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Abstract. A nonparametric Bayesian extension of Independent Com-
ponents Analysis (ICA) is proposed where observed data Y is modelled
as a linear superposition, G, of a potentially infinite number of hidden
sources, X. Whether a given source is active for a specific data point
is specified by an infinite binary matrix, Z. The resulting sparse rep-
resentation allows increased data reduction compared to standard ICA.
We define a prior on Z using the Indian Buffet Process (IBP). We de-
scribe four variants of the model, with Gaussian or Laplacian priors on X
and the one or two-parameter IBPs. We demonstrate Bayesian inference
under these models using a Markov Chain Monte Carlo (MCMC) algo-
rithm on synthetic and gene expression data and compare to standard
ICA algorithms.

1 Introduction

Independent Components Analysis (ICA) is a model which explains observed
data, yt (dimension D) in terms of a linear superposition of independent hidden
sources, xt (dimension K), so yt = Gxt + εt, where G is the mixing matrix
and εt is Gaussian noise. In the standard ICA model we assume K = D and
that there exists W = G−1. We use FastICA [1], a widely used implementation,
as a benchmark. The assumption K = D may be invalid, so Reversible Jump
MCMC [2] could be used to infer K. In this paper we propose a sparse implemen-
tation which allows a potentially infinite number of components and the choice
of whether a hidden source is active for a data point, allowing increased data
reduction for systems where sources are intermittently active. Although ICA is
not a time-series model it has been used successfully on time-series data such as
electroencephalograms [3]. It has also been applied to gene expression data [4],
the application we choose for a demonstration.

2 The Model

We define a binary vector zt which acts as a mask on xt. Element zkt specifies
whether hidden source k is active for data point t. Thus

Y = G(Z�X) + E (1)



where � denotes element-wise multiplication and X, Y, Z and E are concate-
nated matrices of xt, yt, zt and εt respectively. We allow a potentially infinite
number of hidden sources, so that Z has infinitely many rows, although only a fi-
nite number will have non-zero entries. We assume Gaussian noise with variance
σ2

ε , which is given an inverse Gamma prior IG
(
σ2

ε ; a, b
)
.

We define two variants based on the prior for xkt: infinite sparse Factor
Analysis (isFA) has a unit Gaussian prior; infinite Independent Components
Analysis (iICA) has a Laplacian(1) prior. Other heavy tailed distributions are
possible but are not explored here. Varying the variance is redundant because
we infer the variance of the mixture weights. The prior on the elements of G is
Gaussian with variance σ2

G, which is given an inverse Gamma prior. We define
the prior on Z using the Indian Buffet Process with parameter α (and later β)
as described in Section 2.1 and in more detail in [5]. We place Gamma priors on
α and β.

All four variants share

εt ∼ N
(
0, σ2

ε I
)

σ2
ε ∼ IG (a, b) (2)

gk ∼ N
(
0, σ2

G

)
σ2

G ∼ IG (c, d) (3)
Z ∼ IBP(α, β) α ∼ G (e, f) (4)

The differences between the variants are summarised here.

xkt ∼ N (0, 1) xkt ∼ L(1)
β = 1 isFA1 iICA1

β ∼ G (1, 2) isFA2 iICA2

2.1 Defining a distribution on an infinite binary matrix

Start with a finite model. We derive our distribution on Z by defining a
finite K model and taking the limit as K →∞. We then show how the infinite
case corresponds to a simple stochastic process.

We assume that the probability of a source k being active is πk, and that the
sources are generated independently. We find

P (Z|π) =
K∏

k=1

N∏
t=1

P (zkt|πk) =
K∏

k=1

πmk

k (1− πk)N−mk (5)

where N is the total number of data points and mk =
∑N

t=1 zkt is the number
of data points for which source k is active. We put a Beta( α

K , 1) prior on πk,
where α is the strength parameter. Due to the conjugacy between the binomial
and beta distributions we are able to integrate out π to find

P (Z) =
K∏

k=1

α
K Γ (mk + α

K )Γ (N −mk + 1)
Γ (N + 1 + α

K )
(6)



Take the infinite limit. By defining a scheme to order the non-zero rows of
Z (see [5]) we can take K →∞ and find

P (Z) =
αK+∏

h>0 Kh!
exp {−αHN}

K+∏
k=1

(N −mk)!(mk − 1)!
N !

(7)

where K+ is the number of active features, HN =
∑N

j=1
1
j is the N -th harmonic

number, and Kh is the number of rows whose entries correspond to the binary
number h.

Go to an Indian Buffet. This distribution corresponds to a simple stochastic
process, the Indian Buffet Process. Consider a buffet with a seemingly infinite
number of dishes (hidden sources) arranged in a line. The first customer (data
point) starts at the left and samples Poisson(α) dishes. The ith customer moves
from left to right sampling dishes with probability mk

i where mk is the number
of customers to have previously sampled that dish. Having reached the end of
the previously sampled dishes, he tries Poisson(α

i ) new dishes.
If we apply the same ordering scheme to the matrix generated by this process

as for the finite model, we recover the correct exchangeable distribution. Since the
distribution is exchangeable with respect to the customers we find by considering
the last customer that P (zkt = 1|z−kt) = mk,−t

N where mk,−t =
∑

s 6=t zks, which
is used in sampling Z. By exchangeability and considering the first customer, the
number of active sources for a data point follows a Poisson(α) distribution, and
the expected number of entries in Z is Nα. We also see that the number of active
features, K+ =

∑N
t=1 Poisson(α

t ) = Poisson(αHN ) which grows as α log N for
large N .

Two parameter generalisation. A problem with the one parameter IBP is
that the number of features per object, α, and the total number of features,
Nα, are both controlled by α and cannot vary independently. Under this model,
we cannot tune how likely it is for features to be shared across objects. To
overcome this restriction we follow [6], introducing β, a measure of the feature
repulsion. The ith customer now samples dish k with probability mk

β+i−1 and
samples Poisson( αβ

β+i−1 ) new dishes.
We find P (zkt = 1|z−kt, β) = mk,−t

β+N−1 . The marginal probability of Z becomes

P (Z|α, β) =
(αβ)K+∏
h>0 Kh!

exp {−αHN (β)}
K+∏
k=1

B(mk, N −mk + β) (8)

where HN (β) =
∑N

j=1
β

β+j−1 .

3 Inference

Given the observed data Y, we wish to infer the hidden sources X, which sources
are active Z, the mixing matrix G, and all hyperparameters. We use Gibbs sam-



pling, but with Metropolis-Hastings (MH) steps for β and sampling new features.
We draw samples from the marginal distribution of the model parameters given
the data by successively sampling the conditional distributions of each parameter
in turn, given all other parameters.

Hidden sources. We sample each element of X for which zkt = 1. We denote
the k-th column of G by gk and εt|zkt=0 by ε−kt. For isFA we find the conditional
distribution is a Gaussian:

P (xkt|G,x−kt,yt, zt) = N
(

xkt;
gT

k ε−kt

σ2
ε + gT

k gk
,

σ2
ε

σ2
ε + gT

k gk

)
(9)

For iICA we find a piecewise Gaussian distribution, which it is possible to sample
from analytically given the Gaussian c.d.f. function F

P (xkt|G,x−kt,yt, zt) =
{
N
(
xkt;µ−, σ2

)
xkt > 0

N
(
xkt;µ+, σ2

)
xkt < 0 (10)

where µ± =
gT

k ε−kt ± σ2
ε

gT
k gk

and σ2 =
σ2

ε

gT
k gk

(11)

Active sources. To sample Z we first define the ratio of conditionals, r

r =
P (yt|G,x−kt, z−kt, zkt = 1, σ2

ε )
P (yt|G,x−kt, z−kt, zkt = 0, σ2

ε )︸ ︷︷ ︸
rl

P (zkt = 1|z−kt)
P (zkt = 0|z−kt)︸ ︷︷ ︸

rp

(12)

so that P (zkt = 1|G,X−kt,Y,Z−kt) = r
r+1 . From Section 2.1 the ratio of priors

is rp = mk,−t

β+N−1−mk,−t
. To find P (yt|G,x−kt, z−kt, zkt = 1) we must marginalise

over all possible values of xkt.

P (yt|G,x−kt, z−kt, zkt = 1) =
∫

P (yt|G,xt, z−kt, zkt = 1)P (xkt)dxkt (13)

For isFA, using Equation (9) and integrating we find rl = σ exp
{

µ2

2σ2

}
. For iICA

we use Equation (11) and integrate above and below 0 to find

rl = σ

√
π

2

[
F (0;µ+, σ) exp

{
µ2

+

2σ2

}
+ (1− F (0;µ−, σ)) exp

{
µ2
−

2σ2

}]
(14)

Creating new features. Z is a matrix with infinitely many rows, but only
the non-zero rows can be held in memory. However, the zero rows still need
to be taken into account. Let κt be the number of rows of Z which contain 1
only in column t, i.e. the number of features which are active only at time t.
New features are proposed by sampling κt with a MH step. We propose a move



ξ → ξ∗ with probability J(ξ∗|ξ), following [7], we set to be equal to the prior on
ξ∗. This move is accepted with probability min (1, rξ→ξ∗) where

rξ→ξ∗ =
P (ξ∗|rest)J(ξ|ξ∗)
P (ξ∗|rest)J(ξ∗|ξ)

=
P (rest|ξ∗)P (ξ∗)P (ξ)
P (rest|ξ)P (ξ)P (ξ∗)

=
P (rest|ξ∗)
P (rest|ξ)

(15)

where rest denotes all other variables. By this choice rξ→ξ∗ becomes the ratio of
likelihoods. From the IBP the prior for κt is P (κt|α) = Poisson( αβ

β+N−1 ).
For isFA we can integrate out x′t, the new elements of xt, but not G′,

the new columns of G, so our proposal is ξ = {G′, κt}. We find rξ→ξ∗ =
|Λ|− 1

2 exp
(

1
2µT Λµ

)
where Λ = I + G∗T G∗

σ2
ε

and Λµ = 1
σ2

ε
G∗T εt.

For iICA marginalisation is not possible so ξ = {G′,x′t, κt}. From Equa-
tion (15) we find

rξ→ξ∗ = exp
{
− 1

2σ2
ε

x′Tt G∗T (G∗x′t − 2εt)
}

(16)

Mixture weights. We sample the columns gk of G. We denote the kth row of
(Z�X) by x′k

T . We have P (gk|G−k,X,Y,Z, σ2
ε , σ2

G) ∝ P (Y|G,X,Z, σ2
ε )P (gk|σ2

G).
The total likelihood function has exponent

− 1
2σ2

ε

tr(ET E) = − 1
2σ2

ε

((x′k
T x′k)(gT

k gk)− 2gT
k E|gk=0) + const (17)

where E = Y−G(Z�X). We thus find the conditional of gk is N (µ,Λ) where

µ = σ2
G

x′k
T x′kσ2

G+σ2
ε
E|gk=0x′k and Λ =

(
x′k

T x′k
σ2

ε
+ 1

σ2
G

)
ID×D.

Learning the noise level. We allow the model to learn the noise level σ2
ε .

Applying Bayes’ rule we find

P (σ2
ε |E, a, b) ∝ P (E|σ2

ε )P (σ2
ε |a, b) = IG

(
σ2

ε ; a +
ND

2
,

b

1 + b
2 tr (ET E)

)
(18)

Inferring the scale of the data. For sampling σ2
G the conditional prior on G

acts as the likelihood term

P (σ2
G|G, c, d) ∝ P (G|σ2

G)P (σ2
G|c, d) = IG

(
σ2

G; c +
DK

2
,

d

1 + d
2 tr (GT G)

)
(19)

IBP parameters. We infer the IBP strength parameter α. The conditional
prior on Z, given by Equation (8), acts as the likelihood term

P (α|Z, β) ∝ P (Z|α, β)P (α) = G
(

α;K+ + e,
f

1 + fHN (β)

)
(20)

We sample β by a MH step with acceptance probability min (1, rβ→β∗). By
Equation (15) setting J(β∗|β) = P (β∗) = G (1, 1), results in rβ→β∗ = P (Z|α,β∗)

P (Z|α,β) .



4 Results

4.1 Synthetic data

We ran all four variants and three FastICA variants (using the pow3, tanh and
gauss non-linearities) on 30 sets of randomly generated data with D = 7,K =
6, N = 200, the Z matrix shown in Figure 1(a), and Gaussian or Laplacian
source distributions. Figure 1 shows the average inferred Z matrix and algorithm
convergence for a typical 1000 iteration ICA1 run. Z is successfully recovered
within an arbitrary ordering. The gaps in the inferred Z are a result of inferring
zkt = 0 where xkt = 0.

(a) Top: True Z. Bottom: Inferred Z. (b) Log likelihood, α and K+ for dura-
tion of 1000 iteration run.

Fig. 1. True and inferred Z and algorithm convergence for typical iICA1 run.

Boxplots of the Amari error [8] for each algorithm are shown in Figure 2.
Figure 2(a) shows the results when the synthetic data has Gaussian source dis-
tributions. All four variants perform significantly better on the sparse synthetic
data than any of the FastICA variants, but then we do not expect FastICA
to recover Gaussian sources. Figure 2(b) shows the results when the synthetic
data has Laplacian source distributions. As expected the FastICA performance is
much improved because the sources are heavy tailed. However, isFA1, iICA1 and
iICA2 still perform better on average because they correctly model the sparse
nature of the data. The performance of isFA2 is severely effected by having the
incorrect source model, suggesting the iICA variants may be more robust to de-
viations from the assumed source distribution. The two parameter IBP variants
of both algorithms actually perform no better than the one parameter versions:
β = 1 happens to be almost optimal for the synthetic Z used.

4.2 Gene expression data

We now apply our model to the microarray data from an ovarian cancer study [4],
which represents the expression level of N = 172 genes (data points) across



(a) Gaussian sources. (b) Laplacian sources.

Fig. 2. Boxplots of Amari errors for 30 synthetic data sets with D = 7, N = 6, N = 100
analysed using each algorithm variant and FastICA.

D = 17 tissue samples (observed variables). The tissue samples are grouped into
five tissue types: one healthy and four diseased. ICA was applied to this dataset
in [4], where the term gene signature is used to describe the infered hidden
sources. Some of the processes which regulate gene expression, such as DNA
methylation, completely silence the gene, while others, such as transcription
regulation, affect the level at which the gene is expressed. Thus our sparse model
is highly valid for this system: Z represents which genes are silenced, and X
represents the expression level of active genes.

Figure 4.2 shows the mean G matrix infered by iICA1. Gene signature (hid-
den source) 1 is expressed across all the tissue samples, accounted for genes
shared by all the samples. Signature 7 is specific to the pd-spa tissue type. This
is consistent with that found in [4], with the same top 3 genes. Such tissue type
dependent signatures could be used for observer independent classification. Sig-
natures such as 5 which is differentially expressed across the pd-spa samples
could help subclassify tissue types.

Fig. 3. Hinton diagram of GT : the expression level of each gene signature within each
tissue sample.



5 Conclusions and Future work

In this paper we have defined the Infinite Sparse FA and Infinite ICA models us-
ing a distribution over the infinite binary matrix Z corresponding to the Indian
Buffet Process. We have derived MCMC algorithms for each model to infer the
parameters given observed data. These have been demonstrated on synthetic
data, where the correct assumption about the hidden source distribution was
shown to give optimal performance, and gene expression data, where the re-
sults were consistent with those using ICA. A MATLAB implementation of the
algorithms will be made available at http://learning.eng.cam.ac.uk/zoubin/.

There are a number of directions in which this work can be extended. The
recently developed stick breaking constructions for the IBP will allow a slice sam-
pler to be derived for Z which should allow faster mixing than the MH step cur-
rently used in sampling new features. Faster partially deterministic algorithms
would be useful for online learning in applications such as audio processing. The
sparse nature of the model could have useful applications in data compression
for storage or data reduction for further analysis.
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