
Outlier Robust Gaussian Process Classification

Hyun-Chul Kim1 and Zoubin Ghahramani2

1 Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Korea
2 University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

Abstract. Gaussian process classifiers (GPCs) are a fully statistical
model for kernel classification. We present a form of GPC which is robust
to labeling errors in the data set. This model allows label noise not only
near the class boundaries, but also far from the class boundaries which
can result from mistakes in labelling or gross errors in measuring the
input features. We derive an outlier robust algorithm for training this
model which alternates iterations based on the EP approximation and
hyperparameter updates until convergence. We show the usefulness of
the proposed algorithm with model selection method through simulation
results.

1 Introduction

In many real-world classification problems the labels provided for the data are
noisy. There are typically two kinds of noise in labels. Noise near the class bound-
aries often occurs because it is hard to consistently label ambiguous data points.
Labelling errors far from the class boundaries can occur because of mistakes in
labelling or gross errors in measuring the input features. We call labelling er-
rors far from the boundary, outliers. While many methods have been proposed
for dealing with noisy class boundaries, far less attention has been placed on
dealing with classification outliers. In this paper we present a Bayesian kernel
classification algorithm which is robust to outliers.

GPCs are a Bayesian kernel classifier derived from Gaussian process priors
over functions which were developed originally for regression [1–3]. In classifica-
tion, the target values are discrete class labels. To use Gaussian processes for
binary classification, the Gaussian process regression model can be modified so
that the sign of the continuous latent function it outputs determines the class
label. Observing the class label at some data point constrains the function value
to be positive or negative at that point, but leaves it otherwise unknown. To
compute predictive quantities of interest we therefore need to integrate over the
possible unknown values of this function at the data points. Exact evaluation of
this integral is computationally intractable. However, several successful meth-
ods have been proposed for approximately integrating over the latent function
values, such as the Laplace approximation [1], Markov Chain Monte Carlo [3],
and variational approximations [2]. Opper and Winther (2000) used the TAP
approach originally proposed in statistical physics of disordered systems to inte-
grate over the latent values [4]. The TAP approach for this model is equivalent

2

to the more general Expectation Propagation (EP) algorithm for approximate
inference [5]. Minka’s formulation [5] has a special hyperparameter which can
potentially be used to deal with outliers. Since outliers can be a big obstacle to
learning, in this paper we propose an outlier robust learning algorithm based on
EP for Gaussian process classification. It turns out that the algorithm is useful
with the model selection between it and the regular GPC.

The paper is organized as follows. Section 2 introduces Gaussian process
classification. In section 3, we introduce the EP/TAP method for approximate
inference. In section 4, we derive the algorithm for outlier treatment. In section
5, we present model selection method based on Bayesian model evidence. In
section 6, we show experimental results on both synthetic and real data sets. In
section 7, we discuss our approach and future work.

2 Gaussian Process Classification

Let us assume that we have a data set D of data points xi with binary class
labels yi ∈ {−1, 1}: D = {(xi, yi)|i = 1, 2, . . . , n}, X = {xi|i = 1, 2, . . . , n}, Y =
{yi|i = 1, 2, . . . , n}. Given this data set, we wish to find the correct class label
for a new data point x̃. We do this by computing the class probability p(ỹ|x̃, D).

We assume that the class label is obtained by transforming some real valued
latent variable f̃ , which is the value of some latent function f(·) evaluated at x̃.
We put a Gaussian process prior on this function, meaning that any number of
points evaluated from the function have a multivariate Gaussian density (see [6]
for a review of GPs). Assume that this GP prior is parameterized by Θ which
we will call the hyperparameters. We can write the probability of interest given
Θ as:

p(ỹ|x̃, D, Θ)=

∫

p(ỹ|f̃ , Θ)p(f̃ |D, x̃, Θ) df̃ (1)

The second part of Eq 1 is obtained by further integration over f = [f1f2 · · · fn],
the values of the latent function at the data points.

p(f̃ |D, x̃, Θ) =

∫

p(f , f̃ |D, x̃, Θ) df =

∫

p(f̃ |x̃, f , Θ)p(f |D, Θ)df (2)

where p(f̃ |x̃, f , Θ) = p(f̃ , f |x̃, X, Θ)/p(f |X, Θ) and

p(f |D, Θ) ∝ p(Y |f , X, Θ)p(f |X, Θ) = {
n

∏

i=1

p(yi|fi, Θ)}p(f |X, Θ). (3)

The first term in 3 is the likelihood for each observed class given the latent
function value, while the second term is the GP prior over functions evaluated
at the data. Writing the dependence of f on x implicitly, the GP prior over
functions can be written

p(f |X, Θ) =
1

(2π)N/2|CΘ|1/2
exp(−1

2
(f − µ)⊤C−1

Θ (f − µ)), (4)

3

where the mean µ is usually assumed to be the zero vector 0 and each term of
a covariance matrix Cij is a function of xi and xj , i.e. c(xi,xj).

One form for the likelihood term p(yi|fi, Θ), which relates f(xi) monotoni-
cally to probability of yi = +1, is

p(yi|fi, Θ) =
1√
2π

∫ yif(xi)

−∞
exp(−z2

2
) dz = erf(yif(xi)). (5)

Other possible forms for the likelihood are a sigmoid function 1/(1+exp(−yif(xi))),
a step function H(yif(xi)), and a step function with a labelling error ǫ + (1 −
2ǫ)H(yif(xi)). In this paper we use the step function with a labelling error which
was also used in [5].

Since p(f |D, Θ) in Eq 3 is intractable due to the nonlinearity in the likelihood
terms, we use an approximate method. Laplace method, variational method,
Markov Chain Monte Carlo method was used in [1], [2], and [3], respectively.
Expectation propagation, which is described in the next section, was used in [4,
5]

3 EP for GPC

The Expectation-Propagation (EP) algorithm is an approximate Bayesian infer-
ence method [5]. We review EP in its general form before describing its applica-
tion to GPCs.

Consider a Bayesian inference problem where the posterior over some pa-
rameter φ is proportional to the prior times likelihood terms for an i.i.d. data
set

p(φ|y1, . . . , yn) ∝ p(φ)

n
∏

i=1

p(yi|φ) (6)

We approximate this by

q(φ) ∝ t̃0(φ)

n
∏

i=1

t̃i(φ) (7)

where each term (and therefore q) is assumed to be in the exponential family.
EP successively solves the following optimization problem

t̃new

i (φ) = arg min
t̃i(φ)

KL

(

q(φ)

t̃oldi (φ)
p(yi|φ)

∣

∣

∣

∣

∣

∣

∣

∣

q(φ)

t̃oldi (φ)
t̃i(φ)

)

(8)

Where KL is the Kullback-Leibler divergence and

KL(p(x)||q(x)) =

∫

p(x) log
p(x)

q(x)
dx (9)

for the density functions p(x) and q(x). Since q is in the exponential family, this
minimization is solved by matching moments of the approximated distribution.
EP iterates over i until convergence. The algorithm is not guaranteed to converge

4

although it did in practice in all our examples. Assumed Density Filtering (ADF)
is a special online form of EP where only one pass through the data is performed
(i = 1, . . . n).

We describe EP for GPC referring to [5, 4, 7]. The latent function f plays the
role of the parameter φ above. The form of the likelihood we use in the GPC is

p(yi|fi) = ǫ + (1 − 2ǫ)H(yifi), (10)

where H(x) = 1 if x > 0, and otherwise 0. The hyperparameter, ǫ in Eq 10
models labeling error outliers. The EP algorithm approximates the posterior
p(f |D) = p(f)p(D|f)/p(D) as a Gaussian having the form q(f) ∼ N (mf ,Vf),
where the GP prior p(f) ∼ N (0,C) has covariance matrix C with elements Cij

defined by the covariance function

Cij = c(xi,xj) = v0 exp{−1

2

d
∑

m=1

lmdm(xm
i , xm

j)} + v1 + v2δ(i, j), (11)

where xm
i is the mth element of xi, and

dm(xm
i , xm

j) =

{

(xm
i − xm

j)2 if xm is continous;
1 − δ(xm

i , xm
j) if xm is discrete,

(12)

and δ(xm
i , xm

j) is a Kronecker delta function. The hyperparameter v0 specifies
the overall vertical scale of variation of the latent values, v1 the overall bias of the
latent values from zero mean, v2 the latent noise variance, and lm the (inverse)
lengthscale for feature dimension m. The erf likelihood term 5 is equivalent to
using the threshold function in Eq 10 with ǫ = 0 and non-zero latent noise v2.

EP tries to approximate p(f |D) = p(f)/p(D)
∏n

i=1 p(yi|f), where p(f) ∼
N (0,C). Each term p(yi|f) = ti(f) is approximated by t̃i(f) = si exp(− 1

2vi
(fi −

mi)
2). From this initial setting, we can derive EP for GPC by applying the

general idea described above. The resulting EP procedure is virtually iden-
tical to the one derived for BPMs in [5]. We define the following notation3:

Λ = diag(v1, . . . , vn); hi = E[fi]; h
\i
i = E[f

\i
i], where h

\i
i and f

\i
i are ones

obtained from a whole set except for xi. The EP algorithm is as follows which
we repeat for completeness—please refer to [5] for the details of the derivation.
After the initialization vi = ∞, mi = 0, si = 1, hi = 0, λi = Cii, the following
process is performed until all (mi, vi, si) converge:

Loop i = 1, 2, . . . , n :

1. Remove the approximate density t̃i (for ith data point) from the posterior

to get an ‘old’ posterior: h
\i
i = hi + λiv

−1
i (hi − mi)

2. Recompute part of the new posterior: z =
yih

\i

i√
λi

; Zi = ǫ + (1 − 2ǫ)erf(z)

αi = 1√
λi

(1−2ǫ)N (z;0,1)
ǫ+(1−2ǫ)erf(z) ; hi = h

\i
i +λiαi, where erf(z) is a cumulative normal

density function.

3 diag(v1, . . . , vn) means a diagonal matrix whose diagonal elements are v1, . . . , vn.
Similarly for diag(v).

5

3. Get a new t̃i: vi = λi(
1

αihi
−1); mi = hi+viαi; si = Zi

√

1 + v−1
i λi exp(λiαi

2hi
)

4. Now that vi is updated, finish recomputing the new posterior: A = (C−1 +
Λ−1)−1; For all i, hi =

∑

j Aij
mj

vj
; λi = (1

Aii
− 1

vi
)−1

Our approximated posterior over the latent values is:

q(f) ∼ N (C̃α,A), (13)

where C̃ij = yjc(xi,xj) (or C̃ = Cdiag(y)). The approximate evidence can be
obtained in the same way as for BPMs:

p(Y |X, Θ) ≈ |Λ|1/2

|C + Λ|1/2
exp(B/2)

n
∏

i=1

si (14)

where B =
∑

ij Aij
mimj

vivj
− ∑

i
m2

i

vi
. The approximate evidence in 14 can be

used to evaluate the feasibility of kernels or their hyperparameters to the data.
But, it is tricky to get a updating rule for the hyperparameters from Eq 14.
In the following section, we derive the algorithm to find the hyperparameters
automatically based not on Eq 14 but a variational lower bound of the evidence
[8]. Classification of a new data point x̃ can be done according to argmax

ỹ
p(ỹ|x̃) =

sgn(E[f̃]) = sgn(
∑n

i=1 αiyic(xi, x̃)).

4 Outlier Robust Learning Algorithm

We derive an algorithm that learns the labelling error hyperparameter, ǫ, and is
robust to outliers. Our algorithm is based on the EP approximation mentioned
above, and described in more detail below. The goal is to find ǫ and other model
hyperparameters to maximize the evidence p(Y |X, ǫ). We put Θ = Θ

cov
∪ {ǫ},

and Θ
cov

= {v0, v1, v2} ∪ {lp|p = 1, 2, . . . , d} The following procedure is iterated
until convergence after initializing ǫ with a small value:

1. EP iterations are performed given the hyperparameter ǫ (see section 3). As a
result of EP, the posterior p(f |D, Θ) is approximated as a Gaussian density

q(f) ∼ N (C̃α,A) (15)

where C̃ij = yjCij (or C̃ = C diag(y)), α and A are obtained from EP.
2. Using q(f), we form a lower bound for the log evidence by Jensen’s inequality:

log p(Y |X, Θ) ≥
∫

q(f) log
p(Y |f , ǫ)p(f |X, Θ

cov
)

q(f)
df (16)

The only term in the lower bound that depends on ǫ is Fǫ
def
=

∫

q(f) log p(Y |f , ǫ) df
so we optimize Fǫ with respect to ǫ.

6

Fǫ =
∑

i

∫

q(fi) log p(yi|fi, ǫ) dfi (17)

=
∑

i

∫

q(fi) log(ǫ + (1 − 2ǫ)H(yifi)) dfi (18)

Now, this is easy to compute in terms of erf functions (cumulative normal

density functions). Define ωi
def
=

∫

q(fi)H(yifi) dfi = erf(yihi/
√

λi) where
fi ∼ N (hi, λi) then,

Fǫ =
∑

i

(1 − ωi) log ǫ + ωi log(1 − ǫ) (19)

Differentiating with respect to ǫ and solving we get:

ǫ∗ =
1

n

∑

i

(1 − ωi) (20)

Although we have focused on learning the outlier model ǫ, in step 2, the
other hyperparameters of the covariance function Θ

cov
are also optimized by

taking some gradient steps. In fact, the above algorithm is a form of approximate
EM algorithm [9] with EP in the E-step and the labeling error hyperparameter
updating in the M-step.

5 Model Selection Based on Evidence

In designing Gaussian process classifiers there is considerable flexibility both in
the choice of the covariance function (i.e. kernel) and in the choice of the form
of the likelihood term (labelling noise model). We have focused on the likelihood
term and to model outliers we introduced the ǫ parameter in the likelihood term
(Eq 10). However, for certain data sets an outlier model may not be necessary,
i.e. we can set ǫ = 0. One can do Bayesian model comparison between GPCs
with and without an outlier model by evaluating the evidence, which is the prob-
ability of the data given the model [10]. While the exact evidence is intractable
to compute, EP provides an approximation (Eq 14). Consider comparing two
models, the regular GPC Θregular (learned with EP (ǫ=0)) and the robust GPCs
Θrobust (learned with the robust algorithm above). The model we would select
based on this data is:

Θ̂ = argmax
Θ∈{Θregular,Θrobust}

log p(Y |X, Θ). (21)

An alternative approach is to simply run the more complicated robust model and
examine whether ǫ converges to exactly zero. However, there are two problems
with this: first EM only finds local optima and the ǫ = 0 solution may not
be found because of this, even if it is a good solution. Second, we may actually
believe that the labels are clean so it is useful to explicitly consider the hypothesis
that ǫ = 0.

7

6 Simulation Results

We tested the proposed algorithm for outlier treatment. We applied it to a
synthetic data set, which can be visualized, and a real world data set.

We generated a simple 2-class 2-dimensional data set whose input features x1

and x2 are random numbers between −1 and 1. The class +1 or −1 is determined
by the x2

1 + x2
2 ≥ 0.5 decision rule. We generated 1000 data points and selected

40 data points as the training set and added labeling errors to two randomly
selected data points in the training set. We compared a version of our algorithm
with a fixed (ǫ = 0) labeling error hyperparameter to one where ǫ was adapted.
The hyperparameters are set to v0 = 1, v1 = 10−8, l1 = l2 = 0.5. In the regular
GPC (ǫ = 0), v2, which allows a soft decision boundary, was updated with the
EM-EP algorithm [11]. In the robust GPC we used the proposed algorithm and
also updated v2 (as in [11]) in step 2 of the proposed algorithm.

Figure 1 shows the training points, test points, decision boundary from GPC
and decision boundary from robust GPC. Obviously, robust GPC gives a better
decision boundary than GPC.

(a) (b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

c1
c2

outlier

outlier

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

c1
c2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

c1
c2

Fig. 1. Experiment results of the proposed outlier robust algorithm for the artificial
data set with outliers: (a) Training set, (b) Test set, (c) Classification result with GPC
(ǫ = 0), (d) Classification result with robust GPC

8

Table 1 shows the classificaton error rates and the log of the approximate
evidence (Eq 12). GPC with the adapted labeling error hyperparameter clearly
outperforms the one with it fixed by both approximate evidence and classification
test error rate. If we apply a model selection scheme based on an approximate
evidence, we select robust GPC which is obviously a better model for this data
set.

Table 1. Comparison of GPCs with adpated and fixed label error hyperparamter

Methods: GPC with ǫ = 0 Robust GPC

log p(Y |X, Θ) -26.96 -25.31

Error rate (%) 7.08 2.40

To illustrate the proposed algorithm we applied it to a real world data set
from the UCI Machine Learning Repository. We used the New Thyroid data
set which has 2 classes (“normal” and “not normal”, reduced from 3 classes)
and 215 data points. We created 10 pairs of training and test sets by randomly
dividing the whole data set into two. Outliers were generated in the training set
by changing labels of 0, 5, 10, 15 % of the data points4. We applied GPC with
ǫ = 0 and the proposed robust GPC method, with ǫ updated. We also tested a
model selection method which chose between GPC and robust GPC based on
the model evidence.

Table 2 shows means of approximate log evidences (available only for GPCs),
means of test set errors and standard deviations of those mean estimators com-
puted averaged over the 10 runs. In Table 2, “label-change rate” is the rate
of the data whose labels are changed in the training set,“error” is the test set
error,“log-ev” is the approximate log evidence, “SVM” is a soft-margin support
vector machine, “GPC” is the model with (ǫ = 0), “robust-GPC” is the proposed
model adapting ǫ, and “MS-robust-GPC” is the model selection method which
selects between GPC and robust GPC based on which has higher evidence on the
training data. The hyperparameters in the GPC covariance function were set to
v0 = 1,v1 = 10−8, l1 = 0.05, and l2 = 0.05. In the regular GPC (ǫ = 0), v2, which
allows a soft decision boundary, was updated with the EM-EP algorithm [11].
The SVM used the same kernel as the covariance function of the GPC, except
that v2 was set to 0 and instead the regularization parameter C was chosen by
cross-validation—a standard approach to SVMs. Note that C also allows a soft
decision boundary, like v2. In the robust GPC we used the proposed algorithm
and also updated v2 (as in [11]) in step 2 of the proposed algorithm.

4 This does not mean that the training set has 0, 5, 10, 15 % of its data as outliers,
because the data whose labels are changed which are far from the decision boundary
are outliers. However, the training set with more label-changed data tends to have
more outliers.

9

The robust-GPC performed better than SVMs and GPCs for data with more
outliers whose label-change rates are 10% and 15%, but the GPC performed
better than SVMs and robust-GPC for less outliered data whose label-change
rates are 0% and 10%. The reason why GPCs are better than robust-GPC for
the data with 0% and 5% label-change rates seems to be that there are no outlier
or only a relatively small number of outliers. MS-robust-GPC performed as well
or better than SVMs and GPCs for all label-change rates studied (including
0%). The MS-robust-GPC model combined the best of both worlds, choosing
the simpler GPC when there were no outlier and chosing the robust GPC when
there were many outliers.

Table 2. Comparison of SVM, the regular GPC, the proposed robust GPC, and the
model selection based robust GPC

label-change rate(%) 0 5 10 15

SVM error(%) 4.07±0.60 5.09±0.96 6.76±1.10 8.80±1.13

GPC log-ev -24.4±0.6 -41.8±0.8 -51.8±1.1 -60.2±1.0
error(%) 3.70±0.36 4.90±0.77 7.50±0.88 8.15±1.42

robust log-ev -27.8±0.5 -41.7±0.8 -50.9±0.7 -59.2±0.7
GPC error(%) 4.54±0.55 5.28±0.56 6.30±0.89 6.94±0.75

MS-robust- log-ev -24.4±0.6 -41.0±0.7 -50.5±0.7 -58.6±0.8
GPC error(%) 3.70±0.36 4.54±0.62 6.76±0.76 6.85±0.73

7 Discussion

We have proposed an algorithm for outlier robust Gaussian process classification.
This algorithm is an approximate EM algorithm which updates a labeling error
hyperparameter. The experimental results show that having an outlier model is
important for classification and that robust GPCs with model selection based
on the Bayesian evidence provide a promising approach to robust classification.

The complexity of learning in the outlier robust GPC is not higher than that
in normal GPC. Both of them go through the almost similar steps. The extension
to multi-class classification is not straightforward to do. It is not straightforward
to apply the EP algorithm to multi-class classification models (e.g. the multi-
class classification model proposed in [12]). It is a challenging problem to get the
EP algorithm for a multi-class GPC model.

The notion of an outlier is relative to the complexity of the model. If the
model is very complicated, it may not have any outliers in the sense that the
model can fit all data points easily. Since the complexity of the model and the
need for an explicit outlier model are closely related, this poses a challenging set
of issues for future work in model selection.

10

Acknowledgement

This work has been partially supported by the BK21 Research Center for Intel-
ligent Mobile Software at Yonsei Univerisity in Korea.

References

1. Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis Machine Intelligence 20 (1998) 1342–1351

2. Gibbs, M., MacKay, D.J.C.: Variational Gaussian process classifiers. IEEE Tran-
scations on Neural Networks 11(6) (2000) 1458

3. Neal, R.: Monte Carlo implementation of Gaussian process models for Bayesian
regression and classification. Technical Report CRG–TR–97–2, Dept. of Computer
Science, University of Toronto (1997)

4. Opper, M., Winther, O.: Gaussian processes for classification: Mean field algo-
rithms. Neural Computation 12 (2000) 2655–2684

5. Minka, T.: A family of algorithms for approximate Bayesian inference. PhD thesis,
MIT (2001)

6. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: NIPS 8.
Volume 8., MIT Press (1995)

7. Seeger, M., Lawrence, N., Herbrich, R.: Sparse representation for Gaussian process
models. In: NIPS 15. Volume 15. (2002)

8. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to
variational methods for graphical models. Machine Learning 37 (1999) 183–233

9. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse,
and other variants. In Jordan, M.I., ed.: Learning in Graphical Models, Kluwer
(1998)

10. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3) (1992) 415–447
11. Kim, H.C., Ghahramani, Z.: The EM-EP algorithm for Gaussian process classi-

fication. In: Proceedings of the Workshop on Probabilistic Graphical Models for
Classification (ECML). (2003)

12. Kim, H.C., Ghahramani, Z.: Bayesian Gaussian process classification with the EM-
EP algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence
28(12) (2006) 1948–1959

