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Inspired by the recent upsurge of interest in Bayesian methods we 
consider adaptive regularization. A generalization based scheme for 
adaptation of regularization parameters is introduced and compared to 
Bayesian regularization. We show that pruning arises naturally within 
both adaptive regularization schemes. As model example we have cho- 
sen the simplest possible: estimating the mean of a random variable 
with known variance. Marked similarities are found between the two 
methods in that they both involve a ”noise limit,” below which they 
regularize with infinite weight decay, i.e., they prune. However, prun- 
ing is not always beneficial. We show explicitly that both methods 
in some cases may increase the generalization error. This corresponds 
to situations where the underlying assumptions of the regularizer are 
poorly matched to the environment. 

1 Introduction 

We believe in Ockham’s Razor: the generalization error of a model with 
estimated parameters is decreased by constraining capacity to a mini- 
mum needed for capturing the rule (see, e.g., Thodberg 1991; Solla 1992). 
However, this minimum may be hard to define for nonlinear noisy sys- 
tems where the rule is ill-defined. 

Pruning is a popular tool for reducing model capacity and prun- 
ing schemes have been successfully applied to layered neural networks 
(Le Cun et al. 1990; Thodberg 1991; Svarer etal. 1993). While pruning is a 
discrete decision process, regularization introduces soft constraints such 
as weight decay (Moody 1991). A common feature of these techniques 
is the need for control parameters: stop criteria for pruning and weight 
decays for regularization. In Svarer et al. (1993) a statistical stop criterion 
was developed for pruning of networks for regression problems. 

Recently, MacKay reviewed a Bayesian approach to adaptive regu- 
larization in the context of neural networks, demonstrating that the ev- 
idence-based method can improve the generalization properties and he 
compared it to cross-validation (MacKay 1992a,b). Cross-validation is 
known to be rather noisy; hence methods based on statistical arguments 
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are recommended (see, e.g., Akaike 1969; Moody 1991; Hansen 1993). 
In this presentation we define such an alternative approach for adaptive 
regularization, and we test it on a case of ultimate simplicity, namely 
that of estimating the mean of a gaussian variable of known variance. 
Detailed insight can be obtained for this case. 

In the course of comparing the two schemes, we have discovered a 
new feature of adaptive regularization. We find that both approaches 
involve a "noise limit," below which they regularize with infinite weight 
decay, i.e., they prune. This finding unifies the pruning and regularization 
approaches to capacity control. 

2 Specification of the Toy Problem 

The problem is defined as follows: consider a student-teacher setup 
based on a teacher (with parameter W) providing N examples of the form 

(2.1) 

where the normal noise contributions are independent and have zero 
mean and common known variance u2. Based on the training data set, 
D = {yl, I m = 1, .  . . ,N}, the task of the student (with parameter w) 
is to infer the mean: w. The measure of success for the student is the 
generalization error, 

y,, = w + v, v,, - N(O,u2) m = 1 , .  . . , N 

EG(w) = /dvP(v)(W + v - 7 . 0 ) ~  = (W - w ) ~  + u2 (2.2) 

This is the expected error on a random new test example for the specific 
student weight as estimated on the given training set. In evaluating an 
estimation scheme, our measure will be the average generalization error 
obtained by averaging over all possible training sets of the given size N. 

In the next three sections we consider three such estimators: the 
usual "empirical mean" obtained from maximum likelihood, an estima- 
tor based on MacKay's maximum evidence, and a novel estimator based 
on explicit minimization of the expected generalization error. In Section 6 
we compute the average generalization error of each of the schemes, as 
a function of the teacher parameter. 

3 Maximum Likelihood Estimation 

The likelihood of the student parameter associated with the training set 
D is 
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Maximizing this with respect to w produces the standard maximum like- 
lihood estimator, the empirical mean 

This estimator is unbiased, i.e., the average value, averaging over all pos- 
sible training sets, is the true mean G. 

For a specific training set, the generalization error is obtained using 
2.2. However, as mentioned above, we are not so much interested in 
the value for the particular training set. Rather we are interested in the 
expected error, obtained by averaging over all possible training sets of 
size N. To compute this quantity, we note that WML N N(6,  u 2 / N ) ,  hence 
the average generalization error is 

The first term is the average excess error made by the student due to the 
finite training set. The second term is due to the imperfectness of the 
data; there is noise in the test examples used for grading the student. 
The minimal error approached for large training sets is simply the noise 
level. 

4 Bayesian Regularization 

A Bayesian scheme, recently suggested to the neural net community by 
MacKay, adopts two levels of inference. The first level of inference con- 
sists of estimating the teacher parameters from the data, conditioned on 
a parameterized prior distribution of the teacher mean value. The second 
level of inference consists of estimating the parameters of the prior, with 
the purpose of maximizing the evidence. 

The probability P(w I D )  of the parameter conditioned on the data 
can be obtained using Bayes' rule, 

(4.1) 

by specifying a prior distribution P ( w )  of the parameter. We follow 
MacKay and employ a parameterized prior: P(w) = P(w I a) ,  with a 
parameter a playing the role of a "weight decay," to be determined at 
the second level of inference. The prior takes the form 
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Using the likehood from equation 3.1, we arrive at the posterior distribu- 
tion 

(4.3) 

To find the most probable teacher parameter, we maximize P(w I D ,  (Y )  
with respect to w, to get 

(4.4) 

In the following we will suppress the explicit dependence on the training 
data. 

The second level of inference is to estimate the regularization param- 
eter, and we do this by again invoking Bayes' rule 

(4.5) 

We assume the prior on a to be flat,' indicating that we do not know what 
value Q should take. Hence, the most probable regularization is obtained 
by maximizing the likelihood of it. MacKay dubbed this quantity the 
evidence 

(4.6) P ( D  I a )  = /dwP(D I w,rr)P(w I a )  

= 1: d w E e x p  (-$w2) 

N 1  1 
x in=l  II m e x p  [ - G ( y m  --PI 
1 1 
2 2 ==+ logP(D I a )  = -log(a/27r) - -log 

+ ( N w ~ ~ ) 2  + const 
2a2(N + @a2) 

(4.7) 

where we have lumped all terms not depending on Q in the constant. 
Maximizing the evidence with respect to N, 

'By flat we mean flat over log(cy), since (Y is a scale parameter, 
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which may be substituted into the expression for WMP to find 

(4.9) 

Hence there is a sharp ”noise limit” below which the scheme tells us to 
”prune,” that is, to regularize with infinite strength. The noise limit has a 
straightforward interpretation: prune the parameter if the signal-to-noise 
ratio is less than unity. Note that the estimator is biased; its mean value 
is not W .  It is consistent since WMP -+ W for large samples, while the noise 
limit shrinks to zero. To illustrate the power of the method, we compute 
in Section 6 the (training set) ensemble average of the generalization error. 

In the above derivation we have used the ”flat in log(a) space” prior. 
This prior is improper, since it cannot be normalized. Howeve;, this is 
not important for the evidence approximation. To see this we introduce 
limits: a E [cq, 4. The value of W M P  will not be affected by these limits as 
long as (YML E [QI ,  4. Choosing a1 << N/a2  and a2 >> N/a2  the effect of 
the limits will be negligible for all a. This is seen by introducing the limits 
in equation 4.4. In particular, we note that qualitative pruning still takes 
place: ( W M P (  = JwMLIN/(N + cr202) <( I W M L I  for &ML < a2/N + 1 / ( ~ 2 .  

The evidence framework is an approximation to the ideal Bayesian 
approach. Instead of using the maximum likelihood value of a, we 
should ideally integrate over the distribution of a, i.e., evaluate P(w) = 
JP(w I a)P(a)da and then use the posterior mean for our prediction: 
W P M  = J wP(w)dw. In contrast to the evidence framework the ideal ap- 
proach is quite sensitive to the upper limit a2. Indeed if a2 = 00 then 
WPM = 0 regardless of the value of WML. For a range of a2 we find that 
W P M  shows a qualitative pruning behavior similar to that of WMP. 

5 Generalization Error Minimization 

While the evidence is an interesting statistical quantity, it is not obvious 
what the relation is between maximizing the evidence and minimizing 
test error (MacKay 1992a). Since the latter often is the basic modeling 
objective, we propose here to base the optimization of N on the expected 
generalization error (cf. equation 2.2). A similar approach was mentioned 
in Moody (1991). 

In order to be able to compare directly with the Bayesian approach, 
we use a regularized least-squares procedure to find the student weight 

l N  1 
’a2 m=l 2 

ET = - C(ym - w ) ~  + - N W ~  (5.1) 

Minimizing with respect to w, we recover 4.4 
N 

WG = ~ N + aa2 wML 
(5.2) 
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Our aim is to minimize the average generalization error (averaged again 
with respect to training sets). To this end we note that the distribu- 
tion of W G ( D , Q )  can be computed using simple manipulations of ran- 
dom variables. Noting again that W M L  - N ( w , u 2 / N )  we have WG - 
N (&W, (N&1)1u2) .2 Consequently the averaged generalization error 
becomes 

(5.3) 

You might be uncomfortable with the appearance of the unknown teacher 
parameter Ul, however, it will shortly be replaced by an estimate based 
on the data. Minimizing the generalization error 5.3 with respect to a, 
we find the simple expression 

1 
w 2  

a = -  

which is inserted in equation 5.2, to obtain 

w 2  

w2 + u2/NWML 
WG = 

(5.4) 

(5.5) 

To proceed we need to insert an estimate of the teacher parameter w. 
We will consider two cases; first we try setting .IzI = WML in equation 5.5, 
hence 

(5.6) 

This estimator is biased, but consistent and it does not call for pruning 
even if the data are very noisy. 

Secondly, being more brave, we could argue that the best estimate we 
have of 61 is WG and accordingly set 6 = wG2 in equation 5.5, to obtain a 
self-consistent equation3 for wG2 

(5.7) 

By substituting w = wG2, the student is not operating with the true cost 
function 5.3, but with a modified, self-consistent, cost function depicted 
in Figure 1. We note that by this substitution, a potentially dangerous 
global minimum is created at wG2 = 0. 

2Using (< = a + b$) A [$ - N ( c , d * ) ]  + < - N(a + bc, b2d2). 
'Interestingly, this equation is recovered from the Bayesian approach if we optimize 

w and a simultaneouslv Le., if we do not separate inference in two distinct levels). In 
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Figure 1: The estimated average excess generalization error as function of nor- 
malized estimator. The graphs are obtained by introducing equation 5.2 in 5.3, 
and setting ZZ, = WG. The estimator is scaled by WML, and the estimated excess 
error is scaled by u 2 / N .  The three graphs correspond to different noise levels 
(dashed, low; solid, critical; dotted, high). Note that if the noise is low, a local 
minimum is found, otherwise pruning takes place. 

We could envision equation 5.7 solved by iteration, e.g., starting from 
wgj = W M L .  Iterating the function on the right-hand side we see that, 
besides the solution wG2 = 0, there may be two more fixed points (or 
solutions) depending on the parameters. Analyzing the iteration scheme 
for this simple case is straightforward, one of the possible fixed points is 
stable, the other unstable. If it exists, the stable fixed point (correspond- 
ing to the local minimum in Fig. 1) is found by the iteration scheme, and 
it is given by 

Note that the noise limits are different for the generalization error method 
and Bayes' method. The generalization error method is more conserva- 
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Figure 2: Average excess generalization error AE = E - a2 as a function of 
teacher magnitude for the two adaptive regularization schemes used to estimate 
the mean of a gaussian variable. The teacher weight has been scaled by @, 
and the average excess error is scaled by the excess error of the maximum 
likelihood estimator (cr2/N).  

tive than Bayes' (if we associate conservatism with setting w = 0). The 
noise limit is a factor 4 larger, meaning that pruning or super-regular- 
ization will happen more often. Note also that this estimator, like the 
Bayesian, is biased but consistent. 

6 Comparing the Regularization Schemes 

As discussed above, the quantity to compare is the average (with re- 
spect to training sets) generalization error of the estimators. Since each 
estimator is a function of the empirical mean, W M L ,  only, the average in- 
volves averaging with respect to the distribution of this quantity and we 
already noted that W M L  N N(zzl,u2/N).  The generalization error of the 
maximum likelihood estimator itself was given in 3.3; it is independent 
of the teacher magnitude. 
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Since the regularized estimators depend only on the training set value 
of WML, the avera e excess generalization errors [AE(w) = E ( w )  - a2] are 
functions of w/& 

where WE is either of the three biased estimators. The integral is easily 
evaluated numerically. In Figure 2 we picture these functions, and we 
note that adaptation of the regularization parameter leads to a decreased 
error only if the teacher is small. If the teacher is very large the adaptive 
schemes lead to a negligible increase in error as they indeed should. 
However, if the teacher is of intermediate size all schemes produce seri- 
ously increased errors. The reason for this increased error is simply that 
the adaptive schemes are too conservative; there is a certain probabil- 
ity even for a unit magnitude teacher that the scheme will prune, hence 
introduce a large error. 

We conclude that the benefit of the adaptive schemes depends criti- 
cally on the distribution of teachers, i.e., the extent to which the domain 
lives up to the assumptions of the regularizer. In fact, distributions of 
teachers can be given for which each of the estimation schemes would 
be preferred. We note that for a teacher distribution that has significant 
mass at small teachers like the PO(@) N 1/l@1 distribution correspond- 
ing to the prior of the Bayesian scheme (Buntine and Weigend 1991) the 
brave generalization student is superior for the present problem. This fact 
is most easily appreciated by noting that integrating the functions in Fig- 
ure 2 with respect to PO(@) corresponds to integrating the functions on a 
logarithmic ordinate axis with a uniform measure, hence stretching the 
region around N 0 to infinity. We iterate, this is no big surprise since 
that student precisely minimizes the generalization error with the correct 
(implicit) prior. 

Our experience with adaptive regularization is generally positive. A 
detailed account of multivariate applications, where pruning is achieved 
by utilizing individual weight regularization, will be given elsewhere 
(Rasmussen and Hansen 1994). The idea of using the estimated test er- 
ror as a cost function for determination of regularization parameters is 
quite general. We are currently pursuing this in the context of time se- 
ries processing with feedforward networks for which the corresponding 
generalization error estimate is well-known (see, e.g., Svarer et al. 1993). 

In conclusion, we have shown that the use of adaptive regularization 
for the simple task of estimating the mean of a gaussian variable of 
known variance leads to nontrivial decision processes. We have defined 
a competitive scheme for identification of the regularization parameter, 
based on minimalization of the expected generalization error. We have 
shown that pruning can be viewed as infinite regularization, and that 
this is a natural consequence of adaptive regularization. 
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