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ABSTRACT

Motivation: The integration of multiple datasets remains a key chal-

lenge in systems biology and genomic medicine. Modern high-

throughput technologies generate a broad array of different data

types, providing distinct—but often complementary—information.

We present a Bayesian method for the unsupervised integrative mod-

elling of multiple datasets, which we refer to as MDI (Multiple Dataset

Integration). MDI can integrate information from a wide range of dif-

ferent datasets and data types simultaneously (including the ability to

model time series data explicitly using Gaussian processes). Each

dataset is modelled using a Dirichlet-multinomial allocation (DMA) mix-

ture model, with dependencies between these models captured

through parameters that describe the agreement among the datasets.

Results: Using a set of six artificially constructed time series datasets,

we show that MDI is able to integrate a significant number of datasets

simultaneously, and that it successfully captures the underlying struc-

tural similarity between the datasets. We also analyse a variety of real

Saccharomyces cerevisiae datasets. In the two-dataset case, we

show that MDI’s performance is comparable with the present

state-of-the-art. We then move beyond the capabilities of current

approaches and integrate gene expression, chromatin immunopreci-

pitation–chip and protein–protein interaction data, to identify a set of

protein complexes for which genes are co-regulated during the cell

cycle. Comparisons to other unsupervised data integration tech-

niques—as well as to non-integrative approaches—demonstrate that

MDI is competitive, while also providing information that would be

difficult or impossible to extract using other methods.

Availability: A Matlab implementation of MDI is available from

http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/

software/.

Contact: D.L.Wild@warwick.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The wide range of modern high-throughput genomics technolo-
gies has led to a rapid increase in both the quantity and variety of
functional genomics data that can be collected. For example,

large-scale microarray (Lockhart et al., 1996; Schena et al.,
1995), chromatin immunoprecipitation (ChIP) chip (Solomon

et al., 1988) and tandem affinity purification (Puig et al., 2001;

Rigaut et al., 1999) datasets are available for a broad selection of

organisms, providing measurements of mRNA expression,

protein–DNA binding and protein–protein interactions (PPIs).

In the forthcoming era of personal genomic medicine, we may

reasonably expect genome sequences and other forms of

high-throughput data (such as gene expression, alternative spli-

cing, DNA methylation, histone acetylation and protein abun-

dances) to be routinely measured for large numbers of people.

The development of novel statistical and computational method-

ology for integrating diverse data sources is therefore essential,

and it is with this that the present work is concerned.
As is common in statistics and machine learning, data integra-

tion techniques can be broadly categorized as either supervised

(where a training/gold-standard set with known labels is used to

learn statistical relationships) or unsupervised (where there is no

training dataset, but we nevertheless seek to identify hidden

structure in the observed data; e.g. by clustering). Our proposed

method is unsupervised, but there are also a number of super-

vised learning algorithms that are designed to integrate multiple

data sources; we now briefly mention these for the sake of com-

pleteness. These have proven highly successful in several con-

texts, often when predicting whether a link or interaction exists

between two genes or proteins. Depending on the application,

the link might represent (to provide just a few examples) protein–

protein binding (Jansen et al., 2003; Rhodes et al., 2005), or a

synthetic sick or lethal interaction (Wong et al., 2004) or might

indicate that the two genes have been implicated in the same

biological process (Myers and Troyanskaya, 2007). Approaches

for predicting these links often proceed by collecting a

gold-standard set of positive and negative interactions (see, for

contrasting examples, Jansen et al., 2003; Lee et al., 2004; Myers

et al., 2005), and then training statistical models (e.g. decision

trees, naive Bayes classifiers) that predict the presence/absence of

these interactions. These models may then be applied to predict

the presence/absence of previously unknown interactions.

Because training and prediction are performed on the basis of

information collected from multiple different data sources, these

approaches provide a form of data integration. Such supervised

data integration techniques have proven highly effective for pre-

dicting interactions, some of which may then be verified experi-

mentally (e.g. Rhodes et al., 2005; Huttenhower et al., 2009).

Moreover, the work of Huttenhower et al. (2009) demonstrates

that such approaches may be used to integrate whole-genome

scale datasets. The Bayesian network approach of Troyanskaya

et al. (2003) was a precursor to many of these supervised

approaches, but differs from the others in that it uses knowledge*To whom correspondence should be addressed.
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from human experts to integrate predictions derived from diverse
datasets.
Here we propose a novel unsupervised approach for the inte-

grative modelling of multiple datasets, which may be of different
types. For brevity, we refer to our approach as MDI, simply as a
shorthand for ‘Multiple Dataset Integration’. We model each

dataset using a Dirichlet-multinomial allocation (DMA) mixture
model (Section 2.1), and exploit statistical dependencies between
the datasets to share information (Section 2.2). MDI permits the

identification of groups of genes that tend to cluster together in
one, some or all of the datasets. In this way, our method is able
to use the information contained within diverse datasets to

identify groups of genes with increasingly specific characteristics
(e.g. not only identifying groups of genes that are co-regulated,
but additionally identifying groups of genes that are both

co-regulated and whose protein products appear in the same
complex).
Informally, our approach may be considered as a ‘correlated

clustering’ model, in which the allocation of genes to clusters in
one dataset has an influence on the allocation of genes to clusters
in another. This contrasts with ‘simple’ clustering approaches

(such as k-means, hierarchical clustering, etc) in which the data-
sets are clustered independently (or else concatenated and treated
as a single dataset). It also clearly distinguishes our methodology

from biclustering (e.g. Cheng and Church, 2000; Reiss et al.,
2006). Biclustering is the clustering of both dimensions in a
single dataset (e.g. both genes and experiments in a gene expres-

sion dataset). MDI, in contrast, clusters a single dimension
(e.g. genes) across multiple datasets. Biclustering is not applicable
here as the datasets can be arbitrarily different, making any clus-

tering across all features difficult. MDI avoids the problem of
comparing different data types by instead learning the degree of
similarity between the clustering structures (i.e. the

gene-to-cluster allocations) in different datasets (Section 2.2).
MDI makes use of mixture models, which have become wide-

spread in the context of unsupervised integrative data modelling

(e.g. Barash and Friedman, 2002; Liu et al., 2006, 2007), gaining
increased popularity in recent years (Rogers et al., 2010; Savage
et al., 2010). The principal advantages of using mixture models

are as follows: (i) they provide flexible probabilistic models of the
data; (ii) they naturally capture the clustering structure that is
commonly present in functional genomics datasets; and (iii) by

adopting different parametric forms for the mixture components,
they permit different data types to be modelled (see also Section
2.1). An early application to data integration is provided by

Barash and Friedman (2002), who performed integrative model-
ling of gene expression and binding site data.
As part of our approach, we infer parameters that describe the

levels of agreement between the datasets. Our method may thus
be viewed as extending the work of Balasubramanian et al.
(2004). In this regard, MDI is also related to the approach of

Wei and Pan (2012), which models the correlation between data
sources as part of a method that classifies genes as targets or
non-targets of a given transcription factor (TF) using ChIP–chip,

gene expression and DNA binding data, as well as information
regarding the position of genes on a gene network. Perhaps most
closely related to MDI (in terms of application) are the methods

of Savage et al. (2010) and iCluster (Shen et al., 2009). Savage
et al. (2010) adopt a mixture modelling approach, using a

hierarchical Dirichlet process (DP) to perform integrative mod-

elling of two datasets. As well as significant methodological

differences, the principal practical distinction between this ap-

proach and MDI is that we are able to integrate more than

two datasets, any or all of which may be of different types

(Section 2). Like MDI, the iCluster method of Shen et al.

(2009) permits integrative clustering of multiple (� 2) genomic

datasets, but uses a joint latent variable model (for details, see

Shen et al., 2009). In contrast to MDI, iCluster seeks to find a

single common clustering structure for all datasets. Moreover,

iCluster must resort to heuristic approaches to estimate the

number of clusters, whereas MDI infers this automatically

(Section 2.1). We demonstrate that MDI provides results that

are competitive with the two-dataset approach of Savage et al.

(2010) in Section 3.2, and provide a comparison of results ob-

tained using MDI, iCluster and simple clustering approaches in

the Supplementary Material.
The potential biological applications of our approach are

diverse, as there are many experimental platforms that produce

measurements of different types, which might be expected to

possess similar (but not necessarily identical) clustering struc-

tures. For example, in the two-dataset case, related methodolo-

gies have been used to discover transcriptional modules (Liu

et al., 2007; Savage et al., 2010) and prognostic cancer subtypes

(Yuan et al., 2011) through the integration of gene expression

data with TF binding (ChIP–chip) data and copy number vari-

ation data, respectively. A related approach was also used by

Rogers et al. (2008) to investigate the correspondence between

transcriptomic and proteomic expression profiles. In the example

presented in this article, we focus on the biological question of

identifying protein complexes whose genes undergo transcrip-

tional co-regulation during the cell cycle.
The outline of this article is as follows. In Section 2, we briefly

provide some modelling background and present our approach.

Inference in our model is performed via a Gibbs sampler, which

is provided in the Supplementary Material. In Section 3, we de-

scribe three case study examples, in all of which we use publicly

available Saccharomyces cerevisiae (baker’s yeast) datasets. We

present results in Section 4 and a discussion in Section 5.

2 METHODS

In this section, we provide some background regarding DMA mixture

models (Section 2.1), and consider how these may be extended to allow us

to perform integrative modelling of multiple datasets (Section 2.2).

Inference in the resulting model (which we henceforth refer to as MDI)

is performed using a Gibbs sampler (Supplementary Material). We briefly

describe in Section 2.4 how the resulting posterior samples may be effect-

ively summarized.

2.1 Dirichlet-multinomial allocation mixture models

We model each dataset using a finite approximation to a DP mixture

model (Ishwaran and Zarepour, 2002), known as a DMA mixture model

(Green and Richardson, 2001). Such models have the following general

form:

pðxÞ ¼
XN

c¼1

�cfðxj�cÞ: ð1Þ
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In the above, p(x) denotes the probability density model for the data,

which is here an N component mixture model. The �c’s are mixture

proportions, f is a parametric density (such as a Gaussian) and �c denotes

the vector of parameters associated with the c-th component.

Importantly, different choices for the density f allow us to model different

types of data (for example, a normal distribution might be appropriate

for continuous data, whereas a multinomial might be appropriate for

categorical data).

Given observed data x1, . . . ,xn, we wish to perform Bayesian infer-

ence for the unknown parameters in this model. As is common in mixture

modelling (e.g. Dempster et al., 1977; see also Friedman et al., 2004 for a

graphical model perspective), we introduce latent component allocation

variables cj 2 f1, . . . ,Ng, such that ci is the component responsible for

observation xi. We then specify the model as follows:

xijci, � � Fð�ci Þ,

cij� �Multinomialð�1, . . . ,�NÞ,

�1, . . . ,�N � Dirichletð�=N, . . . , �=NÞ,

�c � Gð0Þ,

ð2Þ

where F is the distribution corresponding to density f, p ¼ ð�1, . . . ,�NÞ is

the collection of N mixture proportions, � is a mass/concentration par-

ameter (which may also be inferred) and Gð0Þ is the prior for the compo-

nent parameters. Bayesian inference for such models may be performed

via Gibbs sampling (Neal, 2000). Note that a realization of the collection

of component allocation variables, ðc1, . . . , cnÞ, defines a clustering of the

data (i.e. if ci ¼ cj, then xi and xj are clustered together). Because each cj
is a member of the set f1, . . . ,Ng, it follows that the value of N places an

upper bound on the number of clusters in the data.

The DP mixture model may be derived by considering the limit

N!1 in Equation (1) (Neal, 1992; Rasmussen, 2000). In the present

article, it is convenient to persist with finite N (Section 2.2). The import-

ant point is that N just places an upper bound on the number of clusters

present in the data (because, as in the infinite DP case, not all of the

components need to be ‘occupied’; i.e. not all components need to have

observations associated with them), and hence N does not specify the

precise number of clusters a priori. Provided N is taken sufficiently

large, the number of clusters present in the data will be (much) less

than N, and we will retain the ability to identify automatically the

number of clusters supported by the data. Theoretical justifications for

‘large’ mixture models such as this (in which the number of components

in the mixture is larger than the true number of clusters in the data) are

provided by Rousseau and Mengersen (2011). A choice of N¼ n would

set the upper bound on the number of clusters to be equal to the number

of genes. As a tradeoff with computational cost, we take N ¼ n=2
� �

throughout this article.

2.2 Dependent component allocations

We are interested in the situation where we have a collection of n genes,

for each of which we have measurements from K different data sources.

One possible modelling approach would be to fit K independent DMA

mixture models, represented graphically in Figure 1a for the case K¼ 3.

However, this neglects to consider (and fails to exploit) structure within

the data that may be common across some or all of the different sources.

For example, a set of co-regulated genes might be expected to have simi-

lar expression profiles, as well as have a common collection of proteins

that bind their promoters. We therefore propose a model in which we

allow dependencies between datasets at the level of the component allo-

cation variables, ci:

We consider K mixture models (one for each dataset), each defined as

in Equations (1) and (2). We add right subscripts to our previous notation

to distinguish between the parameters of the K different models (so that

�k is the mass parameter associated with model k, etc.) and take Nk ¼ N

in all mixture models. Note that each model is permitted to have a

different mass parameter, �k: MDI links these models together at the

level of the component allocation variables via the following conditional

prior:

pðci1, ci2, . . . , ciKj/Þ /
YK

k¼1

�cikk
YK�1

k¼1

YK

‘¼kþ1

1þ �k‘Iðcik ¼ ci‘Þð Þ, ð3Þ

where I is the indicator function, �k‘ 2 R�0 is a parameter that controls

the strength of association between datasets k and ‘, and � is the collec-

tion of all K(K� 1)/2 of the �k‘’s. For clarity, note that cik 2 f1, . . . ,Ng is

the component allocation variable associated with gene i in model k, and

that �cikk is the mixture proportion associated with component cik in

model k. Informally, the larger �k‘, the more likely it is that cik and ci‘
will be the same, and hence the greater the degree of similarity between

the clustering structure of dataset k and dataset ‘. In Figure 1b, we pro-

vide a graphical representation of our model in the case K¼ 3. If all

�k‘ ¼ 0, then we recover the case of K-independent DMA mixture

models (Fig. 1a). Note that ð1þ �k‘Iðcik ¼ ci‘ÞÞ � 1, hence if �k‘40

then we are up-weighting the prior probability that cik ¼ ci‘ (relative to

the independent case).

Linking the mixture models at the level of the component allocation

variables provides us with a means to capture dependencies between the

datasets in a manner that avoids difficulties associated with the datasets

being of different types and/or having different noise properties.

An important feature of our model is that there is a correspondence

between the component labels across the datasets. That is, our model

implicitly ‘matches up’ Component c in Dataset k with Component c

in Dataset ‘. This allows us to identify groups of genes that tend to be

allocated to the same component (i.e. which tend to cluster together) in

multiple datasets (Section 2.4). It is this desire to ‘match up’ components

across datasets that motivates our use of finite approximations to DP

mixture models. Had we used an infinite mixture model, matching com-

ponents across datasets would be more problematic. We reiterate that the

finiteN that appears in our mixture models merely places an upper bound

on the number of clusters in each dataset (as not all components need to

be occupied), and hence is not restrictive in practice. Note that while this

upper bound is the same for each data set, the actual number of occupied

components (i.e. clusters) is inferred separately for each dataset and in

general will be different for each one.

2.3 Modelling different data types

To specify our model fully, we must provide parametric densities, f, ap-

propriate for each data source. It is important to note that we may tailor

our choice of f to reflect the data sources that we seek to model. In the

present work, we use Gaussian process models (Cooke et al., 2011; Kirk

(a) (b)

Fig. 1. Graphical representation of three DMA mixture models. (a)

Independent case. (b) The MDI model. In both (a) and (b), xik denotes

the i�th observation in dataset k and is generated by mixture component

cik. The prior probabilities associated with the distinct component allo-

cation variables, ½c1k, . . . , cNk�, are given in the vector pk, which is itself

assigned a symmetric Dirichlet prior with parameter �k. The parameter

vector, hck, for component c in dataset k is assigned a G0
k prior. In (b), we

additionally have �k‘ parameters, each of which models the dependence

between the component allocations of observations in dataset k and ‘
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and Stumpf, 2009; Rasmussen and Williams, 2006) for gene expression

time course data, and use multinomial models for categorical data

(e.g. discretized gene expression levels). For comparison with the results

of Savage et al. (2010), we also consider in our second example (Sections

3.2 and 4.2) a bag-of-words model for ChIP–chip data. Full details of all

of these models are given in the Supplementary Material, where we also

provide a Gibbs sampler for performing inference. As in Nieto-Barajas

et al. (2004), posterior simulation for our model is aided by the strategic

introduction of an additional latent variable (Supplementary Material for

details).

2.4 Extracting fused clusters from posterior samples

We wish to identify groups of genes that tend to be grouped together in

multiple datasets. Suppose we have a collection of K datasets, which we

label as Dataset 1,. . ., Dataset K. We are interested in identifying groups

of genes that tend to cluster together amongst some subcollection of the

datasets. Let fk1, k2, . . . , kmg be a subset of f1, . . . ,Kg. Our aim is to

identify groups of genes that cluster together in all of Dataset k1,. . .,

Dataset km. Adapting terminology from Savage et al. (2010), we define

the probability of the i-th gene being fused across datasets k1, . . . , km to

be the posterior probability that cik1 ¼ cik2 ¼ . . . ¼ cikm : For brevity, we

denote this posterior probability by pðcik1 ¼ cik2 ¼ . . . ¼ cikm Þ. We calcu-

late this quantity as the proportion of posterior samples for which

cik1 , cik2 , . . . , cikm are all equal. We may clearly calculate these posterior

fusion probabilities for any combination of the datasets (pairs, triplets,

etc.), simply by considering the appropriate subset of f1, . . . ,Kg. We say

that the i-th gene is fused across datasets k1, k2, . . . , km if

pðcik1 ¼ cik2 ¼ . . . ¼ cikm Þ40:5, and we denote the set of all such fused

genes by F k1, k2, ..., km .

If gene i is a member of F k1, k2, ..., km , this simply tells us that the com-

ponent allocation variables cik1 , cik2 , . . . , cikm tend to be equal (i.e. gene i

tends to be allocated to the same component across datasets

k1, k2, . . . , km). We also wish to identify the clustering structure that

exists amongst these fused genes. From our Gibbs sampler, we have a

collection of sampled component allocations for each member of

F k1, k2, ..., km . We identify a final clustering for the set of fused genes by

searching amongst the sampled component allocations to find the one

that maximizes the posterior expected adjusted Rand index (ARI; Fritsch

and Ickstadt, 2009). The resulting fused clusters contain groups of genes

that tend to cluster together across datasets k1, k2, . . . , km.

3 EXAMPLES

To demonstrate the usage and utility of MDI, we consider three

examples using publicly available S. cerevisiae datasets. We spe-

cify the priors adopted for unknown parameters and provide

Markov chain Monte Carlo running specifications in the

Supplementary Material. Each of our examples serves a different

purpose. In the first (Section 3.1), we consider an easily inter-

pretable synthetic dataset, which allows us to illustrate the types

of results that can be obtained using MDI. In the second (Section

3.2), we seek to compare our method with the present

state-of-the-art in data integration (namely, the approach of

Savage et al., 2010). Although this approach is limited to inte-

grating two datasets only, it provides a useful benchmark for

MDI. Finally, in Section 3.3, we provide an example that

allows us to explore the benefits offered by MDI that go

beyond the existing state-of-the-art. We consider the integration

of three datasets, two of which comprise static measurements

(ChIP–chip and PPI), and the other of which comprises gene

expression time course data.

3.1 6-dataset synthetic example

To illustrate the properties of our model, we start with a

six-dataset synthetic example. Dataset 1 is constructed by

taking a 100-gene subset of the gene expression time course

data of Cho et al. (1998), and may be partitioned into seven

easily distinguishable clusters (Fig. 2a). We therefore associate

with each time course a cluster label, Z 2 f1, . . . , 7g. For

i ¼ 1, . . . , 5, we form Dataset iþ 1 by randomly selecting 25

time courses from Dataset i and randomly permuting their asso-

ciated gene names (but not their cluster labels). Thus, for a max-

imum of 25 genes, the cluster label associated with gene g in

Dataset i may be different from the cluster label associated

with the same gene in Dataset iþ 1. Figure 2b and c further

illustrate this dataset. A formal approach for comparing the al-

location of genes to clusters is to calculate the ARI between each

pair of clustering partitions (Hubert and Arabie, 1985; Rand,

1971). Figure 2d provides a heatmap depiction of the similarity

matrix formed by calculating pairwise ARIs.

3.2 Integrating expression and ChIP data

To compare our method with an existing approach for unsuper-

vised data integration, we apply MDI to an example previously

considered by Savage et al. (2010) in the context of transcrip-

tional module discovery. We take expression data from a

205-gene subset of the galactose-use data of Ideker et al.

(2001), which we integrate with ChIP–chip data from Harbison

et al. (2004). The expression data were discretized, as in Savage

et al. (2010). The 205 genes appearing in this dataset were se-

lected in Yeung et al. (2003) to reflect four functional Gene

Ontology (GO) categories. Although this functional classifica-

tion must be used with some degree of caution (Yeung et al.,

2003), it provides a reasonable means by which to validate the

groupings defined by our method. We use the same version of

(a)

(d)

(b) (c)

Fig. 2. (a) The data for the six-dataset synthetic example, separated into

seven clusters. (b) A representation of how the cluster labels associated

with each gene vary from dataset to dataset. Genes are ordered so that

the clustering of Dataset 1 is the one that appears coherent. (c) A table

showing the number of genes having the same cluster labels in datasets

i and j. (d) A heatmap depiction of the similarity matrix formed by

calculating the ARI between pairs of datasets
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the Harbison et al. dataset as considered by Savage et al. (2010)

(significance threshold P¼ 0.001), which provides binding infor-

mation for 117 transcriptional regulators. For brevity, we hence-

forth refer to the data of Harbison et al. as ‘ChIP data’, although

we emphasise that this dataset comprises measurements corres-

ponding to a compendium of 117 TFs, rather than to a single

particular TF. Discretizing the data (both expression and ChIP–

chip) might seem like an unnecessary simplification (as our

model can accommodate continuous static measurements

through an appropriate choice of component density function,

f), but it helps to ensure that our comparison to the results of

Savage et al. (2010) is fair. Moreover, discretization of the ChIP

data simplifies modelling and interpretation of the data (the

ij-entry of our ChIP data matrix is 1 if we have high confidence

that TFj is able to bind the promoter region of gene i, and 0

otherwise), although we acknowledge that this is likely to incur

some small information loss.

3.3 Integrating expression, ChIP and PPI data

For an example with three diverse data types, we integrate

the ChIP data of Harbison et al. with binary PPI data obtained

from BioGRID (Stark et al., 2006) and a gene expression time

course dataset of Granovskaia et al. (2010), with the initial in-

tention of identifying protein complexes whose genes undergo

transcriptional co-regulation during the cell cycle. We consider

the Granovkskaia et al. cell cycle dataset that comprises meas-

urements taken at 41 time points, and which was obtained from

cells synchronized using alpha factor arrest. We considered only

genes identified in Granovskaia et al. (2010) as having periodic

expression profiles. After removing those for which there was no

ChIP or PPI data, we were left with 551 genes. Our binary PPI

data matrix then has rows indexed by these 551 genes, and col-

umns indexed by all of the proteins for which physical inter-

actions identified via yeast 2-hybrid or affinity capture assays

have been reported in BioGRID. The ij-entry of the PPI data

matrix is 1 if there is a reported interaction between protein j and

the protein product of gene i (and 0 otherwise). In an effort to

reduce the number of uninformative features, we removed col-

umns containing fewer than five 1s, leaving 603 columns.

4 RESULTS

4.1 6-dataset synthetic example

Figure 3a shows estimated posterior densities for the mass par-

ameters, �k (obtained from the samples generated by our Gibbs

sampler using kernel density estimation). Because each of our

datasets is identical (up to permutation of gene names), these

distributions should be close to identical, as is the case. For

each pair of datasets, we used the posterior �k‘ samples to esti-

mate posterior means, ��k‘. We used these to form a similarity

matrix whose k‘-entry is ��k‘ (with ��k‘ defined to be ��‘k whenever
k4‘, and with ��kk left undefined). This is shown as a heatmap in

Figure 3b. Although they do so in different ways, both the ARI

and the dataset association parameters quantify the degree of

similarity between the allocation of genes to clusters in pairs of

datasets. The similarity of Figures 2d and 3b is therefore

reassuring.

To test our ability to identify fused genes, we calculated pair-

wise fusion probabilities, pðcik ¼ ci‘Þ, for each gene i and each

pair of datasets ðk, ‘Þ. If the true cluster label of gene i is the same

in datasets k and ‘, then pðcik ¼ ci‘Þ should be high (40.5) so that

the gene may be correctly identified as fused. Across all pairs of

datasets, the minimum pairwise fusion probability for such genes

was 0.90 and the mean was 0.97. Conversely, for genes having

different cluster labels in datasets k and ‘, the maximum pairwise

fusion probability was 0.05 and the mean was 0.01. Because our

fusion threshold is 0.5, we are in this case able to identify the

fusion status correctly for all genes.

4.2 ExpressionþChIP example

We ran MDI using a multinomial likelihood model for both

the discretized expression data and the binary ChIP–chip

data. We estimated pairwise fusion probabilities and extracted

fused clusters, as described in Section 2.4. We identified 52

fused genes, grouped into three clusters. We compared these

clusters to the functional classes defined in Yeung et al. (2003).

Within each cluster, all genes had the same functional classifica-

tion, whereas genes in different clusters possessed different

classifications.

In Savage et al. (2010), a bag-of-words model was used to

model TF binding data. To permit a fair comparison of the

two approaches, we therefore re-ran MDI using a bag-of-words

likelihood model for the ChIP data. Following Savage et al.

(2010), we then calculated the Biological Homogeneity Index

(BHI; Datta and Datta, 2006) for the resulting fused clusters.

To calculate the BHI scores, we used the R package clValid

(Brock et al., 2008) together with the GO annotations in the

org.Sc.sgd.db Bioconductor package (Carlson et al., 2010). The

clValid package provides four different BHI scores, depending

on which GO functional categories are used to define the set of

annotations. All categories may be considered or just one of

biological process (bp), cellular component (cc) and molecular

function (mf). We report all four BHI scores in Table 1, for the

fused clusters defined by (i) the method of Savage et al. (2010);

(ii) MDI using a bag-of-words likelihood and (iii) MDI using a

multinomial likelihood. The BHI scores for MDI (bag-of-words)

and the method of Savage et al. (2010) are almost identical, al-

though MDI (bag-of-words) identifies a greater number of fused

genes.

(a) (b)

Fig. 3. (a) Densities fitted to the sampled values of �k. (b) Heatmap

representation of the matrix with k‘-entry ��k‘, the posterior mean

value for �kl
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4.3 ExpressionþChIPþPPI example

We applied MDI to the example of Section 3.3 (using GP models

for the gene expression time courses, and multinomial models for

the ChIP and PPI datasets), to identify groups of genes that are

co-regulated during the yeast cell cycle, and whose protein prod-

ucts appear in the same complex. We identified genes fused

across all three datasets, as well as genes fused across pairs of

datasets. We then determined the fused clusters for each of these

combinations (Section 2.4). Additionally, we identified clusters

for the ‘single dataset fusion’ case (which amounts to identifying

a single clustering partition for each of our three datasets con-

sidered separately). We assess the quality of our clusterings using

GO Term Overlap (GOTO) scores (Mistry and Pavlidis, 2008).

These assign a score to a pair of genes according to how many

GO terms they have in common. This contrasts with BHI, which

just assigns a score of 0 or 1 to gene pairs depending on whether

or not they share a common GO term. The GOTO scores there-

fore provide a more finely grained assessment, which implicitly

takes into account the hierarchical structure of the GO. This is

invaluable here because (as a result of selecting only genes found

to have periodic expression profiles during the cell cycle) any two

randomly selected genes are likely to share some high-level GO

terms (see the Supplementary Material for more details). The

GOTO scores are reported in Table 2
The GOTO scores generally increase as we require agreement

across more datasets, while the number of fused genes decreases.

Note that this decrease is simply a consequence of requiring

agreement among a larger collection of datasets. For example,

as the set S1 ¼ {genes that are co-regulated and have protein

products that appear in the same complex} is a subset of

S2 ¼ fgenes that are co-regulatedg, it is inevitable that the

number of genes of the former type will be less than or equal

to the number of genes of the latter type. In other words, requir-

ing agreement across multiple datasets enables us to identify

clusters of genes that have increasingly specific shared character-

istics. This is reflected in the increasing GOTO scores, which

indicate that genes in the same cluster tend to share a greater

number of lower-level (more specific) GO terms.
In Figure 4, we compare the clusters formed by the genes fused

across all three datasets with those formed by the genes fused

across just the PPI and ChIP datasets. Figure 4a and b illustrate

fusion probabilities for the 31 genes identified as fused across the

PPI and ChIP datasets. Each bar in Figure 4a corresponds to a

particular gene (as labelled), and represents the posterior prob-

ability of that gene being fused across the ChIP and PPI datasets.

The corresponding bar in Figure 4b represents the probability of

the gene being fused across all three datasets. Figure 4c shows the

expression profiles for genes identified as fused across the PPI

and ChIP datasets, with genes fused across all three datasets

shown in colour. Supplementary Figure 2 further illustrates the

fused clusters, whereas Table 3 shows the fused cluster labels and

provides descriptions for the genes fused across all three datasets.

We can see from Figure 4a and b that the integration of the

expression data in addition to the ChIP and PPI data results in

Cluster 1 (green) and Cluster 6 (black) being effectively removed.

Although many of the genes in Cluster 1 are annotated as cell

wall proteins (Supplementary Material), and although the two

genes in Cluster 6 are both cyclins, the genes within these clusters

have different expression patterns to one another (Fig. 4c, panels

1 and 6). Genes are also lost from Clusters 4 and 5 (shown pink

and purple). However, further analysis suggests that this is owing

to data normalization effects (Supplementary Material). Cluster

2 (blue) is robust to the additional inclusion of expression data,

indicating that there is no significant disagreement amongst the

three datasets regarding the existence of this cluster. Cluster 3

(red) is also relatively robust, with only one less gene when we

consider the fusion of all three datasets, compared to the fusion

of just the ChIP and PPI datasets (Fig. 4a and b). We note that

the genes in Clusters 2 and 3 all have key roles, either encoding

core histone proteins or being involved in ribosome biogenesis

(Table 3).

Interestingly, the gene lost from Cluster 3 (the histone cluster)

is HTZ1, which encodes the variant histone H2A.Z (Jackson

et al., 1996; Santisteban et al., 2000). The function of H2A.Z is

different to that of the major H2As (e.g. Jackson and Gorovsky,

2000). We can see from Figure 4c (panel 3) that the expression of

this gene (shown grey) is subtly different to the expression of

others in the cluster.

4.4 Comparison to other methods

In Section G of the Supplementary Material, we provide a com-

parison of MDI with other clustering methods, both in terms of

performance and the types of results that can be obtained. The

key properties of MDI that distinguish it from other clustering

methods are (i) the clustering of genes in dataset k influences

(and is influenced by) the clustering in dataset ‘, to an extent

determined by the inferred �k‘ parameter; (ii) each dataset is

permitted to have a different clustering structure (so each dataset

may, for example, have a different number of clusters); (iii) the

number of clusters is determined automatically as part of the

inference procedure and (iv) there is a correspondence between

the cluster labels in different datasets, which enables us to iden-

tify clusters of genes that exist across some or all of the datasets.

Simple clustering methods (such as k-means and hierarchical

clustering) can be used to cluster each of the datasets independ-

ently, but do not model the dependence/similarity between clus-

tering structures in different datasets and do not enable clusters

that exist across multiple datasets to be identified automatically.

More sophisticated methods such as iCluster (Shen et al., 2009)

often share some of MDI’s properties, but do not allow for the

identification of subsets of genes that cluster together across mul-

tiple datasets. The results of Section G of the Supplementary

Material demonstrate that the ability to share information

across datasets typically provides improvements in clustering

quality, while MDI’s additional ability to pick out clusters that

Table 1. BHI scores for the fused clusters obtained using the method of

Savage et al. (2010), together with those obtained using MDI

Method BHI

(all)

BHI

(bp)

BHI

(mf)

BHI

(cc)

Number

of genes

Savage et al. (2010) 0.98 0.85 0.71 0.98 72

MDI (bag-of-words) 0.98 0.85 0.72 0.97 172

MDI (multinomial) 1.00 0.89 0.77 1.00 52
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exist across multiple datasets permits the identification of groups

of genes with specific shared characteristics. Increasing the

number of datasets across which we seek agreement in cluster

assignment has the effect of increasing the specificity of these

shared characteristics (which typically reduces the size of the

gene subset—see Section 4.3 for further explanation).

4.5 Scaling and run-times

For typical examples (where the number of datasets, K, is rela-

tively small), the scaling of MDI will be O(KNn) (see

Supplementary Section D.5 for further details and specific

run-times). MDI is particularly appropriate for applications in

which a gene pre-selection step is performed (e.g. on the basis of

differential expression). We anticipate applications to collections

of �5 datasets, each comprising �1000 genes. Parallelizing MDI

using an approach such as the one described by Suchard et al.

(2010) should be possible, and we are currently investigating this.

5 DISCUSSION

We have presented MDI, a novel Bayesian method for the un-

supervised integrative modelling of multiple datasets. We have

established that MDI provides competitive results with an exist-

ing method for integrating two datasets (Section 4.2), and is also

able to integrate collections of more than two datasets (Sections

4.1 and 4.3). Our application to a three-dataset example (Section

4.3) demonstrated that requiring agreement across multiple data-

sets of different types can enable us to identify clusters of genes

with increasingly specific shared characteristics. Moreover, we

have found that sharing information across multiple datasets

can improve cluster quality.
MDI adopts a modelling approach distinctly different from

those adopted by existing integrative modelling methods. For

example, the model of Savage et al. (2010) performs integrative

modelling of two datasets only, achieved by introducing a ‘fused

context’ (in which the two datasets are modelled together via a

product of likelihoods) in addition to two ‘unfused contexts’ in

which the two datasets are modelled separately. This is analo-

gous to introducing—and modelling—an additional dataset. In

contrast, MDI introduces just a single parameter, �k‘ 2 R�0, for

each pair of datasets (Section 2.2), and it is this that provides

MDI with the flexibility to perform integrative modelling of mul-

tiple datasets. The scalability of MDI may be further improved

through parallelization of the type described by Suchard et al.

(2010). This is an important direction for future work.
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(a) (b) (c)

Fig. 4. (a) Pairwise fusion probabilities for the 31 genes identified as fused across the ChIP and PPI datasets in the ‘ExpressionþChIPþPPI’ example.

Colours correspond to fused clusters and the dashed line indicates the fusion threshold. (b) Three-way fusion probabilities for the same 31 genes. Genes

that do not exceed the fusion threshold have white bars. (c) The expression profiles for genes identified as fused according to the ChIP and PPI datasets.

The coloured lines indicate genes that are also fused across the expression dataset as well

Table 3. Clusters formed by the genes fused across all 3 datasets

ID Gene Brief description

2 NOB1 Involved in synthesis of 40S ribosomal subunits

2 ENP2 Required for biogenesis of the small ribosomal subunit

2 RPF2 Involved in assembly of 60S ribosomal subunit

2 IMP3 Component of the SSU processome

2 DBP9 Involved in biogenesis of 60S ribosomal subunit

3 HHF2 Histone H4, core histone protein

3 HTB2 Histone H2B, core histone protein

3 HTA1 Histone H2A, core histone protein

3 HHT1 Histone H3, core histone protein

3 HTB1 Histone H2B, core histone protein

3 HHT2 Histone H3, core histone protein

3 HHF1 Histone H4, core histone protein

5 SMC3 Subunit of the cohesin complex

5 IRR1 Subunit of the cohesin complex

Descriptions were derived from the Saccharomyces Genome Database (Cherry

et al., 1998). The IDs in this table correspond to the cluster IDs in Figure 4, with

singletons omitted.

Table 2. GOTO scores for fused clusters obtained for all combinations of

the expression, ChIP and PPI datasets

Dataset(s) GOTO

(bp)

GOTO

(mf)

GOTO

(cc)

Number

Of genes

ChIP 6.36 0.97 8.53 551

PPI 11.04 1.51 11.11 551

Expression 7.66 1.15 9.48 551

ChIPþPPI 27.04 3.47 18.99 31

ChIPþExpression 24.46 2.93 16.87 48

PPIþExpression 26.04 3.69 22.35 32

ChIPþPPIþExpression 34.81 2.46 26.70 16
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