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Abstract

Bayesian model averaging linearly mixes the
probabilistic predictions of multiple models,
each weighted by its posterior probability.
This is the coherent Bayesian way of com-
bining multiple models only under certain re-
strictive assumptions, which we outline. We
explore a general framework for Bayesian
model combination (which differs from model
averaging) in the context of classification.
This framework explicitly models the rela-
tionship between each model’s output and
the unknown true label. The framework does
not require that the models be probabilis-
tic (they can even be human assessors), that
they share prior information or receive the
same training data, or that they be indepen-
dent in their errors. Finally, the Bayesian
combiner does not need to believe any of the
models is in fact correct. We test several vari-
ants of this classifier combination procedure
starting from a classic statistical model pro-
posed by Dawid and Skene (1979) and using
MCMC to add more complex but important
features to the model. Comparisons on sev-
eral data sets to simpler methods like ma-
jority voting show that the Bayesian meth-
ods not only perform well but result in inter-
pretable diagnostics on the data points and
the models.

1 Introduction

There are many methods available for classification.
When faced with a new problem, where one has little
prior knowledge, it is tempting to try many different
classifiers in the hope that combining their predictions
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would give good performance. This has led to the
proliferation of classifier combination, a.k.a. ensemble
learning, methods (Dietterich, 2000; Tulyakov et al.,
2008). Recently, the Netflix Grand Prize, a contest to
develop methods for predicting how much people will
enjoy a movie according to their movie preferences,
was awarded to a team which combined many pre-
dictors (Toscher et al., 2009). During the contest, it
was widely reported that model combination improves
the prediction accuracy (Salakhutdinov et al., 2007;
Takács et al., 2007; Bell et al., 2007)

The Bayesian model averaging (BMA) framework ap-
pears to be ideally suited to combining the outputs
of multiple classifiers. However, this is misleading
(Minka, 2002). Before we discuss Bayesian classifier
combination (BCC), the topic of this paper, let us re-
view BMA and outline why it is not the right frame-
work for combining classifiers.1

Assume there are K different classifiers. Bayesian
model averaging starts with a prior over the classi-
fiers, p(k) for the kth classifier. This is meant to
capture the (prior) belief in each classifier. Then we
observe some data D, and we compute the marginal
likelihood or model evidence p(D|k) for each k (which
can involve integrating out the parameters of the clas-
sifier). Using Bayes rule we compute the posterior
p(k|D) = p(k)p(D|k)/p(D) and we use these poste-
riors to weight the classifiers predictions:

p(ti|xi, D) =

K∑
k=1

p(ti, k|xi, D) =

K∑
k=1

p(ti|xi, k,D)p(k|D)

(1)
where xi denotes a new input data point and ti the
predicted class label associated with data point i.
The key element of this well-known procedure is that
the predictive distribution of each classifier is linearly
weighted by its posterior probability.

While this approach is appealing and well-motivated
from a Bayesian framework, it suffers from three im-
portant limitations when misused as a combination

1We have focused on classification, although many of
the ideas carry forth to other modelling problems; we re-
turn to this in the discussion.
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method:

1. It is only valid if we believe that the K classifiers
capture mutually exclusive and exhaustive possi-
bilities about how the data was generated. In fact,
we might not believe at all that any of the K clas-
sifiers reflects the true data generation. However,
we may still want to be able to combine them to
form a prediction.

2. For many classification methods available in the
machine learning community, it is not possible to
compute, or even define, the marginal likelihood
(for example, C4.5, kNN, etc.). Moreover, one
should in principle be able to include human ex-
perts into any classifier combination framework.
One cannot easily define a likelihood function for
the human expert from which marginal likelihoods
can be computed.

3. Not all classifiers may have observed the same
data or started with the same prior assump-
tions. The Bayesian model averaging framework
described above would have difficulties dealing
with such cases, since the posterior is computed
by conditioning on the same data set.

Here we propose an approach to Bayesian classifier
combination which does not assume that any of the
classifiers is the true one. Moreover, it does not require
that the classifiers be probabilistic; they can even be
human experts. Finally, the classifiers can embody
widely different prior assumptions about the data, and
have observed different data sets.

There are well-known techniques for classifier combi-
nation, so called ensemble methods2, such as bagging,
boosting, dagging, random forests (Dietterich, 2000;
Breiman, 1996; Freund and Schapire, 1996; Breiman,
2001). These methods train individual classifiers and
combine them with their own schemes such as training
them with randomly sampled training sets, training
them sequentially with training sets sampled in pro-
portional to previously trained classifiers’ errors for
each data point, or training them with different in-
put features. In this work, we do not restrict how the
individual classifiers are trained, but instead assume
they are given and fixed. Therefore, our work deals
with a different problem from those which are usually
handled using ensemble methods.

Another powerful and general method, called stacked
generalization can be used to combine lower-level mod-
els (Wolpert, 1992). Stacking methods for classifier

2Note that the term “ensemble learning” has also been
used in the Bayesian literature in a different context to refer
to approximate Bayesian model averaging using variational
methods.

combination use another classifier which has as inputs
the outputs of the individual classifiers. Stacking can
be combined with bagging and dagging (Ting and Wit-
ten, 1997). Our method can be seen as similar to
stacked generalization but using graphical models as
higher-level models. It should be possible to extend
our method to encompass a fully-Bayesian generaliza-
tion of stacking, but we leave this for future work.

The method we propose for Bayesian classifier combi-
nation in a machine learning context is inspired by the
method proposed in Haitovsky et al. (2002) for mod-
elling disagreement between human assessors which in
turn is an extension of Dawid and Skene (1979). This
method assumes individual classifiers are independent,
which is often unrealistic and results in limited per-
formance. We therefore start with these models and
propose three extensions for modelling the correlations
between individual classifiers. The literature of com-
bining probability distributions is quite extensive, and
reviews of other methods including linear, logarithmic
and multivariate normal opinion pools, can be found
in Genest and Zidek (1986) and Jacobs (1995).

Recently, methods for corroboration which can learn
truth values of knowledge and its trust have been pro-
posed. Galland et al. (2010) proposed three algorithms
to aggregate disagreeing views and estimate both their
truth values and the trust in them. Their models as-
sume that views and facts are all probabilistically in-
dependent. Raykar et al. (2010) proposed a supervised
learning approach for the case that we have multiple
assessors but no gold standard. They estimate the
classifier and the ground truth jointly, but they assume
that assessors are independent. Kasneci et al. (2011)
has proposed a Bayesian framework called CoBayes
with an assessment model, a logical model, and an ex-
pertise model. With a logical model, they model the
dependency between truth values of knowledge, and
with an expertise model they model the expertise of
an assessor for knowledge. In this model they still as-
sume that assessors are independent. In classifier com-
bination problems, classifiers (or assessors) are usually
not independent (since classifiers are trained with cor-
related training sets, or with correlated features). The
models proposed in our paper consider and explicitly
attempt to model the correlation between classifiers.

Xu et al. (1992) developed a Bayesian approach based
on confusion matrix modelling that could be seen
as similar to the first one among our proposed ap-
proaches. However, they regarded the confusion ma-
trix as the prior knowledge, rather than something
learned from data. Distinguished from their work, we
use both prior class proportions and confusion ma-
trices as separate hidden variables, and do Bayesian
learning on them. Furthermore, we develop another
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enhanced model which models the correlation among
individual classifiers, and two more models that use
undirected graphical models.

The paper is organized as follows. In Section 2, we
briefly review the methods proposed in Dawid and
Skene (1979) and Haitovsky et al. (2002), which we
start with. In Section 3, we propose three extensions
of the starting models to deal with the correlation be-
tween classifiers. In Section 4, we show the experi-
ment results of our proposed methods and compare
with other methods. In Section 5, we conclude the
paper with discussions.

2 Independent Models for Bayesian
Classifier Combination

2.1 Probabilistic Model for Classifier
Combination

We describe the method for observer modelling pro-
posed in Dawid and Skene (1979) with the view of
adapting it to classifier combination. For the ith
data point, we assume the true label ti is gener-
ated by a multinomial distribution with parameters p:
p(ti = j|p) = pj , which models the class proportions.

Then, we assume that the output c
(k)
i of classifier k is

generated by a multinomial distribution with param-

eters π
(k)
j : p(c

(k)
i |ti = j) = π

(k)

j,c
(k)
i

. For simplicity we

assume that the classifiers have discrete outputs, i.e.

c
(k)
i ∈ {1, . . . , J} where J is the number of classes. The

extension to individual classifiers which output proba-
bility distributions is obviously important and will be
explored in the future. The matrix π(k) captures the
confusion matrix for classifier k.

If we assume that the classifier outputs are indepen-
dent given the true label ti, we get p(ci, ti|p,π) =

pti
∏K
k=1 π

(k)

ti,c
(k)
i

where c denotes the vector of class

labels over all classifiers. If we further assume that la-
bels across data points are independent and identically
distributed, we obtain the likelihood

p(c, t|p,π) =

I∏
i=1

{
pti

K∏
k=1

π
(k)

ti,c
(k)
i

}
. (2)

Usually, c
(k)
i is known and the other variables and pa-

rameters are unknown. By considering ti as hidden
variables, we can apply the EM algorithm to find ML
estimates for p and π. This is the approach taken
in Dawid and Skene (1979). It should be noted that
not only does this perform classifier combination, by
inferring the posterior p(ti|c,p,π), but it provides esti-
mates of interpretable quantities such as the confusion
matrices.

2.2 Independent BCC Model

A Bayesian treatment of the probabilistic model in
Section 2.1 was proposed in Haitovsky et al. (2002)
for combining multiple human raters.3 They also con-

sidered multiple ratings (i.e. c
(k)
i1 . . . c

(k)
iM ) for the same

input vector by the same raters. Since artificial clas-
sifiers are not usually variable in how they respond to
the same input, we do not consider replicates in the
ratings. In this section we develop a model for BCC
inspired by this work.

The Bayesian model needs priors on the parameters;
we used hierarchical conjugate priors. A row of the

confusion matrix π
(k)
j = [π

(k)
j,1 , π

(k)
j,2 , · · · , π

(k)
j,J ], is mod-

eled to have a Dirichlet distribution

p(π
(k)
j |α

(k)
j ) =

Γ(
∑J
l=1 α

(k)
j,l )∏J

l=1 Γ(α
(k)
j,l )

J∏
l=1

(π
(k)
j,l )α

(k)
j,l −1, (3)

where α
(k)
j = [α

(k)
j,1 , α

(k)
j,2 , · · · , α

(k)
j,J ] and

∑J
l=1 π

(k)
j,l = 1.

The prior distribution of α
(k)
j,l is modeled by an expo-

nential distribution with parameters λj,l.

p(α
(k)
j,l |λj,l) =

1

λj,l
exp(−

α
(k)
j,l

λj,l
). (4)

All rows of the confusion matrix are assumed indepen-
dent within and across classifiers. π(k) is a collection
of {π(k)

j } and π is a collection of π(k). Also, α(k)

is a collection of α
(k)
j and α is a collection of α(k).

λj = [λj,1,λj,2, · · · ,λj,J ] and λ is a collection of λj .
Then, we get

p(π(k)|α(k)) =

J∏
j=1

p(π
(k)
j |α

(k)
j ), (5)

p(π|α) =

K∏
k=1

p(π(k)|α(k)), (6)

p(α(k)|λ) =

J∏
j=1

p(α
(k)
j |λj), (7)

p(α|λ) =

K∏
k=1

p(α(k)|λ). (8)

The prior for the class proportions p is also set to be
Dirichlet, with hyperparameters ν.

p(p|ν) =
Γ(

∑J
j=1 νj)∏J

j=1 Γ(νj)

J∏
j=1

p
νj−1
j , (9)

3Unfortunately, this interesting paper presented at the
2002 Valencia Bayesian statistics meeting does not appear
to have been published.
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Figure 1: The directed graphical model for IBCC, with
plates over classifiers K and data points I.

where ν = [ν1, ν2, · · · , νJ ].

Based on the above prior, we can get the posterior for
all random variables given the observed class labels.
Since we assumed independence among classifiers (as
in Haitovsky et al. (2002)), the posterior density is

p(p,π, t,α|c) ∝
I∏
i=1

{
pti

K∏
k=1

π
ti,c

(k)
i

}
p(p|ν)p(π|α)

p(α|λ). (10)

We call this model the Independent Bayesian Classifier
Combination (IBCC) model. The graphical model for
IBCC is shown in Fig 1.

Inference for the unknown random variables p, π, t,
and α can be done via Gibbs sampling. From the pos-
terior density function Eq (10), we can get the condi-
tional density functions for sampling as follow.

P (p|rest) ∝
J∏
j=1

p
|{i|ti=j,i=1,2,··· ,I}|+νj−1
j (11)

P (π
(k)
j |rest) ∝

J∏
l=1

(π
(k)
j,l )|{i|ti=j∧c

(k)
i =l}|+α(k)

j,l −1 (12)

P (ti = j|rest) ∝ pj
K∏
k=1

π
j,c

(k)
i

(13)

P (α
(k)
j,l |rest) ∝

Γ(
∑J
m=1 α

(k)
j,m)

Γ(α
(k)
j,l )

(π
(k)
j,l )α

(k)
j,l exp(−

α
(k)
j,l

λ
(k)
j,l

)

Since the conditional densities on p and π
(k)
j are both

Dirichlet, they can be sampled easily; also, ti can be
sampled since it is a multinomial distribution. How-

ever, the exact conditionals for α
(k)
j,l are not easily ob-

tained, so we use rejection sampling.

The hyperparameter ν is set so that classes are roughly
balanced a priori; λ is set to have bigger values on the
diagonal than the off-diagonals. This encodes the prior
that classifier outputs are better than random.

The whole process for Gibbs sampling is performed like
this. First, we initialize p, π, α, and then sampled
t, p, π, and α in order from the above equations,

iteratively. Sampling π means sampling {π(k)
j } for

j = 1, 2, · · · , J and k = 1, 2, · · · ,K. Sampling α also

means sampling {α(k)
j,l } for j = 1, 2, · · · , J and k =

1, 2, · · · ,K.

3 Dependent Models for Bayesian
Classifier Combination

One of the problems with the above model is the as-
sumption that classifiers are independent, which is of-
ten not true in a real situation. Consider several poor
classifiers that make highly correlated mistakes and
one good classifier. Assuming independence results in
performance biased toward majority voting, whereas
accounting for the dependence would discount the poor
classifiers by an amount related to their correlation.
Modelling dependence therefore appears to be an es-
sential element of Bayesian classifier combination.

We propose three models to deal with correlation
among classifier outputs. First, we insert a new hid-
den variable representing the difficulty of each data
point—marginalizing this out results in a weakly de-
pendent model. Second, we explicitly model pairwise
dependence between classifiers using a Markov Net-
work. Third, we combine the above two ideas.

3.1 Enhanced BCC Model

We enhance the IBCC model by using different confu-
sion matrices according to difficulty of each data point
for classification. This captures the idea that qualita-
tively different combination may be needed for hard
points (near the class boundaries) than for easy points
which all component classifiers will generally label cor-
rectly. Easy data points are classified using a confusion
matrix E which is fixed to have diagonal elements 1−ε
and off-diagonal elements ε/(J − 1) (we’ve also tried
extensions where E is learned). For hard data points,
each classifier uses its own confusion matrix, π(k), as
before. Whether a data point is “easy” or “hard” is
controlled by independent Bernoulli latent variables si
(=1, if hard) with mean di, which is given a Beta prior.
The likelihood term is as follows.

p(c, t|p,π, s) =

I∏
i=1

{
pti(

K∏
k=1

π
(k)

ti,c
(k)
i

)si(

K∏
k=1

E
ti,c

(k)
i

)(1−si)

}
(14)
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The distributions for the other random variables are
the same as in the IBCC model. The indicator vari-
ables si are assumed to have a prior Bernoulli distri-
bution with parameter di, and di is assumed to have
a Beta distribution as follows.

p(si|di) = dsii (1− di)1−si (15)

p(di|β) =
Γ(β1 + β2)

Γ(β1)Γ(β2)
dβ1−1
i (1− di)β2−1 (16)

We call this model the Enhanced Bayesian Classifier
Combination (EBCC) model. The graphical model for
the EBCC model in shown in Fig 2.

Inference is again performed using Gibbs and rejection
sampling. The conditional density functions to sample
si and di are as follows.

p(si|rest) ∝ (
K∏
k=1

π
(k)

ti,c
(k)
i

di)
si(

K∏
k=1

E
ti,c

(k)
i

(1− di))1−si

(17)

p(di|rest) ∝ d(si+β1−1)
i (1− di)(1−si+β2−1) (18)

The conditional density functions to sample ti and π
is changed as follows from the IBCC:

P (π
(k)
j |rest) ∝

J∏
l=1

((π
(k)
j,l )si)|{i|ti=j∧c

(k)
i =l}|+α(k)

j,l −1

(19)

P (ti = j|rest) ∝ pj
K∏
k=1

(π
j,c

(k)
i

)si(E
ti,c

(k)
i

)(1−si) (20)

The conditional density function to sample p is not
changed.

3.2 Dependent BCC Model

To model correlations between classifiers more directly,
we extend the IBCC model with a Markov network
(i.e. undirected graphical model). Markov networks
are a natural way of explicitly modeling dependence.4

The part of the model related to confusion matrices is
replaced with the following Markov network.

p(ci|V,W, ti) =
1

Z(V,W, ti)
exp{

∑
j<k

Wj,kδ(c
(j)
i , c

(k)
i )

+
∑
k

V
(k)

ti,c
(k)
i

} (21)

In this Markov network, V relates ti with c
(k)
i , and

W relates c
(j)
i with c

(k)
i , which models correlations be-

tween classifiers; Z is a partition function (normaliser).

4An alternative approach would be to develop a di-
rected probabilistic graphical model with latent variables
to model correlated classifiers.

d i s =1i d i

k=1,2,...,K

(k)

(k)

(k)

t i p

i

E

(k)

p

i

t i

k=1,2,...,K

is =0

i ii s.t. s =0i s.t. s =1
 c  c

Figure 2: The graphical model for the EBCC model.
Note that we have a different graphical model condi-
tional on the setting of si for each point; the left graph
is for “hard” data and the right graph is for “easy”
data. (The usual DAG formalism does not represent
such dependence of structure on variable setting ele-
gantly.)

The whole likelihood term is as follows.

p(c,V|W, t) =

I∏
i=1

ptip(ci|V,W, ti) (22)

=

I∏
i=1

pti
1

Z(V,W, ti)
exp{

∑
j<k

Wj,kδ(c
(j)
i , c

(k)
i )

(23)

+
∑
k

V
(k)

ti,c
(k)
i

}

The same priors p(t|p)p(p|ν) as in IBCC are used. As
priors for elements of V and W, we use zero-mean
independent Gaussians with variance σ2

v and σ2
w.

p(V klm) = N (0, σ2
v) (24)

p(W
(j,k)
lm ) = N (0, σ2

w) (25)

The priors for V and W is set like

p(V) =

K∏
k=1

J∏
l=1

J∏
m=1

p(V klm), (26)

p(W) =
∏
j<k

J∏
l=1

J∏
m=1

p(W
(j,k)
lm ). (27)

We call this model the Dependent Bayesian Clas-
sifier Combination (DBCC) model. Since it’s a
mix of directed and undirected conditional indepen-
dence relations it is most simply depicted as a factor
graph (Fig 3).
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p

t i

W 1,j W 1,K W j,K

i=1,2,...,I

V(1) V V

i
(1)

(j) (K)

(j) (K) c  c  c ii

Figure 3: The factor graph for the DBCC model. Each
dot represents a factor in the joint probability and con-
nects variables involved in that factor.

Sampling for most of the parameters of this model is
again straightforward. The conditional density func-
tion to sample ti is as follows.

P (ti = j|rest) ∝ pj p(ci|V,W, ti) (28)

The conditional density function to sample p is not
changed. However, sampling from V, W is more sub-
tle due to the partition function, so we implemented
it using a Metropolis sampling method.

3.3 Enhanced Dependent BCC model

The Enhanced Dependence BCC model (EDBCC)
combines the easy/hard latent variable for the EBCC
with the explicit model of correlation between clas-
sifiers of the DBCC. For easy data, the conditional
probability of each class is given by:

peasy(ci|U, ti) =
1

Ze(U, ti)
exp{

∑
k

U
ti,c

(k)
i
} (29)

U relates ti with c
(k)
i (playing a role analogous to the

E matrix in EBCC). For easy data points, it is as-
sumed that classifiers are independent, for hard data
it is assumed to be as in DBCC. The whole likelihood

term is as follows.

p(c, t|V,W,U, s) =

I∏
i=1

pti [p
hard(ci|V,W, ti)]

si

[peasy(ci|U, ti)](1−si) (30)

=

I∏
i=1

pti [
1

Zh(V,W, ti)

exp{
∑
j<k

Wj,kδ(c
(j)
i , c

(k)
i )

+
∑
k

V
(k)

ti,c
(k)
i

}]si

[
1

Ze(U, ti)
exp{

∑
k

U
ti,c

(k)
i
}](1−si)

(31)

The priors for elements V
(k)
lm and Ulm of V and U are

Gaussians with mean µv = (log(pv)−log((1−pv)/(J−
1))δ(l,m) and µu = (log(pu) − log((1 − pu)/(J −
1))δ(l,m)5 and variance σ2

v and σ2
w.

p(Vlm) = N (µv, σ
2
v) (32)

p(Ulm) = N (µu, σ
2
u) (33)

The prior for U is set as

p(V) =

J∏
l=1

J∏
m=1

p(Vlm), (34)

p(U) =

J∏
l=1

J∏
m=1

p(Ulm). (35)

The same prior for W as used in the DBCC model is
used here. The factor graph for the EDBCC model is
shown in (Fig 4).

The conditional density functions to sample ti, si,di
are as follows.

P (ti = j|rest) ∝ pj(phard(ci|V,W, ti))
si

(peasy(ci|U, ti))(1−si) (36)

p(si|rest) ∝ (phard(ci|V,W, ti)di)
si

(peasy(ci|U, ti)(1− di))(1−si) (37)

p(di|rest) ∝ d(si+β1−1)
i (1− di)(1−si+β2−1) (38)

The conditional density function to sample p is not
changed. V, W, U can be sampled by Metroplis sam-
pling method.

5This means that means of the priors for V(k) and U
have the high diagonal elements so that the probability of
correct classification for each class is pv and pu.
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Figure 4: The factor graph for the EDBCC model.
Again we have a different graph conditional on the
setting of si. The left half shows the factor graph for
hard data points (si = 1) and the right half for easy
data points.

Data set DNA Satellite UCI digit
# of training set 2000 4435 3823

# of test set 1186 2000 1797
# of classes 3 6 10

# of variables 60 36 64

Table 1: Data set

4 Experimental Results

We compared the Bayesian classifier combination
methods on several data sets and using different com-
ponent classifiers. We used Satellite and DNA data
sets from the Statlog project(Michie et al. (1994)) and
the UCI digit data set (Blake and Merz (1998)). The
detailed information about the data sets is in Table 1.

Our goal was not to obtain the best classifier
performance—for this we would have paid very care-
ful attention to the component classifiers and chosen
sophisticated models suited to the properties of each
data set—rather our goal was to compare the useful-
ness of different BCC methods even when component
classifiers are poor, correlated or trained on partial
data. We compared the four variants of the BCC idea
outlined above to two other methods: selecting the
best classifier using validation data6 and majority vot-
ing7.

6500, 1000, 797 data points were selected from the orig-
inal test set as a validation set for DNA data set, Satellite
data set, UCI digit data set, respectively. The rest of the
original test set was used to evaluate the performance.

7The performance of majority voting is obtained in an
average sense considering the case of ties.

In all BCC models the validation data was used as
known ti to “ground” the estimates of model param-
eters. In theory this grounding is not necessary: we
can treat the labels in the observed data set as simply
another classifier’s outputs (perhaps the human who
hand-labelled the data) and assume that no true la-
bels ti are ever observed. This variant will only do
well if the prior enforces some notion that the true la-
bel should agree with the majority class predictions;
in practice it did not seem to perform as well in initial
experiments but needs to be explored further. BCC
results are based on comparing the posterior mode of
ti for data points in the test set to the true observed
label.

We did two sets of experiments. In Experiment 1, we
combined the outputs of the same type of classifier
trained on disjoint training sets.8 In Experiment 2,
we trained several different classifiers on the (same)
whole training set.9

For IBCC and EBCC models, we sampled 50,000 sam-
ples and averaged every 100 samples except for the first
10,000 samples. For DBCC and EDBCC models, we
sampled 100,000 or more samples and averaged every
100 samples except for the first 10,000 samples.

For IBCC and EBCC models, the hyperparameters
were set as λij = 1 + 7δ(i, j), νj = 1, β = 0.5,
ε = 0.01, or 0.003. The initial values for random vari-
ables were set as follows. ti was set to the result of the
majority voting. p is initialized by the result of count-
ing ti. π was initialized by the result of counting ti and

c
(k)
lm . α

(k)
lm were all initialized with 2. Initial values for

di were sampled from Beta distribution with β = 0.5
and initial values for si were sampled from multino-
mial distribution with parameters di. For DBCC and
EDBCC models, the hyperparameters σv, σw were all
set to 3. For EDBCC model, σu was set to 3 and pv
and pu was set to 0.85 and 0.99, respectively. The ini-
tial values for V, W, U are all set to the means of the
priors. In Metropolis sampling for V, W, U, Gaussian
proposal distribution with proposal width σ = 0.1 was

8For DNA data set, we had 5 disjoint training sets and
trained C4.5 for each of them. For Satellite data set, we
had 4 disjoint training sets and trained C4.5 for each of
them. For UCI digit data set, we had 3 disjoint training
sets and trained SVM with 2nd-order polynomial kernel
and C = 100.0.

9For DNA data set, we trained 5 classifiers: C4.5 (C1),
SVM with 2nd-order polynomial kernel and C = 100.0
(C2), 1-Nearest Neighbor (C3), logistic regression (C4),
and Fisher discriminant (C5). For Satellite data set, we
trained 4 classifiers: C4.5 (C1), SVM with 2nd-order poly-
nomial kernel and C = 100.0 (C2), logistic regression (C3),
and Fisher discriminant (C4). For UCI digits, we trained
3 classifiers: SVM with linear kernel (C1), SVM with 2nd-
order polynomial kernel (C2), and SVM with Gaussian ker-
nel (σ = 0.01) (C3), where all SVMs has C = 100.0.



Bayesian Classifier Combination

Experiment 1
Data set Satellite UCI digit DNA

C1 0.1920 0.0320 0.1210
C2 0.1820 0.0320 0.1458
C3 0.1910 0.0390 0.1283
C4 0.1860 N/A 0.1254
C5 N/A N/A 0.1050
Val 0.1910 0.0390 0.1458
MV 0.1505 0.0263 0.0780

IBCC 0.1510 0.0260 0.0758
EBCC 0.1490 0.0260 0.0758
DBCC 0.1520 0.0240 0.0904

EDBCC 0.1410 0.0290 0.0889

Experiment 2
Data set Satellite UCI digit DNA

C1 0.1420 0.0460 0.0714
C2 0.1450 0.0250 0.1137
C3 0.1760 0.0290 0.2551
C4 0.2560 N/A 0.1020
C5 N/A N/A 0.0598
Val 0.1450 0.0250 0.0598
MV 0.1460 0.0250 0.0415

IBCC 0.1240 0.0250 0.0408
EBCC 0.1250 0.0250 0.0408
DBCC 0.1300 0.0230 0.0423

EDBCC 0.1280 0.0230 0.0466

Table 2: The performances of individual classifiers and
various combination schemes in the case of using the
same classifier with the disjoint training sets (Exper-
iment 1) and different classifiers with the same whole
training set (Experiment 2)

used.

Table 2 shows the performance of each classifier
and BCC combination strategy for both experiments.
“Val” and “MV” denote selecting the classifier with
smallest validation set errors, and majority voting, re-
spectively. “N/A” in C4 or C5 means that there is
no result because only 3 or 4 classifiers are combined
for the corresponding data sets (See the footnotes 8
and 9 below). IBCC and EBCC have similar perfor-
mance and EBCC model is always better than or as
good as majority voting. Model selection by valida-
tion set is quite bad especially in Experiment 1. BCC
methods are always better than or as good as model
selection by validation. The dependent factor graph
models (DBCC and EDBCC) do not always work well.
Especially on the DNA data set, they did not seem
to learn reasonable parameters, perhaps because the
DNA data set is relatively small and has biased class
distribution. For Satellite and UCI digits, it learned
reasonable parameters and showed comparable perfor-
mance to other BCC methods.

5 Discussion

We have shown several approaches to classifier com-
bination which explicitly model the relation between
true labels and classifier outputs. They worked rea-
sonably well and in our experiments the best method
was always one of the BCC methods, rather than an
individual classifier, majority voting or validation se-
lection. The parameters in BCC models can be in-
terpreted reasonably and give useful information such
as confusion matrices, correlations between classifiers,
and difficulty of data points.

We emphasized that Bayesian classifier combination is
not the same as Bayesian model averaging. Our ap-
proach is closely related to supra-Bayesian methods
for aggregating opinions (Genest and Zidek, 1986; Ja-
cobs, 1995). Other models and extensions are certainly
possible; we outline some here.

The model presented here can be generalised to com-
bine classifiers that output probability distributions.
In this case, e.g. instead of a matrix π(k) we need
a model that relates ti to class probability distribu-
tions. Conditional Dirichlet distributions seem a nat-
ural choice for this. Similarly, there is no reason to
restrict this approach to combining classifiers. Com-
bining different regressors or rankings are another im-
portant problems which could be handled by an appro-
priate choice of the distribution of outputs given true
target. Our models can be also extended by adapting
an expertise model inside the CoBayes model (Kasneci
et al., 2011), so that the expertise of each classifier can
be estimated.

One practical limitation of the DBCC approach is that
the computation time for the exact partition function
of the Markov network grows exponentially with the
number of classifiers. Efficient approximations to the
partition function, many of which have been recently
developed, could be used here (Murray and Ghahra-
mani, 2004; Welling and Sutton, 2005; Welling and
Parise, 2006; Qi, 2005). Such approximate inferences
could also be tractable replacements for all the MCMC
computations.

A Bayesian generalization of “stacking” methods is an-
other important avenue for research. The combiner, in
our setup, does not see the input data. If the combiner
does see the input and the outputs of all the other clas-
sifiers, then it should model the full relation between
true labels, inputs, and other classifier outputs. This
can be done either as a joint generative model, or as a
Bayesian discriminative model, both of which present
interesting avenues for extending the work in this pa-
per.
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