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Abstract— We consider the gender classification task of dis-
criminating between images of faces of men and women from
face images. In appearance-based approaches, the initial images
are preprocessed (e.g. normalized) and input into classifiers.
Recently, SVMs which are popular kernel classifiers have been
applied to gender classification and have shown excellent perfor-
mance. We propose to use one of Bayesian kernel methods which
is Gaussian Process Classifiers (GPCs) for gender classification.
The main advantage of Bayesian kernel methods such as GPCs
over SVMs is that they determine the hyperparameters of the
kernel based on Bayesian model selection criterion. Our results
show that GPCs outperformed SVMs with cross validation.

I. INTRODUCTION

The face is a characteristic feature of human beings which
contains identity and emotion. It is possible to identify a
person and her/his characteristics such as emotion (or ex-
pression) and gender from her/his face. Recognizing human
gender is important since lots of social interactions and
services depend on the gender. People respond differently
according to gender. Human computer interaction system can
be more user-friendly and more human-like when it considers
the user’s gender.

There are two main approaches for gender classification.
The first approach is the appearance-based approach which
uses a whole face image. [1] reduced the dimension of
whole face images by autoencoder network and classified
gender based on the reduced input features. [2] used a 2-
layer neural network (called SexNet) without dimensionality
reduction. [3] used a neural network and showed that even
very low resolution image such as 8x8 can be used for gender
classification. [4] used the mixture of experts with ensembles
of RBF networks and a decision tree as a gating network.
[5] showed that SVMs worked better than other classifiers
such as ensemble of RBF networks, classical RBF networks,
Fisher linear discriminant, nearest neighbor etc. [6] extracted
wholistic features by ICA and classified it with LDA. [7]
used the exploratory basis pursuit classification which is a
sparse kernel classifier .

The second approach is the geometrical feature based ap-
proach. [8] extracted point-to-point distances from 73 points
on face images and used discriminant analysis as a classifier.
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[9] extracted 16 geometric features such as eyebrow thickness
and pupil-to-eyebrow distance and used HyperBF networks
as a classifier.

As mentioned above, the appearance-based approach with
SVM showed excellent performance [5]. In their experiments
the Guassian kernel worked better than linear or polynomial
kernels. They did not mention how to set the hyperpa-
rameters1 for Gaussian kernel which have an influence on
performancem, but just showed the test results with sev-
eral different hyperparameters. Learning the hyperparameters
should be included in the training process. A standard way
to determine the hyperparameters is by cross validation.
Alternatively we could use Bayesian kernel classifiers such as
Gaussian process classifiers which automatically incorporate
method to determine the hyperparameters. In this paper
we propose to use Gaussian process classifiers (GPCs) for
appearance-based gender classification.

GPCs are a Bayesian kernel classifier derived from Gaus-
sian process priors over functions which were developed
originally for regression [10], [11], [12], [13]. In classifi-
cation, the target values are discrete class labels. To use
Gaussian processes for binary classification, the Gaussian
process regression model can be modified so that the sign
of the continuous latent function it outputs determines the
class label. Observing the class label at some data point
constrains the function value to be positive or negative at
that point, but leaves it otherwise unknown. To compute
predictive quantities of interest we therefore need to integrate
over the possible unknown values of this function at the data
points.

Exact evaluation of this integral is computationally in-
tractable. However, several successful methods have been
proposed for approximately integrating over the latent func-
tion values, such as the Laplace approximation [12], Markov
Chain Monte Carlo [11], and variational approximations [13].
Opper and Winther (2000) used the TAP approach originally
proposed in statistical physics of disordered systems to
integrate over the latent values [14]. The TAP approach for
this model is equivalent to the more general Expectation
Propagation (EP) algorithm for approximate inference [15].
The EM-EP algorithm has been proposed to learn the hyper-
parameters based on EP [16]. GPCs with the hyperparameters
obtained by the EM-EP algorithm have shown better perfor-
mance than SVMs which had the hyperparameters set by
cross validation, on most of data sets tested. In many cases
the hyperparameters determined by the EM-EP algorithm

1Hyperparameters control properties of the kernel and the amount of
classification noise

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

3371



Classifier

Original Image
(Image from Camera)

Cro-
pped

Face
Image

Preproce-
ssing

Male
or

Female

Fig. 1. The process of appearance-based gender classification

were more suitable for SVMs than the ones determined
by cross validation technique. In this paper we use the
EM-EP algorithm to learn Gaussian process classifiers for
gender classification. We expect that GPCs with the EM-EP
algorithm work better than SVMs with the cross validation
and provide better hyperparameters for the kernels of SVMs.

The paper is organized as follows. Section 2 introduces
appearance-based gender classification. In Section 3, we
introduce Gaussian process classification. In section 4, we
describe the EP method and the EM-EP algorithm for Gaus-
sian process classification. In section 5, we show experimen-
tal results on the PF01 database and compared with other
classification methods including SVMs. In section 6, we draw
conclusions and remark on future work.

II. APPEARANCE-BASED GENDER CLASSIFICATION

The appearance-based approach to gender classification
discriminates between male and female classes from face
images without first explicitly extracting any geometrical
features. A typical way to do this is to train a classifier with
training images and to classify new images by the trained
classifier. Face images should be well-aligned so that facial
features are in the same positions. Since gender classification
is a two-class classification problem, any kind of binary
classifier can be deployed.

Figure 1 shows the process of appearance-based gender
classification. Assume that a classifier has been already
trained with some images in advance. The whole process
of gender classification can be explained by the following.
First, images are captured. Then, the captured images are
preprocessed by face detection and facial feature extraction
algorithms and cropped by an appropriate cropping tech-
nique. The preprocessed face images can include a whole
outline of faces with hair or can include only inner face
parts with only facial features. Then, the preprocessed image
is applied to the classifier and the classifier determines the
gender of the input image.

The appearance-based approach has two main advantages.
First, it preserves appearance of face images which can be
considered to be naive features. It is difficult to determine
what kind of geometrical features we should use and to tell
the meaning of those features. In contrast to this, appearance-
based approach is more natural since it uses face images
themselves. Second, it does not need to extract facial features
or points very accurately. To get good geometrical features,
we need to know quite accurate facial feature or point

locations which requires accurate facial feature extraction.
In contrast to this, we need to know relatively small number
of facial features for alignment in the appearance-based
approach.

We follow the above process for appearance-based gender
classification and use Gaussian process classifiers.

III. GAUSSIAN PROCESS CLASSIFIERS

Let us assume that we have a data set D of data points �xi

with binary class labels yi ∈ {−1, 1}: D = {(�xi, yi)|i =
1, 2, . . . , n}, X = {�xi|i = 1, 2, . . . , n}, Y = {yi|i =
1, 2, . . . , n}. Given this data set, we wish to find the correct
class label for a new data point �̃x. We do this by computing
the class probability p(ỹ|�̃x,D).

We assume that the class label is obtained by transforming
some real valued latent variable f̃ , which is the value of
some latent function f(·) evaluated at �̃x. We put a Gaussian
process prior on this function, meaning that any number
of points evaluated from the function have a multivariate
Gaussian density (see [17] for a review of GPs). Assume
that this GP prior is parameterized by Θ which we will call
the hyperparameters. We can write the probability of interest
given Θ as:

p(ỹ|�̃x,D,Θ)=
∫

p(ỹ|f̃ , Θ)p(f̃ |D, �̃x,Θ) df̃ (1)

This is the probability of the class label ỹ at a new data point
�̃x given data D and hyperparameters Θ

The second part of Eq 1 is obtained by further integration
over �f = [f1f2 · · · fn], the values of the latent function at
the data points.

p(f̃ |D, �̃x,Θ) =
∫

p(�f, f̃ |D, �̃x,Θ) d�f (2)

=
∫

p(f̃ |�̃x, �f, Θ)p(�f |D,Θ)d�f (3)

where p(f̃ |�̃x, �f, Θ) = p(f̃ , �f |�̃x,X,Θ)/p(�f |X, Θ) and

p(�f |D,Θ) ∝p(Y |�f, X, Θ)p(�f |X, Θ) (4)

={
n∏

i=1

p(yi|fi, Θ)}p(�f |X, Θ). (5)

The first term is the likelihood : the probability for each
observed class given the latent function value, while the
second term is the GP prior over functions evaluated at the
data. Writing the dependence of �f on �x implicitly, the GP
prior over functions can be written

p(�f |X, Θ) =
1

(2π)N/2|CΘ|1/2
exp(−1

2
(�f − μ)�C−1

Θ (�f − μ)), (6)

where the mean μ is usually assumed to be the zero vector
�0 and each term of a covariance matrix Cij is a function of
�xi and �xj , i.e. c(�xi, �xj).

One form for the likelihood term p(yi|fi, Θ), which relates
f(�xi) monotonically to probability of yi = +1, is

p(yi|fi, Θ) =
1√
2π

∫ yif(�xi)

−∞
exp(−z2

2
) dz = erf(yif(�xi)).

(7)
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Other possible forms for the likelihood are a sigmoid func-
tion 1/(1+exp(−yif(�xi))), a step function H(yif(�xi)), and
a step function with a labelling error ε+(1−2ε)H(yif(�xi)).

Since p(�f |D,Θ) in Eq 5 is intractable due to the non-
linearity in the likelihood terms, we use an approximate
method. Laplace approximation, variational methods and
Markov Chain Monte Carlo method were used in [12], [13],
and [11], respectively. Expectation propagation, which is
described in the next section, was used in [14] and [15]

IV. THE EM-EP ALGORITHM FOR GPCS

A. EP for GPCs

The Expectation-Propagation (EP) algorithm is an approx-
imate Bayesian inference method [15]. We review EP in its
general form before describing its application to GPCs.

Consider a Bayesian inference problem where the posterior
over some parameter φ is proportional to the prior times
likelihood terms for an i.i.d. data set

p(φ|y1, . . . , yn) ∝ p(φ)
n∏

i=1

p(yi|φ) (8)

We approximate this by

q(φ) ∝ t̃0(φ)
n∏

i=1

t̃i(φ) (9)

where each term (and therefore q) is assumed to be in
the exponential family. EP successively solves the following
optimization problem for each i

t̃i(φ) = arg min
t̃i(φ)

KL
(

q(φ)
t̃oldi (φ)

p(yi|φ)
∣∣∣∣
∣∣∣∣ q(φ)
t̃oldi (φ)

t̃i(φ)
)

(10)

Where KL is the Kullback-Leibler divergence and

KL(p(x)||q(x)) =
∫

p(x) log
p(x)
q(x)

dx. (11)

Since q is in the exponential family, this minimization is
solved by matching moments of the approximated distribu-
tion. EP iterates over i until convergence. The algorithm is
not guaranteed to converge although it did in practice in all
our examples and has worked well for many other authors.
Assumed Density Filtering (ADF) is a special online form
of EP where only one pass through the data is performed
(i = 1, . . . n).

We describe EP for GPC referring to [15] and [14]. The
latent function �f plays the role of the parameter φ above.
The form of the likelihood we use in the GPC is

p(yi|fi) = ε + (1 − 2ε)H(yifi), (12)

where H(x) = 1 if x > 0, and otherwise 0. The hy-
perparameter, ε in Eq 12 models labeling error outliers.
The EP algorithm approximates the posterior p(�f |D) =
p(�f)p(D|�f)/p(D) as a Gaussian having the form q(�f) ∼
N (�m�f , V�f ), where the GP prior p(�f) ∼ N (�0, C) has covari-
ance matrix C with elements Cij defined by the covariance

function

Cij = c(�xi, �xj) =v0 exp{−1
2

d∑
m=1

lmdm(xm
i , xm

j )}

+ v1 + v2δ(i, j), (13)

where xm
i is the mth element of �xi, and dm(xm

i , xm
j ) =

(xm
i −xm

j )2 if xm is continous; 1−δ(xm
i , xm

j ) if x is discrete,
where δ(xm

i , xm
j ) is 1 if xm

i = xm
j and 0 if xm

i �= xm
j .

The hyperparameter v0 specifies the overall vertical scale of
variation of the latent values, v1 the overall bias of the latent
values from zero mean, v2 the latent noise variance, and lm
the (inverse) lengthscale for feature dimension m. The erf
likelihood term in Eq 7 is equivalent to using the threshold
function in Eq 12 with ε = 0 and non-zero latent noise v2.

EP tries to approximate p(�f |D) =
p(�f)/p(D)

∏n
i=1 p(yi|�f), where p(�f) ∼ N (0, C). p(yi|�f) =

ti(�f) is approximated by t̃i(�f) = si exp(− 1
2vi

(fi − mi)2).
From this initial setting, we can derive EP for GPC
by applying the general idea described above. The
resulting EP procedure is virtually identical to the one
derived in [15]. We define the following notation2:
Λ = diag(v1, . . . , vn); hi = E[fi]; h

\i
i = E[f\i

i ], where
h
\i
i and f

\i
i are quantities obtained from a whole set

except for �xi. The EP algorithm is as follows which
we repeat for completeness—please refer to [15] for
the details of the derivation. After the initialization
vi = ∞,mi = 0, si = 1, hi = 0, λi = Cii, the following
process is performed until all (mi, vi, si) converge:

Loop i = 1, 2, . . . , n :
1) Remove the approximate density t̃i (for ith data point)

from the posterior to get an ‘old’ posterior: h
\i
i = hi +

λiv
−1
i (hi − mi)

2) Recompute part of the new posterior: z = yih
\i
i√

λi
; Zi =

ε + (1 − 2ε)erf(z) αi = 1√
λi

(1−2ε)N (z;0,1)
ε+(1−2ε)erf(z) ; hi =

h
\i
i +λiαi, where erf(z) is a cumulative normal density

function.
3) Get a new t̃i: vi = λi( 1

αihi
−1); mi = hi+viαi; si =

Zi

√
1 + v−1

i λi exp(λiαi

2hi
)

4) Now that vi is updated, finish recomputing the new
posterior: A = (C−1 + Λ−1)−1; For all i, hi =∑

j Aij
mj

vj
; λi = ( 1

Aii
− 1

vi
)−1

Our approximated posterior over the latent values is:

q(�f) ∼ N (C̃α, A), (14)

where C̃ij = yjc(�xi, �xj) (or C̃ = Cdiag(�y)). Classifi-
cation of a new data point �̃x can be done according to
argmax

ỹ
p(ỹ|�̃x) = sgn(E[f̃ ]) = sgn(

∑n
i=1 αiyic(�xi, �̃x)).

The approximate evidence can be obtained as:

p(Y |X, Θ) ≈ |Λ|1/2

|C + Λ|1/2
exp(B/2)

n∏
i=1

si (15)

2diag(v1, . . . , vn) means a diagonal matrix whose diagonal elements are
v1, . . . , vn. Similarly for diag(�v).

3373



where B =
∑

ij Aij
mimj

vivj
− ∑

i
m2

i

vi
. The approximate

evidence in Eq 15 can be used to evaluate the feasibility
of kernels or their hyperparameters to the data. But, it is
tricky to get a hyperparameter updating rule from Eq 15.
In the following section, we derive the algorithm to find
the hyperparameters automatically based not on Eq 15 but a
variational lower bound of the evidence.

B. The EM-EP algorithm

EP for GPCs propose a method to estimate latent values
but not hyperparameters. We put Θ = Θ ∪ {ε}, and Θ =
{v0, v1, v2} ∪ {lp|p = 1, 2, . . . , d}. for the hyperparameters.
Here we present the EM-EP algorithm based on EP to
estimate both latent values and hyerparameters [16]. We
tackle the problem of learning the classifier hyperparameters
as one of optimizing hyperparameters for Gaussian process
regression with hidden target values. This idea makes it
possible to apply an EM-like algorithm. In the E-step, we
infer the approximate (Gaussian) density for latent function
values q(�f) using EP. In the M-step, using q(�f) obtained
in the E-step, we maximize the variational lower bound
of p(Y |X, Θ). The E-step and M-step are alternated until
convergence.

E-step EP iterations are performed given the hyperpa-
rameters. p(�f |D) is approximated as a Gaussian
density q(�f) given by Eq 14.

M-step Given q(�f) obtained from the E-step, find
the hyperparameters which maximize the
variational lower bound of p(Y |X, Θ) =∫

p(Y |�f, X, ε)p(�f |X, Θ) d�f. Since the above
integral is intractable, we take a variational lower
bound F as follows.

log p(Y |X, Θ) = log
∫

p(Y |�f, X, ε)p(�f |X, Θ) d�f

≥
∫

q(�f) log
p(Y |�f, X, ε)p(�f |X, Θ)

q(�f)
d�f

=F (16)

Using the E-step result Eq 14 and the definition
of C̃, we obtain the following gradient update rule
with respect to the covariance hyperparameters

∂F

∂Θ
=

1
2
α�diag(�y)

∂C

∂Θ
diag(�y)α

− 1
2
tr(C−1 ∂C

∂Θ
) +

1
2
tr(C−1 ∂C

∂Θ
C−1A). (17)

(See [16] for the derivation of the M-step.)

We found that in practice EM-EP always converged and
the local maxima were good solutions. EM-EP has a com-
plexity of O(n3) due to the matrix inversion in EP.

V. EXPERIMENTAL RESULTS

We performed experiments on appearance-based gender
classification with Gaussian processes using the database
PF01 (Postech Faces 2001) [18]. This database has color face
images of 103 Asian people, 53 men and 50 women, where

Fig. 2. Some images in the database PF01

for each person there are 17 images under various conditions
(1 normal, 4 illumination-varying ones, 8 pose-varying ones,
4 expression-varying ones).

We performed gender classification on two partial data sets
where one includes only normal face images (103 images,
Faceset I) and another includes normal and expression (5 ×
103 = 515 images, Faceset II). Figure 2 shows the normal
and expression-varying images of 3 men and 3 women in
the database. For each partial data set, we preprocessed
face images in two ways. The first from of preprocessing
downsampled and cropped face images including hairs and
contour of faces and the second form o further cropped the
face images to exclude hair and background. Figure 3 shows
the example of a normalized image (256x256) and a cropped
face image (56x46, cropped type A) and a more cropped face
image (20x16, cropped type B). All images are aligned so
that eyes are placed in the same positions, which can be done
with eye detection algorithms in practice.

We have 4 different data sets: data set I ( Faceset I,
cropped type A), data set II (Faceset I, cropped type B),
data set III (Faceset II, cropped type A), and data set IV
(Faceset II, cropped type B). Data set I, II, III and IV are
the data sets which include normal faces, more cropped
normal faces, expression-varying faces, and more cropped
expression-varying faces, respectively. On these data sets,
we applied many different classifiers including one nearest
neighbor (1-NN), linear discriminant analysis (LDA), SVM
with cross-validation (SVM-CV), SVM with EM-EP hyper-
parameters (SVM-EP), and GPC with the EM-EP algorithm
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Fig. 3. Preprocessed Images: (a) Normalized image, (b) Downsampled and
cropped image (56x46), (c) Downsampled and more cropped image (20x16)

(GPC-EP). Table I shows the classification error rates of these
various methods for the 4 data sets. The numbers in Table I
are the means of those 10 error rates and standard deviations
of the mean estimators.

GPC-EP used a single lengthscale hyperparameter (i.e.
lm = l) for all feature dimensions 3. In all GPC models
the hyperparameter ε was not updated but fixed to zero. In
SVM-EP the kernel (i.e. covariance function) had the same
hyperparameters as the corresponding GPC-EP that were
trained using EM-EP except for the latent noise variance v2

which was omitted because it caused degradation in SVM
performance4. Instead, the penalty parameter C allowing
training errors (i.e. penalizing the SVM slack variables) was
selected by 5-fold cross-validation.5 In SVM-CV we applied
SVMs with a Gaussian kernel with a single lengthscale
hyperparameter (without v0, v1 and v2) selected by 5-fold
cross-validation.6 We also had to determine the penalty
parameter C, so we performed a 2-level grid search over
a 2-dimensional parameter space (C, l)7.

In the data set I, II and IV, GPC-EP is the best, and in the
data set III SVM-EP is the best. In all the data sets. SVM-
EP is better than SVM-CV. Therefore, for the data sets tested
the hyperparameters found by the EM-EP algorithm seem to
be also more suitable hyperparameters for SVMs than the
ones obtained by cross-validation. This shows that the EM-
EP algorithm finds suitable hyperparameters successfully
and those hyperparameters are also suitable for SVMs. This
result is consistent with the result on the benchmark data
sets in [16]. In all the data sets GPC-EP gives excellent
performance.

3The initial values of hyperparameters for the first fold were as follows:
v0
0 = 1, v0

1 = 0.0001, v0
2 = 0.001, l0m = l0 = 1/(2 × d), ∀m, and those

for subsequent folds are the results for the former fold.
4For SVMs, we used the MATLAB Sup-

port Vector Machine Toolbox available from
http://theoval.sys.uea.ac.uk/˜gcc/svm/toolbox with
modified kernel functions.

5Firstly, we did a coarse grid search over {C| log10 C =
0, 0.5, 1, 1.5, 2, 2.5, 3} to obtain C1. Then did a finer grid search over
{C| log10 C = −0.4 + log C1,−0.3 + log C1, . . . , 0.4 + log C1}.

6Similarly to the selection of C, we did a 2-level grid search over
{l| log10 l = −3,−2.5,−2,−1.5,−1,−0.5, 0} and {l| log10 l = −0.4+
log10 l1,−0.3 + log l1, . . . , 0.4 + log l1}.

7The same grids as above for parameters C, l were used.

Nor. Crop.
1-NN 0.1409±0.0415 0.1400±0.0295
LDA 0.1491±0.0292 0.0464±0.0217

CV-SVM 0.0645±0.0251 0.0464±0.0296
EP-SVM 0.0555±0.0214 0.0282±0.0151
EP-GPC 0.0464±0.0217 0.0273±0.0146

Nor. E. Crop. E.
1-NN 0.1609±0.0423 0.1509±0.0335
LDA 0.2247±0.0380 0.1802±0.0305

CV-SVM 0.0520±0.0217 0.0742±0.0266
EP-SVM 0.0282±0.0151 0.0655±0.0151
EP-GPC 0.0576±0.0227 0.0578±0.0188

TABLE I

CLASSIFICATION ERROR RATES OF VARIOUS METHODS FOR 4 KINDS OF

GENDER CLASSIFICATION DATA SETS

VI. CONCLUSION

We have proposed the gender classification technique with
one of Bayesian kernel methods which is GPCs. GPCs incor-
porate the Bayesian model selection framework to determine
the kernel hyperparameters, which is an important advantage
over SVMs. In the experiments the hyperparameters obtained
by GPC with the EM-EP algorithm were even more suitable
for SVMs than the ones obtained by cross validation. GPCs
worked better than SVMs and provided kernel hyperparam-
eters to make SVMs work better.

We used Gaussian kernels in this paper. Gaussian kernels
do not seem to be ideal for image data since they do not
capture correlations between pixels. If we invent more proper
kernels for face images, we might improve the performance.
It would also be interesting to perform experiments on a
larger face data set.
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