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ABSTRACT

Motivation: The integration of multiple datasets remains a key chal-
lenge in systems biology and genomic medicine. Modern high-
throughput technologies generate a broad array of different data
types, providing distinct—but often complementary—information.
We present a Bayesian method for the unsupervised integrative mod-
elling of multiple datasets, which we refer to as MDI (Multiple Dataset
Integration). MDI can integrate information from a wide range of dif-
ferent datasets and data types simultaneously (including the ability to
model time series data explicitly using Gaussian processes). Each
dataset is modelled using a Dirichlet-multinomial allocation (DMA) mix-
ture model, with dependencies between these models captured
through parameters that describe the agreement among the datasets.
Results: Using a set of six artificially constructed time series datasets,
we show that MDI is able to integrate a significant number of datasets
simultaneously, and that it successfully captures the underlying struc-
tural similarity between the datasets. We also analyse a variety of real
Saccharomyces cerevisiae datasets. In the two-dataset case, we
show that MDI's performance is comparable with the present
state-of-the-art. We then move beyond the capabilities of current
approaches and integrate gene expression, chromatin immunopreci-
pitation—chip and protein—protein interaction data, to identify a set of
protein complexes for which genes are co-regulated during the cell
cycle. Comparisons to other unsupervised data integration tech-
niqgues—as well as to non-integrative approaches—demonstrate that
MDI is competitive, while also providing information that would be
difficult or impossible to extract using other methods.

Availability: A Matlab implementation of MDI is available from
http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/
software/.

Contact: D.L.Wild@warwick.ac.uk

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

The wide range of modern high-throughput genomics technolo-
gies has led to a rapid increase in both the quantity and variety of
functional genomics data that can be collected. For example,
large-scale microarray (Lockhart et al., 1996; Schena et al.,
1995), chromatin immunoprecipitation (ChIP) chip (Solomon
et al., 1988) and tandem affinity purification (Puig et al., 2001;
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Rigaut et al., 1999) datasets are available for a broad selection of
organisms, providing measurements of mRNA expression,
protein-DNA binding and protein—protein interactions (PPIs).
In the forthcoming era of personal genomic medicine, we may
reasonably expect genome sequences and other forms of
high-throughput data (such as gene expression, alternative spli-
cing, DNA methylation, histone acetylation and protein abun-
dances) to be routinely measured for large numbers of people.
The development of novel statistical and computational method-
ology for integrating diverse data sources is therefore essential,
and it is with this that the present work is concerned.

As is common in statistics and machine learning, data integra-
tion techniques can be broadly categorized as either supervised
(where a training/gold-standard set with known labels is used to
learn statistical relationships) or unsupervised (where there is no
training dataset, but we nevertheless seek to identify hidden
structure in the observed data; e.g. by clustering). Our proposed
method is unsupervised, but there are also a number of super-
vised learning algorithms that are designed to integrate multiple
data sources; we now briefly mention these for the sake of com-
pleteness. These have proven highly successful in several con-
texts, often when predicting whether a link or interaction exists
between two genes or proteins. Depending on the application,
the link might represent (to provide just a few examples) protein—
protein binding (Jansen ez al., 2003; Rhodes et al., 2005), or a
synthetic sick or lethal interaction (Wong et al., 2004) or might
indicate that the two genes have been implicated in the same
biological process (Myers and Troyanskaya, 2007). Approaches
for predicting these links often proceed by collecting a
gold-standard set of positive and negative interactions (see, for
contrasting examples, Jansen et al., 2003; Lee et al., 2004; Myers
et al., 2005), and then training statistical models (e.g. decision
trees, naive Bayes classifiers) that predict the presence/absence of
these interactions. These models may then be applied to predict
the presence/absence of previously unknown interactions.
Because training and prediction are performed on the basis of
information collected from multiple different data sources, these
approaches provide a form of data integration. Such supervised
data integration techniques have proven highly effective for pre-
dicting interactions, some of which may then be verified experi-
mentally (e.g. Rhodes et al., 2005; Huttenhower et al., 2009).
Moreover, the work of Huttenhower et al. (2009) demonstrates
that such approaches may be used to integrate whole-genome
scale datasets. The Bayesian network approach of Troyanskaya
et al. (2003) was a precursor to many of these supervised
approaches, but differs from the others in that it uses knowledge
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from human experts to integrate predictions derived from diverse
datasets.

Here we propose a novel unsupervised approach for the inte-
grative modelling of multiple datasets, which may be of different
types. For brevity, we refer to our approach as MDI, simply as a
shorthand for ‘Multiple Dataset Integration’. We model each
dataset using a Dirichlet-multinomial allocation (DMA) mixture
model (Section 2.1), and exploit statistical dependencies between
the datasets to share information (Section 2.2). MDI permits the
identification of groups of genes that tend to cluster together in
one, some or all of the datasets. In this way, our method is able
to use the information contained within diverse datasets to
identify groups of genes with increasingly specific characteristics
(e.g. not only identifying groups of genes that are co-regulated,
but additionally identifying groups of genes that are both
co-regulated and whose protein products appear in the same
complex).

Informally, our approach may be considered as a ‘correlated
clustering’ model, in which the allocation of genes to clusters in
one dataset has an influence on the allocation of genes to clusters
in another. This contrasts with ‘simple’ clustering approaches
(such as k-means, hierarchical clustering, etc) in which the data-
sets are clustered independently (or else concatenated and treated
as a single dataset). It also clearly distinguishes our methodology
from biclustering (e.g. Cheng and Church, 2000; Reiss et al.,
20006). Biclustering is the clustering of both dimensions in a
single dataset (e.g. both genes and experiments in a gene expres-
sion dataset). MDI, in contrast, clusters a single dimension
(e.g. genes) across multiple datasets. Biclustering is not applicable
here as the datasets can be arbitrarily different, making any clus-
tering across all features difficult. MDI avoids the problem of
comparing different data types by instead learning the degree of
similarity between the clustering structures (i.e. the
gene-to-cluster allocations) in different datasets (Section 2.2).

MDI makes use of mixture models, which have become wide-
spread in the context of unsupervised integrative data modelling
(e.g. Barash and Friedman, 2002; Liu er al., 2006, 2007), gaining
increased popularity in recent years (Rogers et al., 2010; Savage
et al., 2010). The principal advantages of using mixture models
are as follows: (i) they provide flexible probabilistic models of the
data; (ii) they naturally capture the clustering structure that is
commonly present in functional genomics datasets; and (iii) by
adopting different parametric forms for the mixture components,
they permit different data types to be modelled (see also Section
2.1). An early application to data integration is provided by
Barash and Friedman (2002), who performed integrative model-
ling of gene expression and binding site data.

As part of our approach, we infer parameters that describe the
levels of agreement between the datasets. Our method may thus
be viewed as extending the work of Balasubramanian ez al.
(2004). In this regard, MDI is also related to the approach of
Wei and Pan (2012), which models the correlation between data
sources as part of a method that classifies genes as targets or
non-targets of a given transcription factor (TF) using ChIP—chip,
gene expression and DNA binding data, as well as information
regarding the position of genes on a gene network. Perhaps most
closely related to MDI (in terms of application) are the methods
of Savage et al. (2010) and iCluster (Shen et al., 2009). Savage
et al. (2010) adopt a mixture modelling approach, using a

hierarchical Dirichlet process (DP) to perform integrative mod-
elling of two datasets. As well as significant methodological
differences, the principal practical distinction between this ap-
proach and MDI is that we are able to integrate more than
two datasets, any or all of which may be of different types
(Section 2). Like MDI, the iCluster method of Shen et al.
(2009) permits integrative clustering of multiple (> 2) genomic
datasets, but uses a joint latent variable model (for details, see
Shen et al., 2009). In contrast to MDI, iCluster seeks to find a
single common clustering structure for all datasets. Moreover,
iCluster must resort to heuristic approaches to estimate the
number of clusters, whereas MDI infers this automatically
(Section 2.1). We demonstrate that MDI provides results that
are competitive with the two-dataset approach of Savage et al.
(2010) in Section 3.2, and provide a comparison of results ob-
tained using M DI, iCluster and simple clustering approaches in
the Supplementary Material.

The potential biological applications of our approach are
diverse, as there are many experimental platforms that produce
measurements of different types, which might be expected to
possess similar (but not necessarily identical) clustering struc-
tures. For example, in the two-dataset case, related methodolo-
gies have been used to discover transcriptional modules (Liu
et al., 2007; Savage et al., 2010) and prognostic cancer subtypes
(Yuan et al., 2011) through the integration of gene expression
data with TF binding (ChIP—hip) data and copy number vari-
ation data, respectively. A related approach was also used by
Rogers et al. (2008) to investigate the correspondence between
transcriptomic and proteomic expression profiles. In the example
presented in this article, we focus on the biological question of
identifying protein complexes whose genes undergo transcrip-
tional co-regulation during the cell cycle.

The outline of this article is as follows. In Section 2, we briefly
provide some modelling background and present our approach.
Inference in our model is performed via a Gibbs sampler, which
is provided in the Supplementary Material. In Section 3, we de-
scribe three case study examples, in all of which we use publicly
available Saccharomyces cerevisiae (baker’s yeast) datasets. We
present results in Section 4 and a discussion in Section 5.

2 METHODS

In this section, we provide some background regarding DMA mixture
models (Section 2.1), and consider how these may be extended to allow us
to perform integrative modelling of multiple datasets (Section 2.2).
Inference in the resulting model (which we henceforth refer to as MDI)
is performed using a Gibbs sampler (Supplementary Material). We briefly
describe in Section 2.4 how the resulting posterior samples may be effect-
ively summarized.

2.1 Dirichlet-multinomial allocation mixture models

We model each dataset using a finite approximation to a DP mixture
model (Ishwaran and Zarepour, 2002), known as a DMA mixture model
(Green and Richardson, 2001). Such models have the following general
form:

v
P = Y 7 f(x16). O
c=1
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In the above, p(x) denotes the probability density model for the data,
which is here an N component mixture model. The 7.’s are mixture
proportions, f'is a parametric density (such as a Gaussian) and 6, denotes
the vector of parameters associated with the c¢-th component.
Importantly, different choices for the density f allow us to model different
types of data (for example, a normal distribution might be appropriate
for continuous data, whereas a multinomial might be appropriate for
categorical data).

Given observed data xi, ..., x,, we wish to perform Bayesian infer-
ence for the unknown parameters in this model. As is common in mixture
modelling (e.g. Dempster et al., 1977; see also Friedman et al., 2004 for a
graphical model perspective), we introduce latent component allocation

variables ¢; € {1, ..., N}, such that ¢; is the component responsible for
observation x;. We then specify the model as follows:
x,-lc,», 6~ F(O,.,),
¢ilm ~ Multinomial(ry, ..., 7y), 5
71, ...,y ~ Dirichlet(a/N, ...,a/N), @)
B ~ GO,
where F'is the distribution corresponding to density f, & = (71, ..., 7Ty) is

the collection of N mixture proportions, « is a mass/concentration par-
ameter (which may also be inferred) and G is the prior for the compo-
nent parameters. Bayesian inference for such models may be performed
via Gibbs sampling (Neal, 2000). Note that a realization of the collection
of component allocation variables, (cy, ..., c¢,), defines a clustering of the
data (i.e. if ¢; = ¢;, then x; and x; are clustered together). Because each ¢;
is a member of the set {1, ..., N}, it follows that the value of N places an
upper bound on the number of clusters in the data.

The DP mixture model may be derived by considering the limit
N — oo in Equation (1) (Neal, 1992; Rasmussen, 2000). In the present
article, it is convenient to persist with finite N (Section 2.2). The import-
ant point is that N just places an upper bound on the number of clusters
present in the data (because, as in the infinite DP case, not all of the
components need to be ‘occupied’; i.e. not all components need to have
observations associated with them), and hence N does not specify the
precise number of clusters a priori. Provided N is taken sufficiently
large, the number of clusters present in the data will be (much) less
than N, and we will retain the ability to identify automatically the
number of clusters supported by the data. Theoretical justifications for
‘large’ mixture models such as this (in which the number of components
in the mixture is larger than the true number of clusters in the data) are
provided by Rousseau and Mengersen (2011). A choice of N=n would
set the upper bound on the number of clusters to be equal to the number
of genes. As a tradeoff with computational cost, we take N = |_n/2-|
throughout this article.

2.2 Dependent component allocations

We are interested in the situation where we have a collection of n genes,
for each of which we have measurements from K different data sources.
One possible modelling approach would be to fit K independent DMA
mixture models, represented graphically in Figure la for the case K=3.
However, this neglects to consider (and fails to exploit) structure within
the data that may be common across some or all of the different sources.
For example, a set of co-regulated genes might be expected to have simi-
lar expression profiles, as well as have a common collection of proteins
that bind their promoters. We therefore propose a model in which we
allow dependencies berween datasets at the level of the component allo-
cation variables, c¢;.

We consider K mixture models (one for each dataset), each defined as
in Equations (1) and (2). We add right subscripts to our previous notation
to distinguish between the parameters of the K different models (so that
ay is the mass parameter associated with model k, etc.) and take Ny = N
in all mixture models. Note that each model is permitted to have a

(a) @ @ @ (b) @ © o

Fig. 1. Graphical representation of three DMA mixture models. (a)
Independent case. (b) The MDI model. In both (a) and (b), x; denotes
the i—th observation in dataset k and is generated by mixture component
c¢ir. The prior probabilities associated with the distinct component allo-
cation variables, [cik, ..., cnk], are given in the vector my, which is itself
assigned a symmetric Dirichlet prior with parameter «;. The parameter
vector, O, for component ¢ in dataset k is assigned a GY prior. In (b), we
additionally have ¢y, parameters, each of which models the dependence
between the component allocations of observations in dataset k& and ¢

different mass parameter, a. MDI links these models together at the
level of the component allocation variables via the following conditional
prior:

K kol K
plensca, scilg) o [ [ren [T [T 0+ delca =), 3)
k=

=1 k=1 t=k+1

where [ is the indicator function, ¢y, € R-( is a parameter that controls
the strength of association between datasets k& and ¢, and ¢ is the collec-
tion of all K(K — 1)/2 of the ¢y,’s. For clarity, note that ¢; € {1, ..., N} is
the component allocation variable associated with gene 7 in model &, and
that m., is the mixture proportion associated with component cj in
model k. Informally, the larger ¢y, the more likely it is that ¢ and c¢;
will be the same, and hence the greater the degree of similarity between
the clustering structure of dataset & and dataset £. In Figure 1b, we pro-
vide a graphical representation of our model in the case K=3. If all
¢re =0, then we recover the case of K-independent DMA mixture
models (Fig. 1a). Note that (1 + ¢el(cik = ci¢)) > 1, hence if ¢, >0
then we are up-weighting the prior probability that ¢ = ¢;, (relative to
the independent case).

Linking the mixture models at the level of the component allocation
variables provides us with a means to capture dependencies between the
datasets in a manner that avoids difficulties associated with the datasets
being of different types and/or having different noise properties.

An important feature of our model is that there is a correspondence
between the component labels across the datasets. That is, our model
implicitly ‘matches up’ Component ¢ in Dataset k& with Component ¢
in Dataset ¢. This allows us to identify groups of genes that tend to be
allocated to the same component (i.e. which tend to cluster together) in
multiple datasets (Section 2.4). It is this desire to ‘match up’ components
across datasets that motivates our use of finite approximations to DP
mixture models. Had we used an infinite mixture model, matching com-
ponents across datasets would be more problematic. We reiterate that the
finite N that appears in our mixture models merely places an upper bound
on the number of clusters in each dataset (as not all components need to
be occupied), and hence is not restrictive in practice. Note that while this
upper bound is the same for each data set, the actual number of occupied
components (i.e. clusters) is inferred separately for each dataset and in
general will be different for each one.

2.3 Modelling different data types

To specify our model fully, we must provide parametric densities, f, ap-
propriate for each data source. It is important to note that we may tailor
our choice of f to reflect the data sources that we seek to model. In the
present work, we use Gaussian process models (Cooke et al., 2011; Kirk
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and Stumpf, 2009; Rasmussen and Williams, 2006) for gene expression
time course data, and use multinomial models for categorical data
(e.g. discretized gene expression levels). For comparison with the results
of Savage et al. (2010), we also consider in our second example (Sections
3.2 and 4.2) a bag-of-words model for ChIP—chip data. Full details of all
of these models are given in the Supplementary Material, where we also
provide a Gibbs sampler for performing inference. As in Nieto-Barajas
et al. (2004), posterior simulation for our model is aided by the strategic
introduction of an additional latent variable (Supplementary Material for
details).

2.4 Extracting fused clusters from posterior samples

We wish to identify groups of genes that tend to be grouped together in
multiple datasets. Suppose we have a collection of K datasets, which we
label as Dataset 1,. .., Dataset K. We are interested in identifying groups
of genes that tend to cluster together amongst some subcollection of the
datasets. Let {ky,ks, ....k,} be a subset of {I,...,K}. Our aim is to
identify groups of genes that cluster together in all of Dataset k... .,
Dataset k,,. Adapting terminology from Savage et al. (2010), we define
the probability of the i-th gene being fused across datasets ki, ...,k to
be the posterior probability that ¢y, = ci, = ... = ci, . For brevity, we
denote this posterior probability by p(ci, = ci, = ... = ci,, ). We calcu-
late this quantity as the proportion of posterior samples for which
Ciky» Ciks» - - - » Cik,, are all equal. We may clearly calculate these posterior
fusion probabilities for any combination of the datasets (pairs, triplets,
etc.), simply by considering the appropriate subset of {1, ..., K}. We say
that the i-th gene is fused across datasets kj, ko, ...k, if
p(Cik, = Cik, = ... = ¢it,,)>0.5, and we denote the set of all such fused
genes by ‘Fkl,kz,...,k”,'

If gene i is a member of Fy, i,. .. «,. this simply tells us that the com-
ponent allocation variables ¢, , Cik,, - - ., Cit,, tend to be equal (i.e. gene i
tends to be allocated to the same component across datasets
ki,ka, ... k). We also wish to identify the clustering structure that
exists amongst these fused genes. From our Gibbs sampler, we have a
collection of sampled component allocations for each member of
Frylo, k- We identify a final clustering for the set of fused genes by
searching amongst the sampled component allocations to find the one
that maximizes the posterior expected adjusted Rand index (ARI; Fritsch
and Ickstadt, 2009). The resulting fused clusters contain groups of genes
that tend to cluster together across datasets ki, ks, ..., k.

3 EXAMPLES

To demonstrate the usage and utility of MDI, we consider three
examples using publicly available S. cerevisiae datasets. We spe-
cify the priors adopted for unknown parameters and provide
Markov chain Monte Carlo running specifications in the
Supplementary Material. Each of our examples serves a different
purpose. In the first (Section 3.1), we consider an easily inter-
pretable synthetic dataset, which allows us to illustrate the types
of results that can be obtained using MDI. In the second (Section
3.2), we seek to compare our method with the present
state-of-the-art in data integration (namely, the approach of
Savage et al., 2010). Although this approach is limited to inte-
grating two datasets only, it provides a useful benchmark for
MDI. Finally, in Section 3.3, we provide an example that
allows us to explore the benefits offered by MDI that go
beyond the existing state-of-the-art. We consider the integration
of three datasets, two of which comprise static measurements
(ChIP—chip and PPI), and the other of which comprises gene
expression time course data.

3.1 6-dataset synthetic example

To illustrate the properties of our model, we start with a
six-dataset synthetic example. Dataset 1 is constructed by
taking a 100-gene subset of the gene expression time course
data of Cho et al. (1998), and may be partitioned into seven
easily distinguishable clusters (Fig. 2a). We therefore associate
with each time course a cluster label, Z € {l,...,7}. For
i=1,...,5 we form Dataset i+ 1 by randomly selecting 25
time courses from Dataset i and randomly permuting their asso-
ciated gene names (but not their cluster labels). Thus, for a max-
imum of 25 genes, the cluster label associated with gene g in
Dataset i may be different from the cluster label associated
with the same gene in Dataset i+ 1. Figure 2b and c further
illustrate this dataset. A formal approach for comparing the al-
location of genes to clusters is to calculate the ARI between each
pair of clustering partitions (Hubert and Arabie, 1985; Rand,
1971). Figure 2d provides a heatmap depiction of the similarity
matrix formed by calculating pairwise ARIs.

3.2 Integrating expression and ChIP data

To compare our method with an existing approach for unsuper-
vised data integration, we apply MDI to an example previously
considered by Savage et al. (2010) in the context of transcrip-
tional module discovery. We take expression data from a
205-gene subset of the galactose-use data of Ideker er al.
(2001), which we integrate with ChIP—chip data from Harbison
et al. (2004). The expression data were discretized, as in Savage
et al. (2010). The 205 genes appearing in this dataset were se-
lected in Yeung er al. (2003) to reflect four functional Gene
Ontology (GO) categories. Although this functional classifica-
tion must be used with some degree of caution (Yeung et al.,
2003), it provides a reasonable means by which to validate the
groupings defined by our method. We use the same version of

(@ (b) (c)

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5
Dataset 6

:sjeqe| Jaisn|)

Dataset 1 100
Dataset 2 84 100

Dataset 3 69 84 100
1 Dataset4 58 70 79 100
Dataset5 53 59 65 80 100
2 Dataset 6 47 50 54 64 81 100

Genes

= (d)

HE A

Dataset 2- |
Adjusted Rand Index

Dataset 1

Fig. 2. (a) The data for the six-dataset synthetic example, separated into
seven clusters. (b) A representation of how the cluster labels associated
with each gene vary from dataset to dataset. Genes are ordered so that
the clustering of Dataset | is the one that appears coherent. (¢) A table
showing the number of genes having the same cluster labels in datasets
i and j. (d) A heatmap depiction of the similarity matrix formed by
calculating the ARI between pairs of datasets
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the Harbison e al. dataset as considered by Savage et al. (2010)
(significance threshold P=0.001), which provides binding infor-
mation for 117 transcriptional regulators. For brevity, we hence-
forth refer to the data of Harbison ez al. as ‘ChIP data’, although
we emphasise that this dataset comprises measurements corres-
ponding to a compendium of 117 TFs, rather than to a single
particular TF. Discretizing the data (both expression and ChIP—
chip) might seem like an unnecessary simplification (as our
model can accommodate continuous static measurements
through an appropriate choice of component density function,
), but it helps to ensure that our comparison to the results of
Savage et al. (2010) is fair. Moreover, discretization of the ChIP
data simplifies modelling and interpretation of the data (the
i-entry of our ChIP data matrix is 1 if we have high confidence
that TF; is able to bind the promoter region of gene i, and 0
otherwise), although we acknowledge that this is likely to incur
some small information loss.

3.3 Integrating expression, ChIP and PPI data

For an example with three diverse data types, we integrate
the ChIP data of Harbison et a/. with binary PPI data obtained
from BioGRID (Stark ez al., 2006) and a gene expression time
course dataset of Granovskaia et al. (2010), with the initial in-
tention of identifying protein complexes whose genes undergo
transcriptional co-regulation during the cell cycle. We consider
the Granovkskaia et al. cell cycle dataset that comprises meas-
urements taken at 41 time points, and which was obtained from
cells synchronized using alpha factor arrest. We considered only
genes identified in Granovskaia et a/. (2010) as having periodic
expression profiles. After removing those for which there was no
ChIP or PPI data, we were left with 551 genes. Our binary PPI
data matrix then has rows indexed by these 551 genes, and col-
umns indexed by all of the proteins for which physical inter-
actions identified via yeast 2-hybrid or affinity capture assays
have been reported in BioGRID. The ij-entry of the PPI data
matrix is 1 if there is a reported interaction between protein j and
the protein product of gene i (and 0 otherwise). In an effort to
reduce the number of uninformative features, we removed col-
umns containing fewer than five 1s, leaving 603 columns.

4 RESULTS
4.1 6-dataset synthetic example

Figure 3a shows estimated posterior densities for the mass par-
ameters, o (obtained from the samples generated by our Gibbs
sampler using kernel density estimation). Because each of our
datasets is identical (up to permutation of gene names), these
distributions should be close to identical, as is the case. For
each pair of datasets, we used the posterior ¢y, samples to esti-
mate posterior means, qgkl. We used these to form a similarity
matrix whose kf-entry is ¢, (with ¢y defined to be ¢y whenever
k> £, and with ¢y left undefined). This is shown as a heatmap in
Figure 3b. Although they do so in different ways, both the ARI
and the dataset association parameters quantify the degree of
similarity between the allocation of genes to clusters in pairs of
datasets. The similarity of Figures 2d and 3b is therefore
reassuring.

(b)

Dataset 1

— Dataset 1
— -Dataset 2|

Dataset 3|
—e—Dataset 4|
——Dataset 5|
— -Dataset 6|

Dataset 2

Dataset 6

Fig. 3. (a) Densities fitted to the sampled values of ay. (b) Heatmap
representation of the matrix with kf-entry ¢y,, the posterior mean
value for ¢y

To test our ability to identify fused genes, we calculated pair-
wise fusion probabilities, p(cix = c¢;¢), for each gene i and each
pair of datasets (k, €). If the true cluster label of gene 7 is the same
in datasets k and ¢, then p(c;x = c;¢) should be high (>0.5) so that
the gene may be correctly identified as fused. Across all pairs of
datasets, the minimum pairwise fusion probability for such genes
was 0.90 and the mean was 0.97. Conversely, for genes having
different cluster labels in datasets k and ¢, the maximum pairwise
fusion probability was 0.05 and the mean was 0.01. Because our
fusion threshold is 0.5, we are in this case able to identify the
fusion status correctly for all genes.

4.2 Expression+ ChIP example

We ran MDI using a multinomial likelihood model for both
the discretized expression data and the binary ChIP—chip
data. We estimated pairwise fusion probabilities and extracted
fused clusters, as described in Section 2.4. We identified 52
fused genes, grouped into three clusters. We compared these
clusters to the functional classes defined in Yeung ez al. (2003).
Within each cluster, all genes had the same functional classifica-
tion, whereas genes in different clusters possessed different
classifications.

In Savage et al. (2010), a bag-of-words model was used to
model TF binding data. To permit a fair comparison of the
two approaches, we therefore re-ran MDI using a bag-of-words
likelihood model for the ChIP data. Following Savage et al.
(2010), we then calculated the Biological Homogeneity Index
(BHI; Datta and Datta, 2006) for the resulting fused clusters.
To calculate the BHI scores, we used the R package clValid
(Brock et al., 2008) together with the GO annotations in the
org.Sc.sgd.db Bioconductor package (Carlson et al., 2010). The
clValid package provides four different BHI scores, depending
on which GO functional categories are used to define the set of
annotations. All categories may be considered or just one of
biological process (bp), cellular component (cc) and molecular
function (mf). We report all four BHI scores in Table 1, for the
fused clusters defined by (i) the method of Savage et al. (2010);
(if) MDI using a bag-of-words likelihood and (iii) MDI using a
multinomial likelihood. The BHI scores for MDI (bag-of-words)
and the method of Savage et al. (2010) are almost identical, al-
though MDI (bag-of-words) identifies a greater number of fused
genes.
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Table 1. BHI scores for the fused clusters obtained using the method of
Savage et al. (2010), together with those obtained using MDI

Method BHI BHI BHI  BHI
(@b (bp)  (mb) (o)

Number
of genes

Savage et al. (2010) 0.98 0.85 0.71 0.98 72
MDI (bag-of-words) 0.98 0.85 0.72 0.97 172
MDI (multinomial) 1.00 0.89 0.77 1.00 52

4.3 Expression + ChIP + PPI example

We applied MDI to the example of Section 3.3 (using GP models
for the gene expression time courses, and multinomial models for
the ChIP and PPI datasets), to identify groups of genes that are
co-regulated during the yeast cell cycle, and whose protein prod-
ucts appear in the same complex. We identified genes fused
across all three datasets, as well as genes fused across pairs of
datasets. We then determined the fused clusters for each of these
combinations (Section 2.4). Additionally, we identified clusters
for the ‘single dataset fusion’ case (which amounts to identifying
a single clustering partition for each of our three datasets con-
sidered separately). We assess the quality of our clusterings using
GO Term Overlap (GOTO) scores (Mistry and Pavlidis, 2008).
These assign a score to a pair of genes according to how many
GO terms they have in common. This contrasts with BHI, which
just assigns a score of 0 or 1 to gene pairs depending on whether
or not they share a common GO term. The GOTO scores there-
fore provide a more finely grained assessment, which implicitly
takes into account the hierarchical structure of the GO. This is
invaluable here because (as a result of selecting only genes found
to have periodic expression profiles during the cell cycle) any two
randomly selected genes are likely to share some high-level GO
terms (see the Supplementary Material for more details). The
GOTO scores are reported in Table 2

The GOTO scores generally increase as we require agreement
across more datasets, while the number of fused genes decreases.
Note that this decrease is simply a consequence of requiring
agreement among a larger collection of datasets. For example,
as the set S} = {genes that are co-regulated and have protein
products that appear in the same complex} is a subset of
S> = {genes that are co-regulated}, it is inevitable that the
number of genes of the former type will be less than or equal
to the number of genes of the latter type. In other words, requir-
ing agreement across multiple datasets enables us to identify
clusters of genes that have increasingly specific shared character-
istics. This is reflected in the increasing GOTO scores, which
indicate that genes in the same cluster tend to share a greater
number of lower-level (more specific) GO terms.

In Figure 4, we compare the clusters formed by the genes fused
across all three datasets with those formed by the genes fused
across just the PPI and ChIP datasets. Figure 4a and b illustrate
fusion probabilities for the 31 genes identified as fused across the
PPI and ChIP datasets. Each bar in Figure 4a corresponds to a
particular gene (as labelled), and represents the posterior prob-
ability of that gene being fused across the ChIP and PPI datasets.
The corresponding bar in Figure 4b represents the probability of
the gene being fused across all three datasets. Figure 4c shows the

expression profiles for genes identified as fused across the PPI
and ChIP datasets, with genes fused across all three datasets
shown in colour. Supplementary Figure 2 further illustrates the
fused clusters, whereas Table 3 shows the fused cluster labels and
provides descriptions for the genes fused across all three datasets.

We can see from Figure 4a and b that the integration of the
expression data in addition to the ChIP and PPI data results in
Cluster 1 (green) and Cluster 6 (black) being effectively removed.
Although many of the genes in Cluster 1 are annotated as cell
wall proteins (Supplementary Material), and although the two
genes in Cluster 6 are both cyclins, the genes within these clusters
have different expression patterns to one another (Fig. 4c, panels
1 and 6). Genes are also lost from Clusters 4 and 5 (shown pink
and purple). However, further analysis suggests that this is owing
to data normalization effects (Supplementary Material). Cluster
2 (blue) is robust to the additional inclusion of expression data,
indicating that there is no significant disagreement amongst the
three datasets regarding the existence of this cluster. Cluster 3
(red) is also relatively robust, with only one less gene when we
consider the fusion of all three datasets, compared to the fusion
of just the ChIP and PPI datasets (Fig. 4a and b). We note that
the genes in Clusters 2 and 3 all have key roles, either encoding
core histone proteins or being involved in ribosome biogenesis
(Table 3).

Interestingly, the gene lost from Cluster 3 (the histone cluster)
is HTZ1, which encodes the variant histone H2A.Z (Jackson
et al., 1996; Santisteban et al., 2000). The function of H2A.Z is
different to that of the major H2As (e.g. Jackson and Gorovsky,
2000). We can see from Figure 4c (panel 3) that the expression of
this gene (shown grey) is subtly different to the expression of
others in the cluster.

4.4 Comparison to other methods

In Section G of the Supplementary Material, we provide a com-
parison of MDI with other clustering methods, both in terms of
performance and the types of results that can be obtained. The
key properties of MDI that distinguish it from other clustering
methods are (i) the clustering of genes in dataset k& influences
(and is influenced by) the clustering in dataset £, to an extent
determined by the inferred ¢y, parameter; (ii) each dataset is
permitted to have a different clustering structure (so each dataset
may, for example, have a different number of clusters); (iii) the
number of clusters is determined automatically as part of the
inference procedure and (iv) there is a correspondence between
the cluster labels in different datasets, which enables us to iden-
tify clusters of genes that exist across some or all of the datasets.
Simple clustering methods (such as k-means and hierarchical
clustering) can be used to cluster each of the datasets independ-
ently, but do not model the dependence/similarity between clus-
tering structures in different datasets and do not enable clusters
that exist across multiple datasets to be identified automatically.
More sophisticated methods such as iCluster (Shen et al., 2009)
often share some of MDI’s properties, but do not allow for the
identification of subsets of genes that cluster together across mul-
tiple datasets. The results of Section G of the Supplementary
Material demonstrate that the ability to share information
across datasets typically provides improvements in clustering
quality, while MDI’s additional ability to pick out clusters that
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Fig. 4. (a) Pairwise fusion probabilities for the 31 genes identified as fused across the ChIP and PPI datasets in the ‘Expression + ChIP + PPI’ example.
Colours correspond to fused clusters and the dashed line indicates the fusion threshold. (b) Three-way fusion probabilities for the same 31 genes. Genes
that do not exceed the fusion threshold have white bars. (¢) The expression profiles for genes identified as fused according to the ChIP and PPI datasets.
The coloured lines indicate genes that are also fused across the expression dataset as well

Table 2. GOTO scores for fused clusters obtained for all combinations of
the expression, ChIP and PPI datasets

Dataset(s) GOTO GOTO GOTO  Number
(bp) (mf) (cc) Of genes

ChIP 6.36 0.97 8.53 551

PPI 11.04 1.51 11.11 551

Expression 7.66 1.15 9.48 551

ChIP + PPI 27.04 3.47 18.99 31

ChIP + Expression 24.46 293 16.87 48

PPI + Expression 26.04 3.69 22.35 32

ChIP + PPI 4 Expression ~ 34.81 2.46 26.70 16

Table 3. Clusters formed by the genes fused across all 3 datasets

ID  Gene Brief description

2 NOBI  Involved in synthesis of 40S ribosomal subunits
2 ENP2 Required for biogenesis of the small ribosomal subunit
2 RPF2 Involved in assembly of 60S ribosomal subunit
2 IMP3 Component of the SSU processome

2 DBP9  Involved in biogenesis of 60S ribosomal subunit
3 HHF2  Histone H4, core histone protein

3 HTB2  Histone H2B, core histone protein

3 HTAI Histone H2A, core histone protein

3 HHTI  Histone H3, core histone protein

3 HTBI Histone H2B, core histone protein

3 HHT2  Histone H3, core histone protein

3 HHFI  Histone H4, core histone protein

5 SMC3  Subunit of the cohesin complex

5 IRRI Subunit of the cohesin complex

Descriptions were derived from the Saccharomyces Genome Database (Cherry
et al., 1998). The IDs in this table correspond to the cluster IDs in Figure 4, with
singletons omitted.

exist across multiple datasets permits the identification of groups
of genes with specific shared characteristics. Increasing the
number of datasets across which we seek agreement in cluster
assignment has the effect of increasing the specificity of these
shared characteristics (which typically reduces the size of the
gene subset—see Section 4.3 for further explanation).

4.5 Scaling and run-times

For typical examples (where the number of datasets, K, is rela-
tively small), the scaling of MDI will be O(KNn) (see
Supplementary Section D.5 for further details and specific
run-times). MDI is particularly appropriate for applications in
which a gene pre-selection step is performed (e.g. on the basis of
differential expression). We anticipate applications to collections
of ~5 datasets, each comprising ~1000 genes. Parallelizing MDI
using an approach such as the one described by Suchard et al.
(2010) should be possible, and we are currently investigating this.

5 DISCUSSION

We have presented MDI, a novel Bayesian method for the un-
supervised integrative modelling of multiple datasets. We have
established that MDI provides competitive results with an exist-
ing method for integrating two datasets (Section 4.2), and is also
able to integrate collections of more than two datasets (Sections
4.1 and 4.3). Our application to a three-dataset example (Section
4.3) demonstrated that requiring agreement across multiple data-
sets of different types can enable us to identify clusters of genes
with increasingly specific shared characteristics. Moreover, we
have found that sharing information across multiple datasets
can improve cluster quality.

MDI adopts a modelling approach distinctly different from
those adopted by existing integrative modelling methods. For
example, the model of Savage et al. (2010) performs integrative
modelling of two datasets only, achieved by introducing a ‘fused
context’ (in which the two datasets are modelled together via a
product of likelihoods) in addition to two ‘unfused contexts’ in
which the two datasets are modelled separately. This is analo-
gous to introducing—and modelling—an additional dataset. In
contrast, MDI introduces just a single parameter, ¢, € R, for
each pair of datasets (Section 2.2), and it is this that provides
MDI with the flexibility to perform integrative modelling of mul-
tiple datasets. The scalability of MDI may be further improved
through parallelization of the type described by Suchard ef al.
(2010). This is an important direction for future work.
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