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ABSTRACT
Motivation: The integration of multiple datasets remains a key
challenge in systems biology and genomic medicine. Modern high-
throughput technologies generate a broad array of different data
types, providing distinct – but often complementary – information. We
present a Bayesian method for the unsupervised integrative modelling
of multiple datasets, which we refer to as MDI (Multiple Dataset
Integration). MDI can integrate information from a wide range of
different datasets and data types simultaneously (including the ability
to model time series data explicitly using Gaussian processes). Each
dataset is modelled using a Dirichlet-multinomial allocation (DMA)
mixture model, with dependencies between these models captured
via parameters that describe the agreement among the datasets.
Results: Using a set of 6 artificially constructed time series datasets,
we show that MDI is able to integrate a significant number of datasets
simultaneously, and that it successfully captures the underlying
structural similarity between the datasets. We also analyse a variety
of real S. cerevisiae datasets. In the 2-dataset case, we show that
MDI’s performance is comparable to the present state of the art.
We then move beyond the capabilities of current approaches and
integrate gene expression, ChIP-chip and protein-protein interaction
data, to identify a set of protein complexes for which genes are co-
regulated during the cell cycle. Comparisons to other unsupervised
data integration techniques – as well as to non-integrative approaches
– demonstrate that MDI is very competitive, while also providing
information that would be difficult or impossible to extract using other
methods.
Availability: A Matlab implementation of MDI is available1 from
https://sites.google.com/site/mdipackage/.
Contact: D.L.Wild@warwick.ac.uk

1 INTRODUCTION
The wide range of modern high-throughput genomics technologies
has led to a rapid increase in both the quantity and variety of
functional genomics data that can be collected. For example, large-
scale microarray (Schena et al., 1995; Lockhart et al., 1996),
chromatin immunoprecipitation (ChIP) chip (Solomon et al., 1988),
and tandem affinity purification (TAP) (Rigaut et al., 1999; Puig
et al., 2001) datasets are available for a broad selection of
organisms, providing measurements of mRNA expression, protein-
DNA binding, and protein-protein interactions. In the forthcoming
era of personal genomic medicine, we may reasonably expect
genome sequences and other forms of high-throughput data (such
as gene expression, alternative splicing, DNA methylation, histone
acetylation, and protein abundances) to be routinely measured for
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large numbers of people. The development of novel statistical and
computational methodology for integrating diverse data sources is
therefore essential, and it is with this that the present work is
concerned.

As is common in statistics and machine learning, data integration
techniques can be broadly categorised as either supervised (where a
training/gold-standard set with known labels is used in order to learn
statistical relationships) or unsupervised (where there is no training
dataset, but we nevertheless seek to identify hidden structure in
the observed data; e.g. by clustering). Our proposed method is
unsupervised, but there are are also a number of supervised learning
algorithms that are designed to integrate multiple data sources; we
now briefly mention these for the sake of completeness. These
have proven highly successful in several contexts, often when
predicting whether a link or interaction exists between two genes
or proteins. Depending on the application, the link might represent
(to provide just a few examples) protein-protein binding (Jansen
et al., 2003; Rhodes et al., 2005), or a synthetic sick or lethal
interaction (Wong et al., 2004), or might indicate that the two genes
have been implicated in the same biological process (Myers and
Troyanskaya, 2007). Approaches for predicting these links often
proceed by collecting a gold-standard set of positive and negative
interactions (see, for contrasting examples, Jansen et al., 2003;
Lee et al., 2004; Myers et al., 2005), and then training statistical
models (e.g. decision trees, naive Bayes classifiers) that predict
the presence/absence of these interactions. These models may then
be applied in order to predict the presence/absence of previously
unknown interactions. Since training and prediction are performed
on the basis of information collected from multiple different data
sources, these approaches provide a form of data integration. Such
supervised data integration techniques have proven highly effective
for predicting interactions, some of which may then be verified
experimentally (e.g. Rhodes et al., 2005; Huttenhower et al., 2009).
Moreover, the work of Huttenhower et al. (2009) demonstrates
that such approaches may be used to integrate whole-genome scale
datasets. The Bayesian network approach of Troyanskaya et al.
(2003) was a precursor to many of these supervised approaches, but
differs from the others in that it uses knowledge from human experts
in order to integrate predictions derived from diverse datasets.

Here we propose a novel unsupervised approach for the
integrative modelling of multiple datasets, which may be of different
types. For brevity, we refer to our approach as MDI, simply as
a shorthand for “Multiple Dataset Integration”. We model each
dataset using a Dirichlet-multinomial allocation (DMA) mixture
model (see Section 2.1), and exploit statistical dependencies
between the datasets in order to share information (Section 2.2).
MDI permits the identification of groups of genes that tend to
cluster together in one, some, or all of the datasets. In this way,
our method is able to use the information contained within diverse
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datasets in order to identify groups of genes with increasingly
specific characteristics (e.g. not only identifying groups of genes
that are co-regulated, but additionally identifying groups of genes
that are both co-regulated and whose protein products appear in the
same complex).

Informally, our approach may be considered as a “correlated
clustering” model, in which the allocation of genes to clusters in one
dataset has an influence upon the allocation of genes to clusters in
another. This contrasts with “simple” clustering approaches (such
as k-means, hierarchical clustering, etc.) in which the datasets
are clustered independently (or else concatenated and treated as
a single dataset). It also clearly distinguishes our methodology
from biclustering (e.g. Cheng and Church, 2000; Reiss et al.,
2006). Biclustering is the clustering of both dimensions in a
single dataset (for example, both genes and experiments in a gene
expression dataset). MDI, in contrast, clusters a single dimension
(for example genes) across multiple datasets. Biclustering is not
applicable here as the datasets can be arbitrarily different, making
any clustering across all features difficult. MDI avoids the problem
of comparing different data types by instead learning the degree of
similarity between the clustering structures (i.e. the gene-to-cluster
allocations) in different datasets (see Section 2.2).

MDI makes use of mixture models, which have become
widespread in the context of unsupervised integrative data
modelling (e.g. Barash and Friedman, 2002; Liu et al., 2006, 2007),
gaining increased popularity in recent years (Savage et al., 2010;
Rogers et al., 2010). The principal advantages of using mixture
models are: (i) they provide flexible probabilistic models of the
data; (ii) they naturally capture the clustering structure that is
commonly present in functional genomics datasets; and (iii) by
adopting different parametric forms for the mixture components,
they permit different data types to be modelled (see also Section
2.1). An early application to data integration is provided by Barash
and Friedman (2002), who performed integrative modelling of gene
expression and binding site data.

As part of our approach, we infer parameters that describe the
levels of agreement between the datasets. Our method may thus be
viewed as extending the work of Balasubramanian et al. (2004).
In this regard, MDI is also related to the approach of Wei and
Pan (2012), which models the correlation between data sources as
part of a method that classifies genes as targets or non-targets of
a given transcription factor (TF) using ChIP-chip, gene expression
and DNA binding data, as well as information regarding the position
of genes on a gene network. Perhaps most closely related to MDI
(in terms of application) are the method of Savage et al. (2010)
and iCluster (Shen et al., 2009). Savage et al. (2010) adopt a
mixture modelling approach, employing a hierarchical Dirichlet
process in order to perform integrative modelling of 2 datasets.
As well as significant methodological differences, the principal
practical distinction between this approach and MDI is that we
are able to integrate more than 2 datasets, any or all of which
may be of different types (see Section 2). Like MDI, the iCluster
method of Shen et al. (2009) permits integrative clustering of
multiple (≥ 2) genomic datasets, but uses a joint latent variable
model (see Shen et al., 2009, for details). In contrast to MDI,
iCluster seeks to find a single common clustering structure for all
datasets. Moreover, iCluster must resort to heuristic approaches in
order to estimate the number of clusters, whereas MDI infers this
automatically (see Section 2.1). We demonstrate that MDI provides
results that are competitive with the 2-dataset approach of Savage

et al. (2010) in Section 3.2, and provide a comparison of results
obtained using MDI, iCluster and simple clustering approaches in
the Supplementary Material.

The potential biological applications of our approach are quite
diverse, since there are many experimental platforms that produce
measurements of different types, which might be expected to
possess similar (but not necessarily identical) clustering structures.
For example, in the 2-dataset case, related methodologies have
been used to discover transcriptional modules (Liu et al., 2007;
Savage et al., 2010) and prognostic cancer subtypes (Yuan et al.,
2011) through the integration of gene expression data with
TF binding (ChIP-chip) data and copy number variation data,
respectively. A related approach was also employed by Rogers
et al. (2008) in order to investigate the correspondence between
transcriptomic and proteomic expression profiles. In the example
presented in this paper, we focus on the biological question of
identifying protein complexes whose genes undergo transcriptional
co-regulation during the cell cycle.

The outline of this paper is as follows. In Section 2, we briefly
provide some modelling background and present our approach.
Inference in our model is performed via a Gibbs sampler, which
is provided in the Supplementary Material. In Section 3, we
describe three case study examples, in all of which we use publicly
available S. cerevisiae (baker’s yeast) datasets. We present results in
Section 4, and a discussion in Section 5.

2 METHODS
In this section, we provide some background regarding Dirichlet-
multinomial allocation mixture models (Section 2.1), and consider how these
may be extended to allow us to perform integrative modelling of multiple
datasets (Section 2.2). Inference in the resulting model (which we henceforth
refer to as MDI) is performed using a Gibbs sampler (see Supplementary
Material). We briefly describe in Section 2.4 how the resulting posterior
samples may be effectively summarised.

2.1 Dirichlet-multinomial allocation mixture models
We model each dataset using a finite approximation to a Dirichlet process
mixture model (Ishwaran and Zarepour, 2002), known as a Dirichlet-
multinomial allocation mixture model (Green and Richardson, 2001). Such
models have the following general form:

p(x) =

N∑
c=1

πcf(x|θc). (1)

In the above, p(x) denotes the probability density model for the data, which
is here an N component mixture model. The πc’s are mixture proportions,
f is a parametric density (such as a Gaussian), and θc denotes the vector
of parameters associated with the c-th component. Importantly, different
choices for the density f allow us to model different types of data (for
example, a normal distribution might be appropriate for continuous data,
while a multinomial might be appropriate for categorical data).

Given observed data x1, . . . , xn, we wish to perform Bayesian inference
for the unknown parameters in this model. As is common in mixture
modelling (e.g. Dempster et al. 1977; see also Friedman et al. 2004 for
a graphical model perspective), we introduce latent component allocation
variables cj ∈ {1, . . . , N}, such that ci is the component responsible for
observation xi. We then specify the model as follows:

xi|ci,θ ∼ F (θci ),

ci|π ∼ Multinomial(π1, . . . , πN ),

π1, . . . , πN ∼ Dirichlet(α/N, . . . , α/N), (2)

θc ∼ G(0),
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where F is the distribution corresponding to density f , π = (π1, . . . , πN )

is the collection of N mixture proportions, α is a mass/concentration
parameter (which may also be inferred), and G(0) is the prior for
the component parameters. Bayesian inference for such models may be
performed via Gibbs sampling (Neal, 2000). Note that a realisation of
the collection of component allocation variables, (c1, . . . , cn), defines a
clustering of the data (i.e. if ci = cj , then xi and xj are clustered together).
Since each cj is a member of the set {1, . . . , N}, it follows that the value
of N places an upper bound on the number of clusters in the data.

The Dirichlet process (DP) mixture model may be derived by considering
the limit N → ∞ in Equation (1) (Neal, 1992; Rasmussen, 2000). In the
present paper, it is convenient to persist with finite N (see Section 2.2).
The important point is that N just places an upper bound on the number
of clusters present in the data (since, as in the infinite DP case, not all
of the components need to be “occupied”; i.e. not all components need to
have observations associated with them), and hence N does not specify the
precise number of clusters a priori. Provided N is taken sufficiently large,
the number of clusters present in the data will be (much) less than N , and
we will retain the ability to identify automatically the number of clusters
supported by the data. Theoretical justifications for “large” mixture models
such as this (in which the number of components in the mixture is larger
than the true number of clusters in the data) are provided by Rousseau and
Mengersen (2011). A choice of N = n would set the upper bound on the
number of clusters to be equal to the number of genes. As a tradeoff with
computational cost, we take N = dn/2e throughout this paper.

2.2 Dependent component allocations
We are interested in the situation where we have a collection of n genes, for
each of which we have measurements from K different data sources. One
possible modelling approach would be to fit K independent DMA mixture
models, represented graphically in Figure 1a for the case K = 3. However,
this neglects to consider (and fails to exploit) structure within the data that
may be common across some or all of the different sources. For example,
a set of co-regulated genes might be expected to have similar expression
profiles, as well as having a common collection of proteins that bind their
promoters. We therefore propose a model in which we allow dependencies
between datasets at the level of the component allocation variables, ci.

We consider K mixture models (one for each dataset), each defined as
in Equations (1) and (2). We add right subscripts to our previous notation
in order to distinguish between the parameters of the K different models
(so that αk is the mass parameter associated with model k, etc.) and take
Nk = N in all mixture models. Note that each model is permitted to have
a different mass parameter, αk . MDI links these models together at the level
of the component allocation variables via the following conditional prior:

p(ci1, ci2, . . . , ciK |φ) ∝
K∏

k=1

πcikk

K−1∏
k=1

K∏
`=k+1

(1 + φk`I(cik = ci`)) ,

(3)
where I is the indicator function, φk` ∈ R≥0 is a parameter that controls the
strength of association between datasets k and `, and φ is the collection of
allK(K−1)/2 of the φk`’s. For clarity, note that cik ∈ {1, . . . , N} is the
component allocation variable associated with gene i in model k, and that
πcikk is the mixture proportion associated with component cik in model k.
Informally, the larger φk`, the more likely it is that cik and ci` will be the
same, and hence the greater the degree of similarity between the clustering
structure of dataset k and dataset `. In Figure 1b, we provide a graphical
representation of our model in the case K = 3. If all φk` = 0, then we
recover the case of K independent DMA mixture models (Figure 1a). Note
that (1+φk`I(cik = ci`)) ≥ 1, hence if φk` > 0 then we are up-weighting
the prior probability that cik = ci` (relative to the independent case).

Linking the mixture models at the level of the component allocation
variables provides us with a means to capture dependencies between the
datasets in a manner that avoids difficulties associated with the datasets being
of different types and/or having different noise properties.

α1 α2 α3

π1 π2 π3

ci1 ci2 ci3
θc3θc2θc1

c = 1, . . . , N

G
(0)
1 G

(0)
2 G

(0)
3

(a)

xi2xi1

i = 1, . . . , n

xi3

α1 α2 α3

π1 π2 π3

ci1
ci2

ci3
θc3θc2θc1

c = 1, . . . , N

G
(0)
1 G

(0)
2 G

(0)
3

φ23

φ13

φ12xi2xi1

i = 1, . . . , n

xi3

(b)

Fig. 1: Graphical representation of 3 DMA mixture models. (a) Independent
case. (b) The MDI model. In both (a) and (b), xik denotes the i-th
observation in dataset k and is generated by mixture component cik .
The prior probabilities associated with the distinct component allocation
variables, [c1k, . . . , cNk], are given in the vector πk , which is itself
assigned a symmetric Dirichlet prior with parameter αk . The parameter
vector, θck , for component c in dataset k is assigned a G0

k prior. In (b),
we additionally have φk` parameters, each of which models the dependence
between the component allocations of observations in dataset k and `

An important feature of our model is that there is a correspondence
between the component labels across the datasets. That is, our model
implicitly “matches up” Component c in Dataset k with Component c
in Dataset `. This allows us to identify groups of genes that tend to be
allocated to the same component (i.e. which tend to cluster together) in
multiple datasets (see Section 2.4). It is this desire to “match up” components
across datasets that motivates our use of finite approximations to Dirichlet
process mixture models. Had we used an infinite mixture model, matching
components across datasets would be more problematic. We reiterate that
the finite N that appears in our mixture models merely places an upper
bound on the number of clusters in each dataset (since not all components
need to be occupied), and hence is not restrictive in practice. Note that
while this upper bound is the same for each data set, the actual number of
occupied components (i.e. clusters) is inferred separately for each dataset
and in general will be different for each one.

2.3 Modelling different data types
To specify our model fully, we must provide parametric densities, f ,
appropriate for each data source. It is important to note that we may
tailor our choice of f to reflect the data sources that we seek to model.
In the present work, we use Gaussian process (GP) models (Rasmussen
and Williams, 2006; Kirk and Stumpf, 2009; Cooke et al., 2011) for gene
expression time course data, and use multinomial models for categorical data
(e.g. discretised gene expression levels). For comparison with the results of
Savage et al. (2010), we also consider in our second example (Sections 3.2
and 4.2) a bag-of-words model for ChIP-chip data. Full details of all of these
models are given in the Supplementary Material, where we also provide a
Gibbs sampler for performing inference. As in Nieto-Barajas et al. (2004),
posterior simulation for our model is aided by the strategic introduction of
an additional latent variable (see Supplementary Material for details).

2.4 Extracting fused clusters from posterior samples
We wish to identify groups of genes that tend to be grouped together in
multiple datasets. Suppose we have a collection of K datasets, which we
label as Dataset 1, . . . , Dataset K. We are interested in identifying groups
of genes that tend to cluster together amongst some subcollection of the
datasets. Let {k1, k2, . . . , km} be a subset of {1, . . . ,K}. Our aim is
to identify groups of genes that cluster together in all of Dataset k1, . . . ,
Dataset km. Adapting terminology from Savage et al. (2010), we define the
probability of the i-th gene being fused across datasets k1, . . . , km to be
the posterior probability that cik1

= cik2
= . . . = cikm . For brevity,

we denote this posterior probability by p(cik1
= cik2

= . . . = cikm ).
We calculate this quantity as the proportion of posterior samples for which
cik1

, cik2
, . . . , cikm are all equal. We may clearly calculate these posterior

fusion probabilities for any combination of the datasets (pairs, triplets, etc.),
simply by considering the appropriate subset of {1, . . . ,K}. We say that
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the i-th gene is fused across datasets k1, k2, . . . , km if p(cik1
= cik2

=

. . . = cikm ) > 0.5, and we denote the set of all such fused genes by
Fk1,k2,...,km .

If gene i is a member of Fk1,k2,...,km , this simply tells us that the
component allocation variables cik1

, cik2
, . . ., cikm tend to be equal

(i.e. gene i tends to be allocated to the same component across datasets
k1, k2, . . . , km). We also wish to identify the clustering structure that exists
amongst these fused genes. From our Gibbs sampler, we have a collection
of sampled component allocations for each member of Fk1,k2,...,km . We
identify a final clustering for the set of fused genes by searching amongst the
sampled component allocations in order to find the one that maximises the
posterior expected adjusted Rand index (see Fritsch and Ickstadt, 2009). The
resulting fused clusters contain groups of genes that tend to cluster together
across datasets k1, k2, . . . , km.

3 EXAMPLES
To demonstrate the usage and utility of MDI, we consider 3
examples using publicly available S. cerevisiae datasets. We specify
the priors adopted for unknown parameters and provide MCMC
running specifications in the Supplementary Material. Each of our
examples serves a different purpose. In the first (Section 3.1), we
consider an easily interpretable synthetic dataset, which allows us
to illustrate the types of results that can be obtained using MDI. In
the second (Section 3.2), we seek to compare our method to the
present state of the art in data integration (namely, the approach of
Savage et al., 2010). Although this approach is limited to integrating
2 datasets only, it provides a useful benchmark for MDI. Finally, in
Section 3.3, we provide an example that allows us to explore the
benefits offered by MDI that go beyond the existing state of the art.
We consider the integration of 3 datasets, two of which comprise
static measurements (ChIP-chip and PPI), and the other of which
comprises gene expression time course data.

3.1 6-dataset synthetic example
To illustrate the properties of our model, we start with a 6-dataset
synthetic example. Dataset 1 is constructed by taking a 100-gene

subset of the gene expression time course data of Cho et al.
(1998), and may be partitioned into 7 easily distinguishable clusters
(Figure 2a). We therefore associate with each time course a cluster
label, Z ∈ {1, . . . , 7}. For i = 1, . . . , 5, we form Dataset i + 1
by randomly selecting 25 time courses from Dataset i and randomly
permuting their associated gene names (but not their cluster labels).
Thus, for a maximum of 25 genes, the cluster label associated
with gene g in Dataset i may be different from the cluster label
associated with the same gene in Dataset i + 1. Figures 2b and
2c further illustrate this dataset. A formal approach for comparing
the allocation of genes to clusters is to calculate the adjusted Rand
index (ARI) between each pair of clustering partitions (Rand, 1971;
Hubert and Arabie, 1985). Figure 2d provides a heatmap depiction
of the similarity matrix formed by calculating pairwise ARIs.

3.2 Integrating expression and ChIP data
To compare our method to an existing approach for unsupervised
data integration, we apply MDI to an example previously considered
by Savage et al. (2010) in the context of transcriptional module
discovery. We take expression data from a 205-gene subset of the
galactose utilisation data of Ideker et al. (2001), which we integrate
with ChIP-chip data from Harbison et al. (2004). The expression
data were discretised, as in Savage et al. (2010). The 205 genes
appearing in this dataset were selected in Yeung et al. (2003) to
reflect four functional Gene Ontology (GO) categories. Although
this functional classification must be used with some degree of
caution (see Yeung et al., 2003), it provides a reasonable means by
which to validate the groupings defined by our method. We use the
same version of the Harbison et al. dataset as considered by Savage
et al. (2010) (significance threshold p = 0.001), which provides
binding information for 117 transcriptional regulators. For brevity,
we henceforth refer to the data of Harbison et al. as “ChIP data”,
although we emphasise that this dataset comprises measurements
corresponding to a compendium of 117 TFs, rather than to a single
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Fig. 2: (a) The data for the 6-dataset synthetic example, separated into 7 clusters. (b) A representation of how the cluster labels associated
with each gene vary from dataset to dataset. Genes are ordered so that the clustering of Dataset 1 is the one that appears coherent. (c) A table
showing the number of genes having the same cluster labels in datasets i and j. (d) A heatmap depiction of the similarity matrix formed by
calculating the adjusted Rand index between pairs of datasets.
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particular TF. Discretising the data (both expression and ChIP-
chip) might seem like an unnecessary simplification (since our
model can accommodate continuous static measurements through
an appropriate choice of component density function, f ), but it helps
to ensure that our comparison to the results of Savage et al. (2010) is
fair. Moreover, discretisation of the ChIP data simplifies modelling
and interpretation of the data (the ij-entry of our ChIP data matrix
is 1 if we have high confidence that TFj is able to bind the promoter
region of gene i, and 0 otherwise), although we acknowledge that
this is likely to incur some small information loss.

3.3 Integrating expression, ChIP and PPI data
For an example with 3 diverse data types, we integrate the ChIP data
of Harbison et al. with binary protein-protein interaction (PPI) data
obtained from BioGRID (Stark et al., 2006) and a gene expression
time course dataset of Granovskaia et al. (2010), with the initial
intention of identifying protein complexes whose genes undergo
transcriptional co-regulation during the cell cycle. We consider the
Granovkskaia et al. cell cycle dataset that comprises measurements
taken at 41 time points, and which was obtained from cells
synchronised using alpha factor arrest. We considered only genes
identified in Granovskaia et al. (2010) as having periodic expression
profiles. After removing those for which there was no ChIP or PPI
data, we were left with 551 genes. Our binary PPI data matrix
then has rows indexed by these 551 genes, and columns indexed
by all of the proteins for which physical interactions identified
via yeast 2-hybrid or affinity capture assays have been reported
in BioGRID. The ij-entry of the PPI data matrix is 1 if there is
a reported interaction between protein j and the protein product
of gene i (and 0 otherwise). In an effort to reduce the number of
uninformative features, we removed columns containing fewer than
five 1’s, leaving 603 columns.

4 RESULTS
4.1 6-dataset synthetic example
Figure 3a shows estimated posterior densities for the mass
parameters, αk (obtained from the samples generated by our Gibbs
sampler using kernel density estimation). Since each of our datasets
is identical (up to permutation of gene names), these distributions
should be close to identical, as is the case. For each pair of datasets,
we used the posterior φk` samples to estimate posterior means, φ̄k`.
We used these to form a similarity matrix whose k`-entry is φ̄k`

(with φ̄k` defined to be φ̄`k whenever k > `, and with φ̄kk left
undefined). This is shown as a heatmap in Figure 3b. Although they
do so in different ways, both the ARI and the dataset association
parameters quantify the degree of similarity between the allocation
of genes to clusters in pairs of datasets. The similarity of Figures 2d
and 3b is therefore reassuring.

To test our ability to identify fused genes, we calculated pairwise
fusion probabilities, p(cik = ci`), for each gene i and each pair
of datasets (k, `). If the true cluster label of gene i is the same in
datasets k and `, then p(cik = ci`) should be high (greater than
0.5) so that the gene may be correctly identified as fused. Across
all pairs of datasets, the minimum pairwise fusion probability for
such genes was 0.90 and the mean was 0.97. Conversely, for genes
having different cluster labels in datasets k and `, the maximum
pairwise fusion probability was 0.05 and the mean was 0.01. Since
our fusion threshold is 0.5, we are in this case able to identify the
fusion status correctly for all genes.
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Fig. 3: (a) Densities fitted to the sampled values of αk. (b) Heatmap
representation of the matrix with k`-entry φ̄k`, the posterior mean
value for φkl.

4.2 Expression + ChIP example
We ran MDI using a multinomial likelihood model for both the
discretised expression data and the binary ChIP-chip data. We
estimated pairwise fusion probabilities and extracted fused clusters,
as described in Section 2.4. We identified 52 fused genes, grouped
into 3 clusters. We compared these clusters to the functional classes
defined in Yeung et al. (2003). Within each cluster, all genes had
the same functional classification, while genes in different clusters
possessed different classifications.

In Savage et al. (2010), a bag-of-words model was used to model
TF binding data. To permit a fair comparison of the two approaches,
we therefore re-ran MDI using a bag-of-words likelihood model for
the ChIP data. Following Savage et al. (2010), we then calculated
the Biological Homogeneity Index (BHI; Datta and Datta, 2006) for
the resulting fused clusters. To calculate the BHI scores, we used
the R package clValid (Brock et al., 2008) together with the GO
annotations in the org.Sc.sgd.db Bioconductor package (Carlson
et al., 2010). The clValid package provides 4 different BHI scores,
depending on which GO functional categories are used to define the
set of annotations. All categories may be considered, or just one
of: biological process (bp), cellular component (cc), and molecular
function (mf). We report all 4 BHI scores in Table 1, for the fused
clusters defined by: (i) the method of Savage et al. (2010); (ii) MDI
using a bag-of-words likelihood; and (iii) MDI using a multinomial
likelihood. The BHI scores for MDI (bag-of-words) and the method
of Savage et al. (2010) are almost identical, although MDI (bag-of-
words) identifies a greater number of fused genes.

Table 1. BHI scores for the fused clusters obtained using the method of
Savage et al. (2010), together with those obtained using MDI.

BHI BHI BHI BHI Number
(all) (bp) (mf) (cc) of genes

Savage et al. (2010) 0.98 0.85 0.71 0.98 72
MDI (bag-of-words) 0.98 0.85 0.72 0.97 172
MDI (multinomial) 1.00 0.89 0.77 1.00 52

4.3 Expression + ChIP + PPI example
We applied MDI to the example of Section 3.3 (using GP models
for the gene expression time courses, and multinomial models
for the ChIP and PPI datasets), in order to identify groups of
genes that are co-regulated during the yeast cell cycle, and whose
protein products appear in the same complex. We identified genes
fused across all 3 datasets, as well as genes fused across pairs of
datasets. We then determined the fused clusters for each of these
combinations (see Section 2.4). Additionally, we identified clusters
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for the “single dataset fusion” case (which amounts to identifying
a single clustering partition for each of our 3 datasets considered
separately). We assess the quality of our clusterings using GO Term
Overlap (GOTO) scores (Mistry and Pavlidis, 2008). These assign a
score to a pair of genes according to how many GO terms they have
in common. This contrasts with BHI, which just assigns a score of 0
or 1 to gene pairs depending on whether or not they share a common
GO term. The GOTO scores therefore provide a more finely grained
assessment, which implicitly takes into account the hierarchical
structure of the Gene Ontology. This is invaluable here, since (as
a result of selecting only genes found to have periodic expression
profiles during the cell cycle) any 2 randomly selected genes are
likely to share some high-level GO terms (see the Supplementary
Material for more details).

Table 2. GOTO scores for fused clusters obtained for all combinations of
the expression, ChIP and PPI datasets.

GOTO GOTO GOTO Number
(bp) (mf) (cc) of genes

ChIP 6.36 0.97 8.53 551
PPI 11.04 1.51 11.11 551

Expression 7.66 1.15 9.48 551
ChIP+PPI 27.04 3.47 18.99 31

ChIP+Expression 24.46 2.93 16.87 48
PPI+Expression 26.04 3.69 22.35 32

ChIP+PPI+Expression 34.81 2.46 26.70 16

The GOTO scores generally increase as we require agreement
across more datasets, while the number of fused genes decreases.
Note that this decrease is simply a consequence of requiring
agreement among a larger collection of datasets. For example,
since the set S1 = {genes that are co-regulated and have protein
products that appear in the same complex} is a subset of S2 =
{genes that are co-regulated}, it is inevitable that the number of
genes of the former type will be less than or equal to the number
of genes of the latter type. In other words, requiring agreement
across multiple datasets enables us to identify clusters of genes that
have increasingly specific shared characteristics. This is reflected in
the increasing GOTO scores, which indicate that genes in the same
cluster tend to share a greater number of lower-level (more specific)
GO terms.

In Figure 4, we compare the clusters formed by the genes fused
across all 3 datasets with those formed by the genes fused across

just the PPI and ChIP datasets. Figures 4a and 4b illustrate fusion
probabilities for the 31 genes identified as fused across the PPI and
ChIP datasets. Each bar in Figure 4a corresponds to a particular gene
(as labelled), and represents the posterior probability of that gene
being fused across the ChIP and PPI datasets. The corresponding bar
in Figure 4b represents the probability of the gene being fused across
all 3 datasets. Figure 4c shows the expression profiles for genes
identified as fused across the PPI and ChIP datasets, with genes
fused across all three datasets shown in colour. Supplementary
Figure 2 further illustrates the fused clusters, while Table 3 shows
the fused cluster labels and provides descriptions for the genes fused
across all 3 datasets.

Table 3. Clusters formed by the genes fused across all 3 datasets.
Descriptions were derived from the Saccharomyces Genome Database
(Cherry et al., 1998). The IDs in this table correspond to the cluster IDs
in Figure 4, with singletons omitted.

ID Gene Brief description

2 NOB1 Involved in synthesis of 40S ribosomal subunits
2 ENP2 Required for biogenesis of the small ribosomal

subunit
2 RPF2 Involved in assembly of 60S ribosomal subunit
2 IMP3 Component of the SSU processome
2 DBP9 Involved in biogenesis of 60S ribosomal subunit
3 HHF2 Histone H4, core histone protein
3 HTB2 Histone H2B, core histone protein
3 HTA1 Histone H2A, core histone protein
3 HHT1 Histone H3, core histone protein
3 HTB1 Histone H2B, core histone protein
3 HHT2 Histone H3, core histone protein
3 HHF1 Histone H4, core histone protein
5 SMC3 Subunit of the cohesin complex
5 IRR1 Subunit of the cohesin complex

We can see from Figures 4a and 4b that the integration of the
expression data in addition to the ChIP and PPI data results in
Cluster 1 (green) and Cluster 6 (black) being effectively removed.
Although many of the genes in Cluster 1 are annotated as cell wall
proteins (see Supplementary Material), and although the two genes
in Cluster 6 are both cyclins, the genes within these clusters have
different expression patterns to one another (Figure 4c, panels 1
and 6). Genes are also lost from Clusters 4 and 5 (shown pink and
purple). However, further analysis suggests that this is due to data
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Fig. 4: (a) Pairwise fusion probabilities for the 31 genes identified as fused across the ChIP and PPI datasets in the “Expression + ChIP +
PPI” example. Colours correspond to fused clusters and the dashed line indicates the fusion threshold. (b) Three-way fusion probabilities for
the same 31 genes. Genes that do not exceed the fusion threshold have white bars. (c) The expression profiles for genes identified as fused
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normalisation effects (see Supplementary Material). Cluster 2 (blue)
is robust to the additional inclusion of expression data, indicating
that there is no significant disagreement amongst the three datasets
regarding the existence of this cluster. Cluster 3 (red) is also
relatively robust, with only one fewer gene when we consider the
fusion of all 3 datasets, compared to the fusion of just the ChIP
and PPI datasets (see Figures 4a and 4b). We note that the genes
in Clusters 2 and 3 all have key roles, either encoding core histone
proteins or being involved in ribosome biogenesis (see Table 3).

Interestingly, the gene lost from Cluster 3 (the histone cluster) is
HTZ1, which encodes the variant histone H2A.Z (Jackson et al.,
1996; Santisteban et al., 2000). The function of H2A.Z is different
to that of the major H2As (e.g. Jackson and Gorovsky, 2000).We can
see from Figure 4c (panel 3) that the expression of this gene (shown
grey) is subtly different to the expression of others in the cluster.

4.4 Comparison to other methods
In Section G of the Supplementary Material, we provide a
comparison of MDI to other clustering methods, both in terms of
performance and the types of results that can be obtained. The key
properties of MDI that distinguish it from other clustering methods
are: (i) the clustering of genes in dataset k influences (and is
influenced by) the clustering in dataset `, to an extent determined
by the inferred φk` parameter; (ii) each dataset is permitted to have
a different clustering structure (so each dataset may, for example,
have a different number of clusters); (iii) the number of clusters
is determined automatically as part of the inference procedure;
and (iv) there is a correspondence between the cluster labels in
different datasets, which enables us to identify clusters of genes
that exist across some or all of the datasets. Simple clustering
methods (such as k-means and hierarchical clustering) can be used
to cluster each of the datasets independently, but do not model
the dependence/similarity between clustering structures in different
datasets and do not enable clusters that exist across multiple datasets
to be identified automatically. More sophisticated methods such as
iCluster (Shen et al., 2009) often share some of MDI’s properties,
but do not allow for the identification of subsets of genes that
cluster together across multiple datasets. The results of Section G
of the Supplementary Material demonstrate that the ability to share
information across datasets typically provides improvements in
clustering quality, while MDI’s ability to pick out clusters that exist
across multiple datasets permits the identification of groups of genes
with very specific shared characteristics. Increasing the number of
datasets across which we seek agreement in cluster assignment has
the effect of increasing the specificity of these shared characteristics
(which typically reduces the size of the gene subset – see Section 4.3
for further explanation).

4.5 Scaling and run-times
For typical examples (where the number of datasets, K, is
relatively small), the scaling of MDI will be O(KNn) (see
Supplementary Section D.5 for further details and specific run-
times). MDI is particularly appropriate for applications in which
a gene pre-selection step is performed (e.g. on the basis of
differential expression). We anticipate applications to collections
of ∼5 datasets, each comprising ∼1000 genes. Parallelising MDI
using an approach such as the one described by Suchard et al. (2010)
should be possible, and we are currently investigating this.

5 DISCUSSION
We have presented MDI, a novel Bayesian method for the
unsupervised integrative modelling of multiple datasets.We have
established that MDI provides competitive results with an existing
method for integrating 2 datasets (Section 4.2), and is also able to
integrate collections of more than 2 datasets (Sections 4.1 and 4.3).
Our application to a 3-dataset example (Section 4.3) demonstrated
that requiring agreement across multiple datasets of different types
can enable us to identify clusters of genes with increasingly specific
shared characteristics. Moreover, we have found that sharing
information across multiple datasets can improve cluster quality.

MDI adopts a modelling approach distinctly different from those
adopted by existing integrative modelling methods. For example,
the model of Savage et al. (2010) performs integrative modelling
of 2 datasets only, achieved by introducing a “fused context”
(in which the 2 datasets are modelled together via a product of
likelihoods) in addition to 2 “unfused contexts” in which the 2
datasets are modelled separately. This is analogous to introducing –
and modelling – an additional dataset. In contrast, MDI introduces
just a single parameter, φk` ∈ R≥0, for each pair of datasets (see
Section 2.2), and it is this that provides MDI with the flexibility to
perform integrative modelling of multiple datasets. The scalability
of MDI may be further improved through parallelisation of the type
described by Suchard et al. (2010). This is an important direction
for future work.
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