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Abstract

We demonstrate efficient approximate infer-
ence for the Dirichlet Diffusion Tree (Neal,
2003), a Bayesian nonparametric prior over
tree structures. Although DDTs provide a
powerful and elegant approach for modeling
hierarchies they haven’t seen much use to
date. One problem is the computational cost
of MCMC inference. We provide the first
deterministic approximate inference methods
for DDT models and show excellent perfor-
mance compared to the MCMC alternative.
We present message passing algorithms to ap-
proximate the Bayesian model evidence for
a specific tree. This is used to drive se-
quential tree building and greedy search to
find optimal tree structures, corresponding
to hierarchical clusterings of the data. We
demonstrate appropriate observation models
for continuous and binary data. The empiri-
cal performance of our method is very close to
the computationally expensive MCMC alter-
native on a density estimation problem, and
significantly outperforms kernel density esti-
mators.

1. Introduction

Tree structures play an important role in machine
learning and statistics. Learning a tree structure over
data points gives a straightforward picture of how ob-
jects of interest are related. Trees are easily inter-
preted and intuitive to understand. Sometimes we may
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know that there is a true underlying hierarchy: for ex-
ample species in the tree of life or duplicates of genes in
the human genome, known as paralogs. Typical mix-
ture models, such as Dirichlet Process mixture models,
have independent parameters for each component. In
many situations we might expect that certain clusters
are similar, for example are sub-groups of some large
group. By learning this hierarchical similarity struc-
ture, the model can share statistical strength between
components to make better estimates of parameters
using less data.

Traditionally, a family of methods known as hierarchi-
cal clustering is used to learn tree structures. Clas-
sical hierarchical clustering algorithms employ a bot-
tom up “agglomerative” approach (Duda et al., 2001):
start with a “hierarchy” of one datapoint and itera-
tively add the closest datapoint in some metric into
the hierarchy. The output of these algorithms is usu-
ally a binary tree or dendrogram. Although these al-
gorithms are straightforward to implement, both the
ad-hoc method and the distance metric hide the sta-
tistical assumptions being made.

Two solutions to this problem have recently been pro-
posed. In Heller & Ghahramani the bottom-up ag-
glomerative approach is kept but a principled proba-
bilistic model is used to find subtrees of the hierarchy.
Bayesian evidence is then used as the metric to de-
cide which node to incorporate in the tree. Although
fast, the lack of a generative process prohibits model-
ing uncertainty over tree structures. A different line
of work (Williams, 2000; Neal, 2003; Teh et al., 2008;
Blei et al., 2010; Roy et al., 2006) starts from a gen-
erative probabilistic model for both the tree structure
and the data. Bayesian inference machinery can then
be used to compute posterior distributions on both the
internal nodes of the tree as well as the tree structures
themselves.
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An advantage of the generative probabilistic models
for trees is that they can be used as a building block for
other latent variable models (Rai & Daumé III, 2008).
We could use this technique to build topic models with
hierarchies on the topics, or hidden Markov models
where the states are hierarchically related. Greedy
agglomerative approaches can only cluster latent vari-
ables after inference has been done and hence they
cannot be used in a principled way to aid inference in
the latent variable model.

In this work we use the Dirichlet Diffusion Tree (DDT)
introduced in Neal (2003), and reviewed in Section 2.
This simple yet powerful generative model specifies a
distribution on binary trees with multivariate Gaus-
sian distributed variables at the leaves. The DDT is
a Bayesian nonparametric prior, and is a generaliza-
tion of Dirichlet Process mixture models (Rasmussen,
2000). The DDT can be thought of as providing a very
flexible density model, since the hierarchical structure
is able to effectively fit non-Gaussian distributions. In-
deed, in Adams et al. (2008) the DDT was shown
to significantly outperform a Dirichlet Process mix-
ture model in terms of predictive performance, and in
fact slightly outperformed the Gaussian Process Den-
sity Sampler. The DDT is thus both a mathemati-
cally elegant nonparametric distribution over hierar-
chies and provides state-of-the-art density estimation
performance.

Our algorithms use the message passing frame-
work (Kschischang et al., 2001; Minka, 2005). For
many models message passing has been shown to
significantly outperform sampling methods in terms
of speed-accuracy trade-off. However, general α-
divergence (Minka, 2005) based message passing is not
guaranteed to converge, which motivates our second,
guaranteed convergent, algorithm which uses message
passing within EM (Kim & Ghahramani, 2006).

The contributions of this paper are as follows. We
derive and demonstrate full message passing (Sec-
tion 3.1) and message passing within EM algorithms
(Section 3.2) to approximate the model evidence for
a specific tree, including integrating over hyperparam-
eters (Section 3.3). We show how the resulting ap-
proximate model evidence can be used to drive greedy
search over tree structures (Section 3.4). We demon-
strate that it is straightforward to connect different
observation models to this module to model different
data types, using binary vectors as an example. Fi-
nally we present experiments using the DDT and our
approximate inference scheme in Section 4.

2. The Dirichlet Diffusion Tree

The Dirichlet Diffusion Tree was introduced in Neal
(2003) as a top-down generative model for trees over
N datapoints x1, x2, · · · , xN ∈ RD. The dataset is
generated sequentially with each datapoint xi follow-
ing the path of a Brownian motion for unit time. We
overload our notation by referring to the position of
each datapoint at time t as xi(t) and define xi(1) = xi.

The first datapoint starts at time 0 at the origin in aD-
dimensional Euclidean space and follows a Brownian
motion with variance σ2 until time 1. If datapoint 1 is
at position x1(t) at time t, the point will reach position
x1(t+ dt) = x1(t) + Normal(0, σ2dt) at time t+ dt. It
can easily be shown that x1(t) ∼ Normal(0, σ2t). The
second point x2 in the dataset also starts at the origin
and initially follows the path of x1. The path of x2 will
diverge from that of x1 at some time Td (controlled by
the “divergence function” a(t)) after which x2 follows
a Brownian motion independent of x1(t) until t = 1.

The generative process for datapoint i is as follows.
Initially xi(t) follows the path of the previous data-
points. If xi does not diverge before reaching a pre-
vious branching point, the previous branches are cho-
sen with probability proportional to how many times
each branch has been followed before. This reinforce-
ment scheme is similar to the Chinese restaurant pro-
cess (Aldous, 1985). If at time t the path for data-
point i has not yet diverged, it will diverge in the next
infinitesimal time step dt with probability a(t)dt/m,
where m is the number of datapoints that have pre-
vious followed the current path. The division by m
is another reinforcing aspect of the DDT: the more
datapoints follow a particular branch, the more likely
subsequent datapoints will not diverge off this branch.

For the purpose of this paper we use the divergence
function a(t) = c

1−t , with “smoothness” parameter
c > 0. Larger values c > 1 give smoother densities be-
cause divergences typically occur earlier, resulting in
less dependence between the datapoints. Smaller val-
ues c < 1 give rougher more “clumpy” densities with
more local structure since divergence typically occurs
later, closer to t = 1. We refer to Neal (2001) for
further discussion of the properties of this and other
divergence functions. Figure 1 illustrates the diffusion
tree process for a dataset with N = 4 datapoints.

Before we describe the functional form of the DDT
prior we will need two results. First, the probability
that a new path does not diverge between times s <
t on a segment that has been followed m times by
previous data-points can be written as

P (not diverging) = exp [(A(s)−A(t))/m],
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Figure 1. A sample from the Dirichlet Diffusion Tree with
N = 4 datapoints. Top: the location of the Brownian mo-
tion for each of the four paths. Bottom: the corresponding
tree structure. Each branch point corresponds to an inter-
nal tree node.

where A(t) =
∫ t
0
a(u)du is the cumulative rate

function. For our divergence function A(t) =
−c log (1− t). Second, the DDT prior defines an ex-
changeable distribution: the order in which the data-
points were generated does not change the joint den-
sity. See Neal (2003) for a proof.

We now consider the tree as a set of segments S(T )
each contributing to the joint probability density. The
tree structure T contains the counts of how many dat-
apoints traversed each segment. Consider an arbitrary
segment [ab] ∈ S(T ) from node a to node b with cor-
responding locations xa and xb and divergence times
ta and tb. Let m(b) be the number of leaves under
node b, i.e. the number of datapoints which traversed
segment [ab]. Let l(b) and r(b) be the number of leaves
under the left and right child of node b respectively, so
that l(b) + r(b) = m(b).

By exchangeability we can assume that it was the sec-
ond path which diverged at b. None of the subsequent
paths diverged before time tb (otherwise [ab] would
not be a contiguous segment). The probability of this
happening is

P (tb|[ab], ta) = a(tb)

m(b)−1∏
i=1

exp[(A(ta)−A(tb))/i]

= a(tb) exp [(A(ta)−A(tb))Hm(b)−1]

where Hn =
∑n
i=1 1/i is the nth harmonic number.

This expression factorizes into a term for ta and tb.

Collecting such terms from the branches attached to
an internal node i the factor for ti for the divergence
function a(t) = c/(1− t) is

a(ti)e
[A(ti)(Hl(i)−1+Hr(i)−1−Hm(i)−1)]

= (1− ti)cJl(i),r(i)−1 (1)

where Jl,r = Hr+l−1 −Hl−1 −Hr−1.

Each path that went through xb, except the first and
second, had to choose to follow the left or right branch.
Again, by exchangeability, we can assume that all
l(b)−1 paths took the left branch first, then all r(b)−1
paths chose the right branch. The probability of this
happening is

P ([ab]) =
(l(b)− 1)!(r(b)− 1)!

m(b)!

Finally, we include a term for the diffusion locations:

P (xb|xa, ta, tb) = Normal(xb;xa, σ
2(tb − ta)) (2)

The full joint probability for the DDT is now a product
of terms for each segment

P (x, t, T ) =
∏

[ab]∈S(T )

P (xb|xa, ta, tb)P (tb|[ab], ta)P ([ab])

3. Approximate Inference for the DDT

We assume that the likelihood can be written as a
product of conditional probabilities for each of the
leaves xn:

∏
n l(yn|xn) where yn is observed data. Our

aim is to calculate the posterior distribution

P (x, t, T |y) =
P (y, x, t, T )∑

T
∫
P (y, x, t, T )dxdt

Unfortunately, this integral is analytically intractable.
Our solution is to use message passing or mes-
sage passing within EM to approximate the marginal
likelihood for a given tree structure: P (y|T ) =∫
P (y, x, t|T )dxdt. We use this approximate marginal

likelihood to drive tree building/search algorithm to
find a weighted set of K-best trees.

3.1. Message passing algorithm

Here we describe our message passing algorithm for a
fixed tree structure T . We employ the α-divergence
framework from Minka (2005). Our variational ap-
proximation is fully factorized with a Gaussian q for
every variable except c (the divergence function pa-
rameter) which is Gamma distributed. For each seg-
ment [ab] ∈ S(T ) we introduce two variables which
are deterministic functions of existing variables: the
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branch length ∆[ab] = tb − ta and the variance v[ab] =
σ2∆[ab]. We now write the unnormalized posterior as
a product of factors:∏

n∈leaves

l(yn|xn)
∏

[ab]∈S(T )

N(xb;xa, v[ab])

× δ(v[ab] − σ2∆[ab])δ(∆[ab] − (tb − ta))

× I(0 < ∆[ab] < 1)P (tb|T ) (3)

where δ(.) is the Dirac delta spike at 0, and I(.) is the
indicator function. These functions are used to break
down more complex factors into simpler ones for com-
putational and mathematical convenience. Equation 3
defines a factor graph over the variables, shown in Fig-
ure 2.

Choosing α-divergences. We choose an α for each
factor f in the factor graph and then minimize the α-
divergence Dα[q∼f (W )f̃(W )||q∼f (W )f(W )] with re-
spect to f̃(W ) where W = {x, t,∆, v} is the set of
latent variables for all nodes. Here

Dα(p||q) =
1

α(1− α)

∫
1− p(x)αq(x)(1−α)dx

is the α-divergence between two (normalized) distri-
butions p and q; and q∼f (W ) = q(W )/f̃(W ) is the
cavity distribution: the current variational posterior
without the contribution of factor f . Minka (2005)
describes how this optimization can be implemented
as a message passing algorithm on the factor graph.

We choose which α-divergence to minimize for each
factor considering performance and computational
tractability. The normal, minus, divergence time prior
and constraint factors use α = 1. The multiplication
factor and prior on divergence function parameter c
use α = 0 (Figure 2). Since we only use α = 0 and 1
our algorithm can also be viewed as a hybrid Expecta-
tion Propagation (Minka, 2001) and Variational Mes-
sage Passing (Winn & Bishop, 2006)/mean field (Beal,
2003) algorithm. We use the Infer.NET (Minka et al.,
2010) low level library of message updates to calculate
the outgoing message from each factor.

Approximating the model evidence is required to drive
the search over tree structures (see Section 3.4). Our
evidence calculations follow Minka (2005), to which
we defer for details. We use the evidence calculated at
each iteration to assess convergence.

3.2. Message passing in EM algorithm

For high dimensional problems we have found that our
message passing algorithm over the divergence times
can have convergence problems. This can be addressed
using damping, or by maximizing over the divergence

times rather than trying to marginalize them. In high
dimensional problems the divergence times tend to
have more peaked posteriors because each dimension
provides independent information on when the diver-
gence times should be. Because of this, and because
of the increasing evidence contribution from the in-
creasing number of Gaussian factors in the model at
higher dimension D, modeling the uncertainty in the
divergence times becomes less important. This sug-
gests optimizing the divergence times in an EM type
algorithm.

In the E-step, we use message passing to integrate over
the locations and hyperparameters. In the M-step we
maximize the lower bound on the marginal likelihood
with respect to the divergence times. For each node i
with divergence time ti we have the constraints tp <
ti < min (tl, tr) where tl, tr, tp are the divergence times
of the left child, right child and parent of i respectively.

One simple approach is to optimize each diver-
gence time in turn (e.g. using golden section
search), performing a co-ordinate ascent. However,
we found jointly optimizing the divergence times us-
ing LBFGS (Liu & Nocedal, 1989) to be more com-
putationally efficient. Since the divergence times must
lie within [0, 1] we use the reparameterization si =
log [ti/(1− ti)] to extend the domain to the whole
space, which we find improves empirical performance.
From Equations 2 and 1 the lower bound on the log
evidence with respect to an individual divergence time
ti is

(〈c〉Jl(i),r(i) − 1) log (1− ti)− a log (ti − tp)− 〈
1

σ2
〉
b[pi]

ti − tp

a =
D

2
, b[pi] =

1

2

D∑
d=1

E[(xdi − xdp)2] (4)

where xdi is the location of node i in dimension d,
and p is the parent of node i. The full lower bound
is the sum of such terms over all nodes. The expec-
tation required for b[pi] is readily calculated from the
marginals of the locations after message passing. Dif-
ferentiating to obtain the gradient with respect to ti is
straightforward so we omit the details. Although this
is a constrained optimization problem (branch lengths
cannot be negative) it is not necessary to use the log
barrier method because the 1/(ti − tp) terms in the
objective implicitly enforce the constraints.

3.3. Hyperparameter learning.

The DDT has two hyperparameters: the variance of
the underlying Brownian motion σ2 and the divergence
function parameter c, which controls the smoothness
of the data. For the full message passing framework,
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Figure 2. A subsection of the factor graph for the Dirichlet Diffusion Tree. The left node represents an internal node and
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the overall variance σ2 is given a Gaussian prior and
variational posterior and learnt using the multiplica-
tion factor with α = 0, corresponding to the mean field
divergence measure. For the EM algorithm we use a
Gamma prior and variational posterior for 1/σ2. The
message from each segment [ab] to 1/σ2 is then

m[ab]→1/σ2 = G

(
D

2
+ 1,

b[pi]

2(tb − ta)

)
where G(α, β) is a Gamma distribution with shape α
and rate β, and b[pi] is the same as for Equation 4.
The smoothness c is given a Gamma prior, and sent
the following VMP message from every internal node i:

〈log p(ti, c)〉 = log c+ (cJl(i),r(i) − 1)〈log(1− ti)〉
⇒ mi→c = G

(
c; 2,−Jl(i),r(i)〈log [1− ti]〉

)
The term 〈log (1− ti)〉 is deterministic for the EM
algorithm and is easily approximated under the full
message passing algorithm by mapping the Gaussian
q(ti) to a Beta(ti;α, β) distribution with the same
mean and variance, and noting that 〈log (1− ti)〉 =
φ(β)− φ(α+ β) where φ(.) is the digamma function.

3.4. Search over tree structures

Our resulting message passing algorithm approximates
the marginal likelihood for a fixed tree structure,
p(y|T )p(T ) (we include the factor for the probabil-
ity of the tree structure itself). Ideally we would now
sum the marginal likelihood over all possible tree struc-
tures T over N leaf nodes. Unfortunately, there are

(2N)!
(N+1)!N ! such tree structures so that enumeration of

all tree structures for even a modest number of leaves
is not feasible. Instead we maintain a list of K-best

trees (typically K = 10) which we find gives good em-
pirical performance on a density estimation problem.

We search the space of tree structures by detaching
and re-attaching subtrees, which may in fact be single
leaves nodes. Central to the efficiency of our method
is keeping the messages (and divergence times) for
both the main tree and detached subtree so that small
changes to the structure only require a few iterations
of inference to reconverge.

We experimented with several heuristics for choosing
which subtree to detach but none significantly outper-
formed choosing a subtree at random. However, we
greatly improve upon attaching at random. We calcu-
late the local contribution to the evidence that would
be made by attaching the root of the subtree to the
midpoint of each possible branch. We then run infer-
ence on the L-best attachments (L = 3 worked well,
see Figure 5).

Sequential tree building. To build an initial tree
structure we sequentially process the N leaves. We
start with a single internal node with the first two
leaves as children. We run inference to convergence on
this tree. Given a current tree incorporating the first
n− 1 leaves, we use the local evidence calculation de-
scribed above to propose L possible branches at which
we could attach leaf n. We run inference to conver-
gence on the L resulting trees and choose the one with
the best evidence for the next iteration.

Tree search. Starting from a random tree or a tree
built using the sequential tree building algorithm, we
can use tree search to improve the list of K-best trees.
We detach a subtree at random from the current best
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tree, and use the local evidence calculation to propose
L branches at which to re-attach the detached subtree.
We run message passing/EM to convergence in the
resulting trees, add these to the list of trees and keep
only the K best trees in terms of model evidence for
the next iteration.

3.5. Likelihood models

Connecting our DDT module to different likelihood
models is straightforward. We demonstrate a Gaussian
observation model for multivariate continuous data
and a probit model for binary vectors. Both factors
use α = 1, corresponding to EP (Minka, 2001).

4. Experiments

We tested our algorithms on both synthetic and real
world data to assess computational and statistical per-
formance both of variants of our algorithms and com-
peting methods. Where computation times are given
these were on a system running Windows 7 Profes-
sional with a Intel Core i7 2.67GHz quadcore processor
and 4GB RAM.

Toy 2D fractal dataset. Our first experiment is
on a simple two dimensional toy example with clear
hierarchical (fractal) structure shown in Figure 3, with
N = 63 datapoints. Using the message passing in EM
algorithm with sequential tree building followed by 100
iterations of tree search we obtain the tree shown in
Figure 3 in 7 seconds. The algorithm has recovered the
underlying hierarchical structure of data apart from
the occasional mistake close to the leaves where it is
not clear what the optimal solution should be anyway.

Data from the prior (D = 5, N = 200). We use
a dataset sampled from the prior with σ2 = 1, c = 1,
shown in Figure 4, to assess the different approaches
to tree building and search discussing in Section 3.4.
The results are shown in Figure 5. Eight repeats of
each method were performed using different random
seeds. The slowest method starts with a random tree
and tries randomly re-attaching subtrees (“search ran-
dom”). Preferentially proposing re-attaching subtrees
at the best three positions significantly improves per-
formance (“search greedy”). Sequential tree building is
very fast (5-7 seconds), and can be followed by search
where we only move leaves (“build+search leaves”) or
better, subtrees (“build+search subtrees”). The spread
in initial log evidences for the sequential tree build
methods is due to different permutations of the data
used for the sequential processing. This variation sug-
gests tree building using several random permutations
of the data (potentially in parallel) and then choosing

the best resulting tree.
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Figure 5. Performance of different tree building/search
methods on the synthetic dataset.

Macaque skull measurements (N = 200, D = 10).
We the macaque skull measurement data of Adams
et al. (2008) to assess our algorithm’s performance
as a density model. Following Adams et al.
(2008) we split the 10 dimensional data into 200
training points and 28 test points and model the
three technical repeats separately. We compare to
the infinite mixture of Gaussians (iMOG MCMC)
and DDT MCMC methods implemented in Rad-
ford Neal’s Flexible Bayesian Modeling software (see
http://www.cs.toronto.edu/∼radford/). As a
baseline we use a kernel density estimate with band-
width selected using the npudens R package. The re-
sults are shown in Figure 6. The EM version of our
algorithm is able to find a good solution in just a few
tens of seconds, but is eventually beaten on predictive
performance by the MCMC solution. The full mes-
sage passing solution lies between the MCMC and EM
solutions in terms of speed, and only outperforms the
EM solution on the first of the three repeats. The
DDT based algorithms typically outperform the infi-
nite mixture of Gaussians, with the exception of the
second dataset.

Gene expression dataset (N = 2000, D = 171).
We apply the EM algorithm with sequential tree build-
ing and 200 iterations of tree search to hierarchical
clustering of the 2000 most variable genes from Yu
& Landsittel (2004). We calculate predictive log like-
lihoods on four splits into 1800 training and 200 test
genes. The results are shown in Table 1. The EM algo-
rithm for the DDT has comparable statistical perfor-
mance to the MCMC solution whilst being an order of
magnitude faster. Both implementations significantly
outperform iMOG in terms of predictive performance.
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Figure 6. Per instance test set performance on the macaque skull measurement data Adams et al. (2008). The three plots
arise from using the three technical replicates as separate datasets.

iMOG DDT EM DDT MCMC
Score −1.00± 0.04 −0.91± 0.02 −0.88± 0.03
Time 37min 48min 18hours

Table 1. Results on a gene expression dataset (Yu & Land-
sittel, 2004). Score is the per test point, per dimension
log predictive likelihood. Time is the average computation
time on the system described in Section 4.

DDT MCMC was run for 100 iterations, where one
iteration involves sampling the position of every sub-
tree, and the score computed averaging over the last 50
samples. Running DDT MCMC for 5 iterations takes
54min (comparable to the time for EM) and gives a
score of −0.98± 0.04, worse than DDT EM.

Animal species. To demonstrate the use of an
alternative observation model we use a probit ob-
servation model in each dimension to model 102-
dimensional binary feature vectors relating to at-
tributes (e.g. being warm-blooded, having two legs) of
33 animal species (Kemp & Tenenbaum, 2008). The

tree structure we find, shown in Figure 7, is intuitive,
with subtrees corresponding to land mammals, aquatic
mammals, reptiles, birds, and insects (shown by colour
coding).

5. Conclusion

Our approximate inference scheme, combining mes-
sage passing and greedy tree search, is a computation-
ally attractive alternative to MCMC for DDT models.
We have demonstrated the strength of our method for
modeling observed continuous and binary data at the
leaves, and hope that by making code available we will
encourage the community to use this elegant prior over
hierarchies. In ongoing work we use the DDT to learn
hierarchical structure over latent variables in models
including Hidden Markov Models, specifically in part
of speech tagging (Kupiec, 1992) where a hierarchy
over the latent states aids interpretability, and Latent
Dirichlet Allocation, where it is intuitive that topics
might be hierarchically clustered (Blei et al., 2004).
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Figure 7. Tree structure learnt over animals using 102 bi-
nary features with the probit observation model.

Kingman’s coalescent (Teh et al., 2008) is similar to
the Dirichlet Diffusion Tree in spirit although the gen-
erative process is defined going backwards in time as
datapoints coalesce together, rather than forward in
time as for the DDT. Efficient inference for Kingman’s
coalescent was demonstrated in Teh & Gorur (2009).
We leave investigating whether our framework could
be adapted to the coalescent as future work.
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