆t
I
]

in the case of velocity
reconstruction.

A graphical depiction of the constant acceleration as-
sumption is shown in Fig. 2. This approximation reduces
the number of GP models to be trained from D to F in the
general case where there are F time derivative related state
pairs and therefore the cost of prediction from O

(
Dn2

)
to

O
(
(D −F)n2

)
.

Of course the constant acceleration may be too strin-
gent. In this case one can resort to using additional
information from previous timesteps. For example, fitting
a quadratic curve to the three points ṡk , ṡk−1 and ṡk−2.
Or even using the additional constraint that the previous
area be equal to the previous estimate ∆sk−1 to fit a
cubic curve. However, there is no guarantee that these
approximations will perform any better, and may in fact
degrade performance so they are not considered here.

In reality there will be some amount of uncertainty in
this approximation which will be accounted for using an
additive noise term κ as in the previous section. The
selection of the variance Σκ plays a significant role in
prediction and policy learning as will be discussed later. A

∫ t
t−∆t

ṡ(τ)dτ

ve
lo

ci
ty

ṡ

timett −∆tt −2∆t

Fig. 2. The constant acceleration time integral approximation for
reconstructing change in position ∆sk given the velocities ṡk and ṡk−1
is given in red. A simple Euler constant velocity approximation is shown
in blue.

scheme has been devised in order to infer this parameter
from the training data set.

B. Training

Consider the prediction of a single state pair
(
sa , ṡa

)
where a ∈ {1..D/2} denotes the relevant dimension. Train-
ing data consists of inputs Z with rows

[
s>, ṡ>,u>]

ki−1
and observations

[
ypa ,yva

]
with rows

[
sa + ep, ṡa + ev

]
ki

where i ∈ {1..n}, ep and ev are additive noise terms and the
subscripts ‘p’ and ‘v’ denote position and velocity respec-
tively. A naive approach to training the hyperparameters
would be to train a single Gaussian process on the data set{

Z,yva
}

in the case of integral reconstruction or
{

Z,ypa
}

for
derivative reconstruction. However, this would ignore half
of the available information and provides no framework
for training the approximation uncertainty σ2

κa .
Consider the case of integral reconstruction. The full

distribution of the prior belief regarding observed data is
given by the multivariate Gaussian[

ypa

yva

]∣∣∣∣Z,θ ∼N

([
∆t ZeD/2+a

0

]
, (9)[

∆2
t

4 Kva
∆t
2 Kva

∆t
2 Kva Kva

]
+

[
(σ2

pa +σ2
κa)I 0

0 σ2
va I

])
,

where ei is the i th column of the identity matrix I ∈
R(D+E)×(D+E). Training of the hyperparameters can then
be carried out in the usual manner by maximising the
marginal likelihood p

(
[ypa ,yva]|Z,θ

)
as outlined in Sec. II-

D. Note that it is impossible to distinguish between the
noise term σ2

pa and the approximation uncertainty σ2
κa

using this method. To overcome this, another GP with
prior belief yp ∼N

(
0,Kpa +σ2

pa I
)

can be trained simulta-
neously in order to learn the true noise parameter σ2

pa .
A similar procedure is followed in the case of derivative
reconstruction.

V. THE PILCO ALGORITHM

A. Overview

The PILCO algorithm [4] is a Bayesian framework for
reinforcement learning in systems with continuous state
spaces. The goal is to learn a time-invariant parameterised

5268

sk−2

ṡk−2

uk−2

sk−1

ṡk−1

uk−1

sk

ṡk

uk

sk+1

ṡk+1

(a) State uncertainty propagation with time integral reconstruction.

sk−2

ṡk−2

uk−2

sk−1

ṡk−1

uk−1

sk

ṡk

uk

sk+1

ṡk+1

(b) State uncertainty propagation with time derivative reconstruction.

Fig. 3. Graphical model representation of the propagation of uncertainty over the previous state p(sk−1, ṡk−1) to the distribution at the current
timestep p(sk , ṡk). Steps involving the dynamics GP, policy and time operator reconstruction are denoted by bold, thin and dashed lines respectively.

control policy u = π(x) that satisfies the finite horizon
optimisation problem

minV π = min
1

T

T∑
k=1

E[c(xk)], (10)

where c : RD → [0,1] is the cost function, V π is the cost-
to-go and T is the optimisation horizon. The algorithm
consists of iterating over the following steps:

• Learn Dynamics. Interact with the system based
on the current best policy π j . Update a Gaussian
process model of the transition dynamics based on
all interaction data so far.

• Policy Evaluation. Evaluate the (approximate) ex-
pected cost-to-go V π j given the current Gaussian
process model of the dynamics and policy π j .

• Policy Improvement. Using the derivatives dV π/dψ,
and the evaluation step along with gradient descent
optimisation, find π j+1 = argminV π where ψ are the
tuneable parameters.

B. Learn Dynamics

The first step of the process is to generate a data set
D by applying an arbitrary policy to the system. This
data set is then used to train a Gaussian process model
of the transition dynamics as outlined in Section II-C.
After each optimisation of the policy parameters a new
rollout is performed. The data generated from this rollout
is then used to augment the training data set and the
hyperparameters are re-trained.

C. Policy Evaluation

In order to evaluate the cost-to-go V π of a given set of
policy parameters ψ a method of obtaining a distribution
over the resulting trajectory τ := {

x0 . . .xH
}

is needed.
This requires a way of propagating the distribution at
one timestep p(xk−1) to the next p(xk). The first step
is to obtain the joint distribution p(xk−1,uk−1) from the
policy π. If the policy is linear then (xk−1,uk−1) ∼ N

given xk−1 ∼ N . For other policy structures the joint
distribution can be approximated using exact moment
matching. In Section III-B it was shown how to carry
out the step p(xk−1,uk−1) → p(xk) which completes the

process. Graphical models of the procedure for integral
reconstruction and derivative reconstruction are shown in
Fig. 3.

The second step in policy evaluation is to find the
expected cost at each stage E

[
c(xk)

]
given xk ∼ N from

the previous stage. This can be done analytically given
various choices of cost function. Note that the input u is
not explicitly penalised because input constraints can be
incorporated directly through the policy structure.

D. Policy Improvement

Since analytical expressions for the cost-to-go function
have been found in the previous step the derivative vector
dV π/dψ can also be obtained analytically using

dV ψ

dψ
=

T∑
k=1

[(
∂

∂µk
E
[
c(xk)

]) dµk

dψ
+

(
∂

∂Σk
E
[
c(xk)

]) dΣk

dψ

]
.

(11)

Taking p(xk) ∼ N (µk ,Σk) the derivatives of the mean
and covariance at each timestep can be found using the
recursive rule

dαk

dψ
= ∂αk

∂µk−1

dµk−1

dψ
+ ∂αk

∂Σk−1

dΣk−1

dψ
+ ∂αk

∂ψ
, (12)

where α ∈ {µ,Σ}. The availability of these derivatives
means that optimisation in Eq. 10 can be achieved using
gradient descent methods.

VI. SIMULATIONS

A. Pendulum

In order to test the validity of these approximation
schemes, the torque-limited pendulum swing up control
problem was considered as shown in Fig. 4(a). The equa-
tion of motion for this system is

θ̈ = u −bθ̇− 1
2 ml g sinθ

1
4 ml 2 + I

, (13)

with states x = [θ, θ̇]>, constrained input torque u ∈
[−3,3] Nm (which is insufficient to swing the pendulum
up directly), coefficient of friction b = 0.1 Nms, mass m = 1
kg, length l = 1 m, gravitational acceleration g = 9.81 ms−2

and moment of inertia I . The state measurement was

5269

θ

`
u

(a) Torque-limited pendulum

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Actual Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Predicted Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Actual Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Predicted Cost

(b) Standard method

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Actual Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Predicted Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Actual Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Predicted Cost

(c) Position reconstruction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Actual Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Predicted Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Actual Cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
Algorithm Iteration

Predicted Cost

(d) Velocity reconstruction

Fig. 4. Box plots depicting the actual cost-to-go and the associated mean cost predicted by the GP of 50 Monte Carlo runs with different initial
training data sets. Each box bounds the 25th to 75th percentile of the data with the 50th percentile as a line in between. The dashed lines extend to
the furthest outlier that lies within reach of 1.5 times the length of the box. The x-axis denotes the algorithm iteration and the y-axis denotes the
cost (actual or mean predicted) incurred during a trial run.

corrupted with white noise of variance 0.012I. The cost
function used for learning was the normalised squared
distance to the upright position c(x) = 1

4 sin2θ+ 1
4 (cosθ+

1)2 ∈ [0,1]. This cost makes no distinction between swing-
ing the pendulum up to θ = π or θ = −π. The discrete
timestep was set to ∆t = 0.1 s (short compared to the
natural period of the pendulum ≈ 1.6 s) and the prediction
horizon to H = 100. The control policy consisted of a
radial basis function with 20 Gaussian kernels in which
the positions, widths and magnitudes of each kernel were
free parameters to be optimised. This was then passed
through a saturating function in order to respect the input
constraints.

It should be noted that the incorporation of prior
position-velocity information in this case will reduce pre-
dictive computation by the order of a half since D = 2 and
F = 1. However, as the following results show, this may not
lead to improved learning performance.

The pendulum set-up and the results of 50 Monte Carlo
runs of 10 iterations of the learning algorithm are depicted
in Fig. 4. The optimal solution (a single back swing then
swing up) incurs a cost-to-go of roughly 0.3 but obviously
there are many local minima in this problem correspond-
ing to multiple swings. Fig. 4(b) shows the results of the

standard PILCO learning algorithm where individual GPs
are trained for each state. It can be observed that, on
average, the mean cost predicted by the algorithm corre-
sponds closely with the actual observed cost. Fig. 4(c) is
obtained using the method of integral reconstruction and
shows essentially equivalent performance to the standard
method. Finally, Fig. 4(d) shows the results of derivative
reconstruction, which reaches the global optimal solution
for over half of the trial runs. However, using this method
has led to a large discrepancy between predicted and
actual performance and has caused the algorithm to get
stuck in a situation where it persistently predicts that it
will perform well but in reality performs very poorly. The
problem in this instance can be remedied by inducing
greater uncertainty in the modelling approximation Σκ.
Doing this yields convergence of almost all the training
cases to the global minimum solution. The same trick
can be applied to the case of position reconstruction and
an increase in the number of trials that reach the global
minimum can be observed. This phenomenon points
to the fact that an overly pessimistic or cautious (i.e.
assuming greater uncertainty than is justified by the data)
approach to learning is advantageous.

5270

x

θ
y

φ
zψ ψw

ψt

uw

ut

(a) Robotic unicycle

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Algorithm Iteration

Actual Cost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Algorithm Iteration

Predicted Cost

(b) Standard method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Algorithm Iteration

Actual Cost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Algorithm Iteration

Predicted Cost

(c) Position reconstruction

Fig. 5. Box plots depicting the actual cost-to-go for 50 Monte Carlo runs of the algorithm on the robotic unicycle problem using the standard
method, integral reconstruction and derivative reconstruction for ∆t = 0.15 s. The x-axis denotes the algorithm iteration and the y-axis denotes the
cost-to-go.

B. Unicycle

The scheme was then tested on a highly nontrivial
control problem, the balancing of a robotic unicycle as
shown in Fig. 5(a). The equations of motion for this
system can be found in the thesis of [6]. The state is
x = [xc, yc,θ,φ,ψ, θ̇, φ̇,ψ̇,ψ̇w,ψ̇t]> ∈R10 where (xc, yc) is the
position of the desired unicycle location in a coordinate
system centred on the unicycle itself, θ is the roll angle,
φ is the pitch angle, ψ is the yaw angle, ψw is the angular
position of the wheel and ψt is the angular position of
the turntable. The input vector is u = [ut,uw]> ∈R2, where
ut is the torque applied to the turntable and uw is the
torque applied to the wheel. The state measurement was
corrupted with white noise of variance 0.0022I and the
discrete timestep was set to ∆t = 0.15 s which is very large
given the dynamics of the unicycle and therefore makes
the task of control even harder. The prediction horizon
was set to H = ⌈

10/∆t
⌉

to give a simulation time of 10 s.
Since there are three time derivative state pairs, the

inclusion of prior information about the position-velocity
relationships reduces predictive computation by 30%. As
shown in Fig. 5(b) the standard method generally solves
the balancing task in around 10–14 iterations. Fig. 5(c)
shows that in making a constant acceleration approxima-
tion to reconstruct position variables there is actually an
improvement in performance. The number of trials that
fail to learn the task is also reduced. These results are sur-
prising given the large time discretisation of the dynamics.
In this example, the uncertainty parameter was simply set
to Σκ = 10−8I to encode confidence in the approximation.
However, when using derivative reconstruction, the algo-
rithm performed very poorly and even led to numerically
unstable results in some cases. This was regardless of the
value of Σκ. Therefore integral reconstruction is to be
recommended over derivative reconstruction.

VII. CONCLUSION

Gaussian processes are a powerful tool for the mod-
elling and learning of nonlinear state space systems. Until

now there has not been a clear way of incorporating
useful prior information in terms of known relationships
between states. This paper has outlined a method of
incorporating this information and using it in making
predictions of state trajectories. This is advantageous for
two reasons. Learning the nature of the true dynamics is
faster since the Gaussian process does not have to infer
known relationships. The computational cost of prediction
is then reduced from O

(
Dn2

)
to O

(
(D−F)n2

)
for a system

with D states, F known state relationships and n obser-
vations. In particular, a simple approximation method to
include time derivative information has been developed.
When incorporated into the PILCO learning algorithm
framework the time integral reconstruction approximation
has been shown to yield comparable performance with
the standard method on the torque-limited pendulum
swing up and unicycle balancing problems even when the
discrete timestep is large.

VIII. ACKNOWLEDGMENTS

Joe would like to thank Richard Pates for enlightening
discussion regarding the generalisation of the contribution
of this paper.

REFERENCES

[1] Williams, C. K. & Rasmussen, C. E. (1996) Gaussian processes for
regression, In Advances in Neural Information Processing Systems 8,
514–520

[2] Rasmussen, C. E. & Williams, C. K. (2006) Gaussian Processes for
Machine Learning, The MIT Press, Cambridge, MA.

[3] Ko, J., Klein, D., Fox, D. & Haehnel, D. (2007) Gaussian processes
and reinforcement learning for identification and control of an
autonomous blimp, In Proceedings of the International Conference
on Robotics and Automation (ICRA)

[4] Deisenroth, M. P. & Rasmussen, C. E. (2011) PILCO: A model-
based and data-efficient approach to policy search, In Proceedings
of the 28th International Conference on Machine Learning (ICML),
Bellevue, WA.

[5] Quiñonerno-Candela, J., Girard, A., Larsen, J. & Rasmussen, C.
E. (2003) Propagation of uncertainty in Bayesian kernel models -
Application to multiple-step ahead forecasting, In Proceedings of the
IEEE Conference on Acoustics, Speech and Signal Processing, 2:701–
704, Hong Kong, China.

[6] Forster, D. (2009) Robotic unicycle, Technical Report, Department
of Engineering, University of Cambridge, Cambridge, UK.

5271

