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Abstract

We study a time series model that can be viewed as a decision
tree with Markov temporal structure. The model is intractable for
exact calculations, thus we utilize variational approximations. We
consider three different distributions for the approximation: one in
which the Markov calculations are performed exactly and the layers
of the decision tree are decoupled, one in which the decision tree
calculations are performed exactly and the time steps of the Markov
chain are decoupled, and one in which a Viterbi-like assumption is
made to pick out a single most likely state sequence. We present
simulation results for artificial data and the Bach chorales.

1 Introduction

Decision trees are regression or classification models that are based on a nested
decomposition of the input space. An input vector x is classified recursively by a
set of “decisions” at the nonterminal nodes of a tree, resulting in the choice of a
terminal node at which an output y is generated. A statistical approach to decision
tree modeling was presented by Jordan and Jacobs (1994), where the decisions were
treated as hidden multinomial random variables and a likelihood was computed by
summing over these hidden variables. This approach, as well as earlier statistical
analyses of decision trees, was restricted to independently, identically distributed
data. The goal of the current paper i1s to remove this restriction; we describe a
generalization of the decision tree statistical model which is appropriate for time
series.

The basic idea is straightforward—we assume that each decision in the decision tree
is dependent on the decision taken at that node at the previous time step. Thus we
augment the decision tree model to include Markovian dynamics for the decisions.
For simplicity we restrict ourselves to the case in which the decision variable at



a given nonterminal is dependent only on the same decision variable at the same
nonterminal at the previous time step. It is of interest, however, to consider more
complex models in which inter-nonterminal pathways allow for the possibility of
various kinds of synchronization.

Why should the decision tree model provide a useful starting point for time series
modeling? The key feature of decision trees is the nested decomposition. If we
view each nonterminal node as a basis function, with support given by the subset
of possible input vectors x that arrive at the node, then the support of each node
is the union of the support associated with its children. This is reminiscent of
wavelets, although without the strict condition of multiplicative scaling. Moreover,
the regions associated with the decision tree are polygons, which would seem to
provide a useful generalization of wavelet-like decompositions in the case of a high-
dimensional input space.

The architecture that we describe in the current paper is fully probabilistic. We
view the decisions in the decision tree as multinomial random variables, and we
are concerned with calculating the posterior probabilities of the time sequence of
hidden decisions given a time sequence of input and output vectors. Although
such calculations are tractable for decision trees and for hidden Markov models
separately, the calculation is intractable for our model. Thus we must make use
of approximations. We utilize the partially factorized variational approximations
described by Saul and Jordan (1996), which allow tractable substructures (e.g., the
decision tree and Markov chain substructures) to be handled via exact methods,
within an overall approximation that guarantees a lower bound on the log likelihood.

2 Avrchitectures

2.1 Probabilistic decision trees

The “hierarchical mixture of experts” (HME) model (Jordan & Jacobs, 1994) is a
decision tree in which the decisions are modeled probabilistically, as are the outputs.
The total probability of an output given an input is the sum over all paths in the
tree from the input to the output. The HME model is shown in the graphical
model formalism in Figure 2.1. Here a node represents a random variable, and the
links represent probabilistic dependencies. A conditional probability distribution is
associated with each node in the graph, where the conditioning variables are the
node’s parents.

Let z!, z%, and z® denote the (multinomial) random variables corresponding to
the first, second and third levels of the decision tree.! We associate multinomial
probabilities P(z!|x,n'), P(z%|x,z!,n?), and P(2z3|x,z',2% 1®) with the decision
nodes, where nt,n? and 5® are parameters (e.g., Jordan and Jacobs utilized soft-
max transformations of linear functions of x for these probabilities). The leaf prob-
abilities P(y|x,z!, 2%, 23, 60) are arbitrary conditional probability models; e.g., lin-
ear/Gaussian models for regression problems.

The key calculation in the fitting of the HME model to data is the calculation of
the posterior probabilities of the hidden decisions given the clamped values of x
and y. This calculation is a recursion extending upward and downward in the tree,
in which the posterior probability at a given nonterminal is the sum of posterior
probabilities associated with its children. The recursion can be viewed as a special
case of generic algorithms for calculating posterior probabilities on directed graphs

(see, e.g., Shachter, 1990).

!Throughout the paper we restrict ourselves to three levels for simplicity of presentation.



Figure 1: The hierarchical mixture of
experts as a graphical model. The
E step of the learning algorithm for
HME’s involves calculating the poste-
rior probabilities of the hidden (un-
shaded) variables given the observed

(shaded) variables.

®

Figure 2: An HMM as a graphical
model. The transition matrix appears
on the horizontal links and the output
probability distribution on the vertical
links. The E step of the learning algo-
rithm for HMM’s involves calculating
the posterior probabilities of the hid-
den (unshaded) variables given the ob-
served (shaded) variables.

2.2 Hidden Markov models

In the graphical model formalism a hidden Markov model (HMM; Rabiner, 1989) is
represented as a chain structure as shown in Figure 2.1. Each state node is a multi-
nomial random variable z;. The links between the state nodes are parameterized by
the transition matrix a(z;|z:—1), assumed homogeneous in time. The links between
the state nodes z; and output nodes y; are parameterized by the output probability
distribution b(y:|z:), which in the current paper we assume to be Gaussian with
(tied) covariance matrix X.

As in the HME model, the key calculation in the fitting of the HMM to observed
data is the calculation of the posterior probabilities of the hidden state nodes given
the sequence of output vectors. This calculation—the E step of the Baum-Welch
algorithm—is a recursion which proceeds forward or backward in the chain.

2.3 Hidden Markov decision trees

We now marry the HME and the HMM to produce the hidden Markov decision tree
(HMDT) shown in Figure 3. This architecture can be viewed in one of two ways:
(a) as a time sequence of decision trees in which the decisions in a given decision
tree depend probabilistically on the decisions in the decision tree at the preceding
moment in time; (b) as an HMM in which the state variable at each moment in
time is factorized (cf. Ghahramani & Jordan, 1996) and the factors are coupled
vertically to form a decision tree structure.

Let the state of the Markov process defining the HMDT be given by the values of
hidden multinomial decisions z},zZ, and z3, where the superscripts denote the level
of the decision tree (the vertical dimension) and the subscripts denote the time (the
horizontal dimension). Given our assumption that the state transition matrix has
only intra-level Markovian dependencies, we obtain the following expression for the
HMDT probability model:

P({z;, 2,27} Ay Hxi}) = 7 (21 |x0) 72 (2] [x1, 20)7° (57 %1, 21, 27)



Figure 3: The HMDT model is an HME decision tree (in the vertical dimension)
with Markov time dependencies (in the horizontal dimension).

T
H al(ztl |Xf’ Ztl—l)az(ztz |Xf’ th—l’ Ztl)GS(Zﬂxta Z?—la Ztla th) H b(yt |Xta Ztla tha Z?)
t=2

t=1

Summing this probability over the hidden values z},z7, and z> yields the HMDT
likelihood.

The HMDT is a 2-D lattice with inhomogeneous field terms (the observed data).
It 18 well-known that such lattice structures are intractable for exact probabilistic
calculations. Thus, although it is straightforward to write down the EM algorithm
for the HMDT and to write recursions for the calculations of posterior probabilities
in the E step, these calculations are likely to be too time-consuming for practical
use (for T time steps, K values per node and M levels, the algorithm scales as
O(KM+LT)). Thus we turn to methods that allow us to approximate the posterior
probabilities of interest.

3 Algorithms

3.1 Partially factorized variational approximations

Completely factorized approximations to probability distributions on graphs can
often be obtained variationally as mean field theories in physics (Parisi, 1988). For
the HMDT in Figure 3, the completely factorized mean field approximation would
delink all of the nodes, replacing the interactions with constant fields acting at each
of the nodes. This approximation, although useful, neglects to take into account
the existence of efficient algorithms for tractable substructures in the graph.

Saul and Jordan (1996) proposed a refined mean field approximation to allow in-
teractions associated with tractable substructures to be taken into account. The
basic idea is to associate with the intractable distribution P a simplified distribu-
tion ) that retains certain of the terms in P and neglects others, replacing them
with parameters yu; that we will refer to as “variational parameters.” Graphically
the method can be viewed as deleting arcs from the original graph until a forest
of tractable substructures i1s obtained. Arcs that remain in the simplified graph
correspond to terms that are retained in (J; arcs that are deleted correspond to
variational parameters.

To obtain the best possible approximation of P we minimize the Kullback-Liebler



divergence K L(Q||P) with respect to the parameters ;. The result is a coupled
set of equations that are solved iteratively. These equations make reference to the
values of expectations of nodes in the tractable substructures; thus the (efficient)
algorithms that provide such expectations are run as subroutines. Based on the pos-
terior expectations computed under @), the parameters defining P are adjusted. The
algorithm as a whole is guaranteed to increase a lower bound on the log likelihood.

3.2 A forest of chains

The HMDT can be viewed as a coupled set of chains, with couplings induced directly
via the decision tree structure and indirectly via the common coupling to the output
vector. If these couplings are removed in the variational approximation, we obtain
a () distribution whose graph is a forest of chains. There are several ways to
parameterize this graph; in the current paper we investigate a parameterization with
time-varying transition matrices and time-varying fields. Thus the @ distribution
is given by
1
({Zt ) Zta } | {y:} {x}) = Zt |Zt 1) (Zt |Zt 1)%( |Zt 1)

ZQ t=2

H tl(zt)qt (Zt)qt (Z?)

t=1

where @ (z%|zi_,) and §i(zl) are potentials that provide the variational parameter-
ization.

3.3 A forest of decision trees

Alternatively we can drop the horizontal couplings in the HMDT and obtain a
variational approximation in which the decision tree structure is handled exactly
and the Markov structure is approximated. The () distribution in this case is

T
QUzr i 2} [ {ye) ) =[] 7 ()i (ai]a1)7 (2|21, 27)

Note that a decision tree is a fully coupled graphical model; thus we can view the
partially factorized approximation in this case as a completely factorized mean field
approximation on “super-nodes” whose configurations include all possible configu-
rations of the decision tree.

3.4 A Viterbi-like approximation

In hidden Markov modeling it is often found that a particular sequence of states
has significantly higher probability than any other sequence. In such cases the
Viterbi algorithm, which calculates only the most probable path, provides a useful
computational alternative.

We can develop a Viterbi-like algorithm by utilizing an approximation ) that assigns
probability one to a single path {zl,z2,23}:

QUz; . 28,27} | {y:} {xe}) (1)

0 otherwise

{ 1 if 20 =2l Vit

Note that the entropy @1In@ is zero, moreover the evaluation of the energy QIn P
reduces to substituting z: for z! in P Thus the variational is particularly simple
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Figure 4: a) Artificial time series data. b) Learning curves for the HMDT.

in this case. The resulting algorithm involves a subroutine in which a standard
Viterbi algorithm is run on a single chain, with the other (fixed) chains providing
field terms.

4 Results

We illustrate the HMDT on (1) an artificial time series generated to exhibit spatial
and temporal structure at multiple scales, and (2) a domain which is likely to exhibit
such structure naturally—the melody lines from J.S. Bach’s chorales.

The artificial data was generated from a three level binary HMDT with no inputs,
in which the root node determined coarse-scale shifts (£5) in the time series, the
middle node determined medium-scale shifts (£2), and the bottom node determined
fine-scale shifts (£0.5) (Figure 4a). The temporal scales at these three nodes—as
measured by the rate of convergence (second eigenvalue) of the transition matrices,
with 0 (1) signifying immediate (no) convergence—were 0.85, 0.5, and 0.3, respec-
tively.

We implemented a forest-of-chains approximation and a Viterbi-like approximation.
The learning curves for ten runs of the forest-of-chains approximation are shown in
Figure 4b. Three plateau regions are apparent, corresponding to having extracted
the coarse, medium, and fine scale structures of the time series. Five runs captured
all three spatio-temporal scales at their correct level in the hierarchy; three runs
captured the scales but placed them at incorrect nodes in the decision tree; and
two captured only the coarse-scale structure. Similar results were obtained with
the Viterbi-like approximation.

The Bach chorales dataset consists of 30 melody lines with 40 events each.? Each
discrete event encoded 6 attributes—start time of the event (st), pitch (pitch),
duration (dur), key signature (key), time signature (time), and whether the event
was under a fermata (ferm).

The chorales dataset was modeled with 3-level HMDTs with branching factors (K)
2, 3,4, 5, and 6 (3 runs at each size, summarized in Table 1). Thirteen out of 15
runs resulted in a coarse-to-fine progression of temporal scales from root to leaves
of the tree. A typical run at branching factor 4, for example, dedicated the top
level node to modeling the time and key signatures—attributes that are constant
throughout any single chorale—the middle node to modeling start times, and the

?This dataset was obtained from the UCI Repository of Machine Learning Datasets.



Percent variance explained Temporal scale
K | st pitch dur key time ferm | levell level2 level 3
2 3 6 6 84 95 0| 1.00 1.00 0.51
3|22 38 T 93 99 0| 1.00 0.96 0.85
4 | bb 48 36 96 99 5| 1.00 1.00 0.69
5 | 57 41 41 97 99 61 1.00 0.95 0.75
6 | 70 40 58 94 99 10 | 1.00 0.93 0.76

Table 1: Hidden Markov decision tree models of the Bach chorales dataset: mean
percentage of variance explained for each attribute and mean temporal scales at the
different nodes.

bottom node to modeling pitch or duration.

5 Conclusions

Viewed in the context of the burgeoning literature on adaptive graphical probabilis-
tic models—which includes HMM’s, HME’s, CVQ’s, IOHMM’s (Bengio & Frasconi,
1995), and factorial HMM’s—the HMDT would appear to be a natural next step.
The HMDT includes as special cases all of these architectures, moreover it arguably
combines their best features: factorized state spaces, conditional densities, represen-
tation at multiple levels of resolution and recursive estimation algorithms. Our work
on the HMDT is in its early stages, but the earlier literature provides a reasonably
secure foundation for its development. Moreover the empirical results obtained thus
far give us some confidence that the approximations that we are using will prove to
be sufficiently accurate.

References

Bengio, Y., & Frasconi, P. (1995). An input output HMM architecture. In G.
Tesauro, D. S. Touretzky & T. K. Leen, (Eds.), Advances in Neural Information
Processing Systems 7, MIT Press, Cambridge MA.

Ghahramani, Z., & Jordan, M. I. (1996). Factorial hidden Markov models. In D. S.
Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Information
Processing Systems 8, MIT Press, Cambridge MA.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the
EM algorithm. Newral Computation, 6, 181-214.

Parisi, G. (1988). Statistical Field Theory. Redwood City, CA: Addison-Wesley.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected application s
in speech recognition. Proceedings of the IEEE, 77, 257-28b.

Saul, L. K., & Jordan, M. 1. (1996). Exploiting tractable substructures in intractable
networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in
Neural Information Processing Systems 8§, MIT Press, Cambridge MA.

Shachter, R. (1990). An ordered examination of influence diagrams. Networks, 20,
535-563.



